1
|
Rich PR, Maréchal A. Functions of the hydrophilic channels in protonmotive cytochrome c oxidase. J R Soc Interface 2013; 10:20130183. [PMID: 23864498 PMCID: PMC3730678 DOI: 10.1098/rsif.2013.0183] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/03/2013] [Indexed: 01/31/2023] Open
Abstract
The structures and functions of hydrophilic channels in electron-transferring membrane proteins are discussed. A distinction is made between proton channels that can conduct protons and dielectric channels that are non-conducting but can dielectrically polarize in response to the introduction of charge changes in buried functional centres. Functions of the K, D and H channels found in A1-type cytochrome c oxidases are reviewed in relation to these ideas. Possible control of function by dielectric channels and their evolutionary relation to proton channels is explored.
Collapse
|
Review |
12 |
73 |
2
|
Han XX, Köhler C, Kozuch J, Kuhlmann U, Paasche L, Sivanesan A, Weidinger IM, Hildebrandt P. Potential-dependent surface-enhanced resonance Raman spectroscopy at nanostructured TiO2 : a case study on cytochrome b5. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:4175-81. [PMID: 23861351 DOI: 10.1002/smll.201301070] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/03/2013] [Indexed: 05/22/2023]
Abstract
Nanostructured titanium dioxide (TiO2 ) electrodes, prepared by anodization of titanium, are employed to probe the electron-transfer process of cytochrome b5 (cyt b5 ) by surface-enhanced resonance Raman (SERR) spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2 , achieved by raising the anodization voltage from 10 to 20 V, the enhancement factor increases from 2.4 to 8.6, which is rationalized by calculations of the electric field enhancement. Cyt b5 is immobilized on TiO2 under preservation of its native structure but it displays a non-ideal redox behavior due to the limited conductivity of the electrode material. The electron-transfer efficiency which depends on the crystalline phase of TiO2 has to be improved by appropriate doping for applications in bioelectrochemistry.
Collapse
|
|
12 |
44 |
3
|
Zhang Y, Martin SG. Redox proteins and radiotherapy. Clin Oncol (R Coll Radiol) 2014; 26:289-300. [PMID: 24581945 DOI: 10.1016/j.clon.2014.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/28/2014] [Accepted: 02/07/2014] [Indexed: 01/05/2023]
Abstract
Although conventional radiotherapy can directly damage DNA and other organic molecules within cells, most of the damage and the cytotoxicity of such ionising radiation, comes from the production of ions and free radicals produced via interactions with water. This 'indirect effect', a form of oxidative stress, can be modulated by a variety of systems within cells that are in place to, in normal situations, maintain homeostasis and redox balance. If cancer cells express high levels of antioxidant redox proteins, they may be more resistant to radiation and so targeting such systems may be a profitable strategy to increase therapeutic efficacy of conventional radiotherapy. An overview, with exemplars, of the main systems regulating redox homeostasis is supplied and discussed in relation to their use as prognostic and predictive biomarkers, and how targeting such proteins and systems may increase radiosensitivity and, potentially, improve the radiotherapeutic response.
Collapse
|
Review |
11 |
41 |
4
|
Zhu M, Zhu N, Song WY, Harmon AC, Assmann SM, Chen S. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:491-515. [PMID: 24580573 PMCID: PMC4019734 DOI: 10.1111/tpj.12490] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 12/22/2013] [Accepted: 02/17/2014] [Indexed: 05/19/2023]
Abstract
Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in various physiological processes. However, little is known about redox-sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard-cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis and isotope-coded affinity tagging. In total, 65 and 118 potential redox-responsive proteins were identified in ABA- and MeJA-treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of 'energy', 'stress and defense' and 'metabolism'. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA- and MeJA-treated samples. A total of 44 cysteines were mapped in the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a sucrose non-fermenting 1-related protein kinase and an isopropylmalate dehydrogenase, were confirmed to be redox-regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in ABA and MeJA signal transduction in guard cells.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
34 |
5
|
Scanu S, Förster J, Finiguerra MG, Shabestari MH, Huber M, Ubbink M. The complex of cytochrome f and plastocyanin from Nostoc sp. PCC 7119 is highly dynamic. Chembiochem 2012; 13:1312-8. [PMID: 22619165 PMCID: PMC3569876 DOI: 10.1002/cbic.201200073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 01/23/2023]
Abstract
Cytochrome f (Cyt f) and plastocyanin (Pc) form a highly transient complex as part of the photosynthetic redox chain. The complex from Nostoc sp. PCC 7119 was studied by NMR relaxation spectroscopy with the aim of determining the orientation of Pc relative to Cyt f. Chemical-shift-perturbation analysis showed that the presence of spin labels on the surface of Cyt f does not significantly affect the binding of Pc. The paramagnetic relaxation enhancement results are not consistent with a single orientation of Pc, thus indicating that multiple orientations must occur and suggesting that an encounter state represents a large fraction of the complex.
Collapse
|
research-article |
13 |
21 |
6
|
Carvalho LAC, Queijo RG, Baccaro ALB, Siena ÁDD, Silva WA, Rodrigues T, Maria-Engler SS. Redox-Related Proteins in Melanoma Progression. Antioxidants (Basel) 2022; 11:438. [PMID: 35326089 PMCID: PMC8944639 DOI: 10.3390/antiox11030438] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Despite the available therapies, the minimum residual disease is still refractory. Reactive oxygen and nitrogen species (ROS and RNS) play a dual role in melanoma, where redox imbalance is involved from initiation to metastasis and resistance. Redox proteins modulate the disease by controlling ROS/RNS levels in immune response, proliferation, invasion, and relapse. Chemotherapeutics such as BRAF and MEK inhibitors promote oxidative stress, but high ROS/RNS amounts with a robust antioxidant system allow cells to be adaptive and cooperate to non-toxic levels. These proteins could act as biomarkers and possible targets. By understanding the complex mechanisms involved in adaptation and searching for new targets to make cells more susceptible to treatment, the disease might be overcome. Therefore, exploring the role of redox-sensitive proteins and the modulation of redox homeostasis may provide clues to new therapies. This study analyzes information obtained from a public cohort of melanoma patients about the expression of redox-generating and detoxifying proteins in melanoma during the disease stages, genetic alterations, and overall patient survival status. According to our analysis, 66% of the isoforms presented differential expression on melanoma progression: NOS2, SOD1, NOX4, PRX3, PXDN and GPX1 are increased during melanoma progression, while CAT, GPX3, TXNIP, and PRX2 are decreased. Besides, the stage of the disease could influence the result as well. The levels of PRX1, PRX5 and PRX6 can be increased or decreased depending on the stage. We showed that all analyzed isoforms presented some genetic alteration on the gene, most of them (78%) for increased mRNA expression. Interestingly, 34% of all melanoma patients showed genetic alterations on TRX1, most for decreased mRNA expression. Additionally, 15% of the isoforms showed a significant reduction in overall patient survival status for an altered group (PRX3, PRX5, TR2, and GR) and the unaltered group (NOX4). Although no such specific antioxidant therapy is approved for melanoma yet, inhibitors or mimetics of these redox-sensitive proteins have achieved very promising results. We foresee that forthcoming investigations on the modulation of these proteins will bring significant advances for cancer therapy.
Collapse
|
research-article |
3 |
16 |
7
|
Chi YH, Paeng SK, Kim MJ, Hwang GY, Melencion SMB, Oh HT, Lee SY. Redox-dependent functional switching of plant proteins accompanying with their structural changes. FRONTIERS IN PLANT SCIENCE 2013; 4:277. [PMID: 23898340 PMCID: PMC3724125 DOI: 10.3389/fpls.2013.00277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/08/2013] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species (ROS) can be generated during the course of normal aerobic metabolism or when an organism is exposed to a variety of stress conditions. It can cause a widespread damage to intracellular macromolecules and play a causal role in many degenerative diseases. Like other aerobic organisms plants are also equipped with a wide range of antioxidant redox proteins, such as superoxide dismutase, catalase, glutaredoxin, thioredoxin (Trx), Trx reductase, protein disulfide reductase, and other kinds of peroxidases that are usually significant in preventing harmful effects of ROS. To defend plant cells in response to stimuli, a part of redox proteins have shown to play multiple functions through the post-translational modification with a redox-dependent manner. For the alternative switching of their cellular functions, the redox proteins change their protein structures from low molecular weight to high molecular weight (HMW) protein complexes depending on the external stress. The HMW proteins are reported to act as molecular chaperone, which enable the plants to enhance their stress tolerance. In addition, some transcription factors and co-activators have function responding to environmental stresses by redox-dependent structural changes. This review describes the molecular mechanism and physiological significance of the redox proteins, transcription factors and co-activators to protect the plants from environmental stresses through the redox-dependent structural and functional switching of the plant redox proteins.
Collapse
|
review-article |
12 |
16 |
8
|
Sommer DJ, Roy A, Astashkin A, Ghirlanda G. Modulation of cluster incorporation specificity in a de novo iron-sulfur cluster binding peptide. Biopolymers 2016; 104:412-8. [PMID: 25808361 DOI: 10.1002/bip.22635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/20/2022]
Abstract
iron-sulfur cluster binding proteins perform an astounding variety of functions, and represent one of the most abundant classes of metalloproteins. Most often, they constitute pairs or chains and act as electron transfer modules either within complex redox enzymes or within small diffusible proteins. We have previously described the design of a three-helix bundle that can bind two clusters within its hydrophobic core. Here, we use single-point mutations to exchange one of the Cys ligands coordinating the cluster to either Leu or Ser. We show that the mutants modulate the redox potential of the clusters and stabilize the [3Fe-4S] form over the [4Fe-4S] form, supporting the use of model iron-sulfur cluster proteins as modules in the design of complex redox enzymes.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
14 |
9
|
The Termite Fungal Cultivar Termitomyces Combines Diverse Enzymes and Oxidative Reactions for Plant Biomass Conversion. mBio 2021; 12:e0355120. [PMID: 34126770 PMCID: PMC8262964 DOI: 10.1128/mbio.03551-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macrotermitine termites have domesticated fungi in the genus Termitomyces as their primary food source using predigested plant biomass. To access the full nutritional value of lignin-enriched plant biomass, the termite-fungus symbiosis requires the depolymerization of this complex phenolic polymer. While most previous work suggests that lignocellulose degradation is accomplished predominantly by the fungal cultivar, our current understanding of the underlying biomolecular mechanisms remains rudimentary. Here, we provide conclusive omics and activity-based evidence that Termitomyces employs not only a broad array of carbohydrate-active enzymes (CAZymes) but also a restricted set of oxidizing enzymes (manganese peroxidase, dye decolorization peroxidase, an unspecific peroxygenase, laccases, and aryl-alcohol oxidases) and Fenton chemistry for biomass degradation. We propose for the first time that Termitomyces induces hydroquinone-mediated Fenton chemistry (Fe2+ + H2O2 + H+ → Fe3+ + •OH + H2O) using a herein newly described 2-methoxy-1,4-dihydroxybenzene (2-MH2Q, compound 19)-based electron shuttle system to complement the enzymatic degradation pathways. This study provides a comprehensive depiction of how efficient biomass degradation by means of this ancient insect’s agricultural symbiosis is accomplished.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
10 |
10
|
Biodegradation of Tetralin: Genomics, Gene Function and Regulation. Genes (Basel) 2019; 10:genes10050339. [PMID: 31064110 PMCID: PMC6563040 DOI: 10.3390/genes10050339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023] Open
Abstract
Tetralin (1,2,3,4-tetrahydonaphthalene) is a recalcitrant compound that consists of an aromatic and an alicyclic ring. It is found in crude oils, produced industrially from naphthalene or anthracene, and widely used as an organic solvent. Its toxicity is due to the alteration of biological membranes by its hydrophobic character and to the formation of toxic hydroperoxides. Two unrelated bacteria, Sphingopyxis granuli strain TFA and Rhodococcus sp. strain TFB were isolated from the same niche as able to grow on tetralin as the sole source of carbon and energy. In this review, we provide an overview of current knowledge on tetralin catabolism at biochemical, genetic and regulatory levels in both strains. Although they share the same biodegradation strategy and enzymatic activities, no evidences of horizontal gene transfer between both bacteria have been found. Moreover, the regulatory elements that control the expression of the gene clusters are completely different in each strain. A special consideration is given to the complex regulation discovered in TFA since three regulatory systems, one of them involving an unprecedented communication between the catabolic pathway and the regulatory elements, act together at transcriptional and posttranscriptional levels to optimize tetralin biodegradation gene expression to the environmental conditions.
Collapse
|
Review |
6 |
10 |
11
|
Cravedi P, Mori G, Fischer F, Percudani R. Evolution of the Selenoproteome in Helicobacter pylori and Epsilonproteobacteria. Genome Biol Evol 2015; 7:2692-704. [PMID: 26342139 PMCID: PMC4607533 DOI: 10.1093/gbe/evv177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2015] [Indexed: 12/14/2022] Open
Abstract
By competing for the acquisition of essential nutrients, Helicobacter pylori has the unique ability to persist in the human stomach, also causing nutritional insufficiencies in the host. Although the H. pylori genome apparently encodes selenocysteine synthase (SelA, HP1513), a key pyridoxal phosphate (PLP)-dependent enzyme for the incorporation of selenium into bacterial proteins, nothing is known about the use of this essential element in protein synthesis by this pathogen. We analyzed the evolution of the complete machinery for incorporation of selenium into proteins and the selenoproteome of several H. pylori strains and related Epsilonproteobacteria. Our searches identified the presence of selenoproteins-including the previously unknown DUF466 family-in various Epsilonproteobacteria, but not in H. pylori. We found that a complete system for selenocysteine incorporation was present in the Helicobacteriaceae ancestor and has been recently lost before the split of Helicobacter acinonychis and H. pylori. Our results indicate that H. pylori, at variance with other gastric and enterohepatic Helicobacter, does not use selenocysteine in protein synthesis and does not use selenium for tRNA wobble base modification. However, selA has survived as a functional gene, having lost the domain for the binding of selenocysteine tRNA, but maintaining the ability to bind the PLP cofactor. The evolutionary modifications described for the SelA protein of H. pylori find parallels in other bacterial and archaeal species, suggesting that an alternative enzymatic function is hidden in many proteins annotated as selenocysteinyl-tRNA synthase.
Collapse
|
research-article |
10 |
10 |
12
|
Kirkensgaard KG, Hägglund P, Shahpiri A, Finnie C, Henriksen A, Svensson B. A novel twist on molecular interactions between thioredoxin and nicotinamide adenine dinucleotide phosphate-dependent thioredoxin reductase. Proteins 2013; 82:607-19. [PMID: 24123219 DOI: 10.1002/prot.24437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/19/2013] [Accepted: 09/26/2013] [Indexed: 12/31/2022]
Abstract
The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase (NTR) in a multistep transfer of reducing equivalents from NADPH to Trx via a tightly NTR-bound flavin. Here, interactions between NTR and Trx are predicted by molecular modelling of the barley NTR:Trx complex (HvNTR2:HvTrxh2) and probed by site directed mutagenesis. Enzyme kinetics analysis reveals mutants in a loop of the flavin adenine dinucleotide (FAD)-binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent on these two residues, suggesting a distinct mode for NTR:Trx recognition. Comparison between the HvNTR2:HvTrxh2 model and the crystal structure of the Escherichia coli NTR:Trx complex reveals major differences in interactions involving the FAD- and NADPH-binding domains as supported by our experiments. Overall, the findings suggest that NTR:Trx interactions in different biological systems are fine-tuned by multiple intermolecular contacts.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
8 |
13
|
Shen W, Yau B, Lee SR, Zhu L, Yam M, Gillies MC. Effects of Ranibizumab and Aflibercept on Human Müller Cells and Photoreceptors under Stress Conditions. Int J Mol Sci 2017; 18:ijms18030533. [PMID: 28257068 PMCID: PMC5372549 DOI: 10.3390/ijms18030533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/24/2017] [Indexed: 11/16/2022] Open
Abstract
Anti-vascular endothelial growth factor (VEGF) therapy has revolutionized the treatment of retinal vascular diseases. However, constitutive VEGF also acts as a trophic factor on retinal nonvascular cells. We have studied the effects of aflibercept and ranibizumab on human Müller cells and photoreceptors exposed to starvation media containing various concentrations of glucose, with or without CoCl2-induced hypoxia. Cell survival was assessed by calcein-AM cell viability assays. Expression of heat shock proteins (Hsp) and redox proteins thioredoxin 1 and 2 (TRX1, TRX2) was studied by Western blots. The production of neurotrophic factors in Müller cells and interphotoreceptor retinoid-binding protein (IRBP) in photoreceptors was measured by enzymelinked immunosorbent assays. Aflibercept and ranibizumab did not affect the viability of both types of cells. Neither aflibercept nor ranibizumab affected the production of neurotrophic factors or expression of Hsp60 and Hsp90 in Müller cells. However, aflibercept but not ranibizumab affected the expression of Hsp60, Hsp9, TRX1 and TRX2 in photoreceptors. Aflibercept and ranibizumab both inhibited the production of IRBP in photoreceptors, aflibercept more so than ranibizumab. Our data indicates that the potential influence of aflibercept and ranibizumab on photoreceptors should be specifically monitored in clinical studies.
Collapse
|
Journal Article |
8 |
6 |
14
|
Dai J, Knott GJ, Fu W, Lin TW, Furst AL, Britt RD, Francis MB. Protein-Embedded Metalloporphyrin Arrays Templated by Circularly Permuted Tobacco Mosaic Virus Coat Proteins. ACS NANO 2021; 15:8110-8119. [PMID: 33285072 DOI: 10.1021/acsnano.0c07165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bioenergetic processes in nature have relied on networks of cofactors for harvesting, storing, and transforming the energy from sunlight into chemical bonds. Models mimicking the structural arrangement and functional crosstalk of the cofactor arrays are important tools to understand the basic science of natural systems and to provide guidance for non-natural functional biomaterials. Here, we report an artificial multiheme system based on a circular permutant of the tobacco mosaic virus coat protein (cpTMV). The double disk assembly of cpTMV presents a gap region sandwiched by the two C2-symmetrically related disks. Non-native bis-his coordination sites formed by the mutation of the residues in this gap region were computationally screened and experimentally tested. A cpTMV mutant Q101H was identified to create a circular assembly of 17 protein-embedded hemes. Biophysical characterization using X-ray crystallography, cyclic voltammetry, and electron paramagnetic resonance (EPR) suggested both structural and functional similarity to natural multiheme cytochrome c proteins. This protein framework offers many further engineering opportunities for tuning the redox properties of the cofactors and incorporating non-native components bearing varied porphyrin structures and metal centers. Emulating the electron transfer pathways in nature using a tunable artificial system can contribute to the development of photocatalytic materials and bioelectronics.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
5 |
15
|
Ash PA, Hidalgo R, Vincent KA. Protein Film Infrared Electrochemistry Demonstrated for Study of H2 Oxidation by a [NiFe] Hydrogenase. J Vis Exp 2017:55858. [PMID: 29286464 PMCID: PMC5755520 DOI: 10.3791/55858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Understanding the chemistry of redox proteins demands methods that provide precise control over redox centers within the protein. The technique of protein film electrochemistry, in which a protein is immobilized on an electrode surface such that the electrode replaces physiological electron donors or acceptors, has provided functional insight into the redox reactions of a range of different proteins. Full chemical understanding requires electrochemical control to be combined with other techniques that can add additional structural and mechanistic insight. Here we demonstrate a technique, protein film infrared electrochemistry, which combines protein film electrochemistry with infrared spectroscopic sampling of redox proteins. The technique uses a multiple-reflection attenuated total reflectance geometry to probe a redox protein immobilized on a high surface area carbon black electrode. Incorporation of this electrode into a flow cell allows solution pH or solute concentrations to be changed during measurements. This is particularly powerful in addressing redox enzymes, where rapid catalytic turnover can be sustained and controlled at the electrode allowing spectroscopic observation of long-lived intermediate species in the catalytic mechanism. We demonstrate the technique with experiments on E. coli hydrogenase 1 under turnover (H2 oxidation) and non-turnover conditions.
Collapse
|
Video-Audio Media |
8 |
5 |
16
|
Dong Y, Shan Y, Xia K, Shi L. The Proposed Molecular Mechanisms Used by Archaea for Fe(III) Reduction and Fe(II) Oxidation. Front Microbiol 2021; 12:690918. [PMID: 34276623 PMCID: PMC8280799 DOI: 10.3389/fmicb.2021.690918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Iron (Fe) is the fourth most abundant element in the Earth's crust where ferrous Fe [Fe(II)] and ferric Fe [Fe(III)] can be used by archaea for energy conservation. In these archaea-Fe interactions, Fe(III) serves as terminal electron acceptor for anaerobic respiration by a variety of archaea, while Fe(II) serves as electron donor and/or energy sources for archaeal growth. As no Fe is incorporated into the archaeal cells, these redox reactions are referred to as dissimilatory Fe(III) reduction and Fe(II) oxidation, respectively. Dissimilatory Fe(III)-reducing archaea (FeRA) and Fe(II)-oxidizing archaea (FeOA) are widespread on Earth where they play crucial roles in biogeochemical cycling of not only Fe, but also carbon and sulfur. To reduce extracellular Fe(III) (oxyhydr)oxides, some FeRA transfer electrons directly to the Fe(III) (oxyhydr)oxides most likely via multiheme c-type cytochromes (c-Cyts). These multiheme c-Cyts may form the pathways similar to those found in bacteria for transferring electrons from the quinone/quinol pool in the cytoplasmic membrane to the Fe(III) (oxyhydr)oxides external to the archaeal cells. Use of multiheme c-Cyts for extracellular Fe(III) reduction by both Domains of Archaea and Bacteria emphasizes an ancient mechanism of extracellular electron transfer, which is well conserved. Other FeRA, however, reduce Fe(III) (oxyhydr)oxides indirectly via electron shuttles. Similarly, it is proposed that FeOA use pathways to oxidize Fe(II) on the surface of the cytoplasmic membrane and then to transfer the released electrons across the cytoplasmic membrane inward to the O2 and NAD+ in the cytoplasm. In this review, we focus on the latest understandings of the molecular mechanisms used by FeRA and FeOA for Fe(III) reduction and Fe(II) oxidation, respectively.
Collapse
|
Review |
4 |
2 |
17
|
Rajagopal BS, Yates N, Smith J, Paradisi A, Tétard-Jones C, Willats WGT, Marcus S, Knox JP, Firdaus-Raih M, Henrissat B, Davies GJ, Walton PH, Parkin A, Hemsworth GR. Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae. IUCRJ 2024; 11:260-274. [PMID: 38446458 PMCID: PMC10916295 DOI: 10.1107/s2052252524001386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.
Collapse
|
research-article |
1 |
|