1
|
Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142:375-86. [PMID: 20691899 PMCID: PMC2919844 DOI: 10.1016/j.cell.2010.07.002] [Citation(s) in RCA: 1850] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/18/2010] [Accepted: 06/25/2010] [Indexed: 12/12/2022]
Abstract
The reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) raises the possibility that a somatic cell could be reprogrammed to an alternative differentiated fate without first becoming a stem/progenitor cell. A large pool of fibroblasts exists in the postnatal heart, yet no single "master regulator" of direct cardiac reprogramming has been identified. Here, we report that a combination of three developmental transcription factors (i.e., Gata4, Mef2c, and Tbx5) rapidly and efficiently reprogrammed postnatal cardiac or dermal fibroblasts directly into differentiated cardiomyocyte-like cells. Induced cardiomyocytes expressed cardiac-specific markers, had a global gene expression profile similar to cardiomyocytes, and contracted spontaneously. Fibroblasts transplanted into mouse hearts one day after transduction of the three factors also differentiated into cardiomyocyte-like cells. We believe these findings demonstrate that functional cardiomyocytes can be directly reprogrammed from differentiated somatic cells by defined factors. Reprogramming of endogenous or explanted fibroblasts might provide a source of cardiomyocytes for regenerative approaches.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
1850 |
2
|
Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458:766-70. [PMID: 19252478 PMCID: PMC3758996 DOI: 10.1038/nature07863] [Citation(s) in RCA: 1262] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 02/12/2009] [Indexed: 11/10/2022]
Abstract
Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming strategies involve retroviral, lentiviral, adenoviral and plasmid transfection to deliver reprogramming factor transgenes. Although the latter two methods are transient and minimize the potential for insertion mutagenesis, they are currently limited by diminished reprogramming efficiencies. piggyBac (PB) transposition is host-factor independent, and has recently been demonstrated to be functional in various human and mouse cell lines. The PB transposon/transposase system requires only the inverted terminal repeats flanking a transgene and transient expression of the transposase enzyme to catalyse insertion or excision events. Here we demonstrate successful and efficient reprogramming of murine and human embryonic fibroblasts using doxycycline-inducible transcription factors delivered by PB transposition. Stable iPS cells thus generated express characteristic pluripotency markers and succeed in a series of rigorous differentiation assays. By taking advantage of the natural propensity of the PB system for seamless excision, we show that the individual PB insertions can be removed from established iPS cell lines, providing an invaluable tool for discovery. In addition, we have demonstrated the traceless removal of reprogramming factors joined with viral 2A sequences delivered by a single transposon from murine iPS lines. We anticipate that the unique properties of this virus-independent simplification of iPS cell production will accelerate this field further towards full exploration of the reprogramming process and future cell-based therapies.
Collapse
|
research-article |
16 |
1262 |
3
|
Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2009; 85:348-62. [PMID: 19838014 PMCID: PMC3621571 DOI: 10.2183/pjab.85.348] [Citation(s) in RCA: 962] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Induced pluripotent stem cells (iPSC) have been generated from somatic cells by introducing reprogramming factors. Integration of foreign genes into the host genome is a technical hurdle for the clinical application. Here, we show that Sendai virus (SeV), an RNA virus and carries no risk of altering host genome, is an efficient solution for generating safe iPSC. Sendai-viral human iPSC expressed pluripotency genes, showed demethylation characteristic of reprogrammed cells. SeV-derived transgenes were decreased during cell division. Moreover, viruses were able to be easily removed by antibody-mediated negative selection utilizing cell surface marker HN that is expressed on SeV-infected cells. Viral-free iPSC differentiated to mature cells of the three embryonic germ layers in vivo and in vitro including beating cardiomyocytes, neurons, bone and pancreatic cells. Our data demonstrated that highly-efficient, non-integrating SeV-based vector system provides a critical solution for reprogramming somatic cells and will accelerate the clinical application.
Collapse
|
research-article |
16 |
962 |
4
|
Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, North PE, Dalton S, Duncan SA. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 2010; 51:297-305. [PMID: 19998274 PMCID: PMC2946078 DOI: 10.1002/hep.23354] [Citation(s) in RCA: 946] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED There exists a worldwide shortage of donor livers available for orthotropic liver transplantation and hepatocyte transplantation therapies. In addition to their therapeutic potential, primary human hepatocytes facilitate the study of molecular and genetic aspects of human hepatic disease and development and provide a platform for drug toxicity screens and identification of novel pharmaceuticals with potential to treat a wide array of metabolic diseases. The demand for human hepatocytes, therefore, heavily outweighs their availability. As an alternative to using donor livers as a source of primary hepatocytes, we explored the possibility of generating patient-specific human hepatocytes from induced pluripotent stem (iPS) cells. CONCLUSION We demonstrate that mouse iPS cells retain full potential for fetal liver development and describe a procedure that facilitates the efficient generation of highly differentiated human hepatocyte-like cells from iPS cells that display key liver functions and can integrate into the hepatic parenchyma in vivo.
Collapse
|
research-article |
15 |
946 |
5
|
Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010; 464:1149-54. [PMID: 20364121 PMCID: PMC2877635 DOI: 10.1038/nature08894] [Citation(s) in RCA: 888] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 02/10/2010] [Indexed: 12/11/2022]
Abstract
Pancreatic insulin-producing beta-cells have a long lifespan, such that in healthy conditions they replicate little during a lifetime. Nevertheless, they show increased self-duplication after increased metabolic demand or after injury (that is, beta-cell loss). It is not known whether adult mammals can differentiate (regenerate) new beta-cells after extreme, total beta-cell loss, as in diabetes. This would indicate differentiation from precursors or another heterologous (non-beta-cell) source. Here we show beta-cell regeneration in a transgenic model of diphtheria-toxin-induced acute selective near-total beta-cell ablation. If given insulin, the mice survived and showed beta-cell mass augmentation with time. Lineage-tracing to label the glucagon-producing alpha-cells before beta-cell ablation tracked large fractions of regenerated beta-cells as deriving from alpha-cells, revealing a previously disregarded degree of pancreatic cell plasticity. Such inter-endocrine spontaneous adult cell conversion could be harnessed towards methods of producing beta-cells for diabetes therapies, either in differentiation settings in vitro or in induced regeneration.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
888 |
6
|
Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009; 458:771-5. [PMID: 19252477 PMCID: PMC2667910 DOI: 10.1038/nature07864] [Citation(s) in RCA: 855] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 02/12/2009] [Indexed: 11/09/2022]
Abstract
Reprogramming of somatic cells to pluripotency, thereby creating induced pluripotent stem (iPS) cells, promises to transform regenerative medicine. Most instances of direct reprogramming have been achieved by forced expression of defined factors using multiple viral vectors. However, such iPS cells contain a large number of viral vector integrations, any one of which could cause unpredictable genetic dysfunction. Whereas c-Myc is dispensable for reprogramming, complete elimination of the other exogenous factors is also desired because ectopic expression of either Oct4 (also known as Pou5f1) or Klf4 can induce dysplasia. Two transient transfection-reprogramming methods have been published to address this issue. However, the efficiency of both approaches is extremely low, and neither has been applied successfully to human cells so far. Here we show that non-viral transfection of a single multiprotein expression vector, which comprises the coding sequences of c-Myc, Klf4, Oct4 and Sox2 linked with 2A peptides, can reprogram both mouse and human fibroblasts. Moreover, the transgene can be removed once reprogramming has been achieved. iPS cells produced with this non-viral vector show robust expression of pluripotency markers, indicating a reprogrammed state confirmed functionally by in vitro differentiation assays and formation of adult chimaeric mice. When the single-vector reprogramming system was combined with a piggyBac transposon, we succeeded in establishing reprogrammed human cell lines from embryonic fibroblasts with robust expression of pluripotency markers. This system minimizes genome modification in iPS cells and enables complete elimination of exogenous reprogramming factors, efficiently providing iPS cells that are applicable to regenerative medicine, drug screening and the establishment of disease models.
Collapse
|
research-article |
16 |
855 |
7
|
Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A 2008; 105:5856-61. [PMID: 18391196 PMCID: PMC2311361 DOI: 10.1073/pnas.0801677105] [Citation(s) in RCA: 842] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Indexed: 12/15/2022] Open
Abstract
The long-term goal of nuclear transfer or alternative reprogramming approaches is to create patient-specific donor cells for transplantation therapy, avoiding immunorejection, a major complication in current transplantation medicine. It was recently shown that the four transcription factors Oct4, Sox2, Klf4, and c-Myc induce pluripotency in mouse fibroblasts. However, the therapeutic potential of induced pluripotent stem (iPS) cells for neural cell replacement strategies remained unexplored. Here, we show that iPS cells can be efficiently differentiated into neural precursor cells, giving rise to neuronal and glial cell types in culture. Upon transplantation into the fetal mouse brain, the cells migrate into various brain regions and differentiate into glia and neurons, including glutamatergic, GABAergic, and catecholaminergic subtypes. Electrophysiological recordings and morphological analysis demonstrated that the grafted neurons had mature neuronal activity and were functionally integrated in the host brain. Furthermore, iPS cells were induced to differentiate into dopamine neurons of midbrain character and were able to improve behavior in a rat model of Parkinson's disease upon transplantation into the adult brain. We minimized the risk of tumor formation from the grafted cells by separating contaminating pluripotent cells and committed neural cells using fluorescence-activated cell sorting. Our results demonstrate the therapeutic potential of directly reprogrammed fibroblasts for neuronal cell replacement in the animal model.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
842 |
8
|
Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 2012; 151:994-1004. [PMID: 23159369 PMCID: PMC3508134 DOI: 10.1016/j.cell.2012.09.045] [Citation(s) in RCA: 691] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/25/2012] [Accepted: 09/14/2012] [Indexed: 01/04/2023]
Abstract
The ectopic expression of transcription factors can reprogram cell fate, yet it is unknown how the initial binding of factors to the genome relates functionally to the binding seen in the minority of cells that become reprogrammed. We report a map of Oct4, Sox2, Klf4, and c-Myc (O, S, K, and M) on the human genome during the first 48 hr of reprogramming fibroblasts to pluripotency. Three striking aspects of the initial chromatin binding events include an unexpected role for c-Myc in facilitating OSK chromatin engagement, the primacy of O, S, and K as pioneer factors at enhancers of genes that promote reprogramming, and megabase-scale chromatin domains spanned by H3K9me3, including many genes required for pluripotency, that prevent initial OSKM binding and impede the efficiency of reprogramming. We find diverse aspects of initial factor binding that must be overcome in the minority of cells that become reprogrammed.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
691 |
9
|
Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W, Smith A. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 2009; 136:1063-9. [PMID: 19224983 PMCID: PMC2685927 DOI: 10.1242/dev.030957] [Citation(s) in RCA: 598] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2009] [Indexed: 11/20/2022]
Abstract
Mouse embryonic stem (ES) cells derived from pluripotent early epiblast contribute functionally differentiated progeny to all foetal lineages of chimaeras. By contrast, epistem cell (EpiSC) lines from post-implantation epithelialised epiblast are unable to colonise the embryo even though they express the core pluripotency genes Oct4, Sox2 and Nanog. We examined interconversion between these two cell types. ES cells can readily become EpiSCs in response to growth factor cues. By contrast, EpiSCs do not change into ES cells. We exploited PiggyBac transposition to introduce a single reprogramming factor, Klf4, into EpiSCs. No effect was apparent in EpiSC culture conditions, but in ground state ES cell conditions a fraction of cells formed undifferentiated colonies. These EpiSC-derived induced pluripotent stem (Epi-iPS) cells activated expression of ES cell-specific transcripts including endogenous Klf4, and downregulated markers of lineage specification. X chromosome silencing in female cells, a feature of the EpiSC state, was erased in Epi-iPS cells. They produced high-contribution chimaeras that yielded germline transmission. These properties were maintained after Cre-mediated deletion of the Klf4 transgene, formally demonstrating complete and stable reprogramming of developmental phenotype. Thus, re-expression of Klf4 in an appropriate environment can regenerate the naïve ground state from EpiSCs. Reprogramming is dependent on suppression of extrinsic growth factor stimuli and proceeds to completion in less than 1% of cells. This substantiates the argument that EpiSCs are developmentally, epigenetically and functionally differentiated from ES cells. However, because a single transgene is the minimum requirement to attain the ground state, EpiSCs offer an attractive opportunity for screening for unknown components of the reprogramming process.
Collapse
|
research-article |
16 |
598 |
10
|
Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Robbins RC, Kay MA, Longaker MT, Wu JC. A nonviral minicircle vector for deriving human iPS cells. Nat Methods 2010; 7:197-9. [PMID: 20139967 PMCID: PMC2892897 DOI: 10.1038/nmeth.1426] [Citation(s) in RCA: 507] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 01/13/2010] [Indexed: 12/31/2022]
Abstract
Owing to the risk of insertional mutagenesis, viral transduction has been increasingly replaced by nonviral methods to generate induced pluripotent stem cells (iPSCs). We report the use of 'minicircle' DNA, a vector type that is free of bacterial DNA and capable of high expression in cells, for this purpose. Here we use a single minicircle vector to generate transgene-free iPSCs from adult human adipose stem cells.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
507 |
11
|
Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 2014; 28:812-28. [PMID: 24736841 PMCID: PMC4003274 DOI: 10.1101/gad.234294.113] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Methylation of DNA is an essential epigenetic control mechanism in mammals. Messerschmidt et al. review the current understanding of epigenetic dynamics regulating the molecular processes that prepare the mammalian embryo for normal development. Methylation of DNA is an essential epigenetic control mechanism in mammals. During embryonic development, cells are directed toward their future lineages, and DNA methylation poses a fundamental epigenetic barrier that guides and restricts differentiation and prevents regression into an undifferentiated state. DNA methylation also plays an important role in sex chromosome dosage compensation, the repression of retrotransposons that threaten genome integrity, the maintenance of genome stability, and the coordinated expression of imprinted genes. However, DNA methylation marks must be globally removed to allow for sexual reproduction and the adoption of the specialized, hypomethylated epigenome of the primordial germ cell and the preimplantation embryo. Recent technological advances in genome-wide DNA methylation analysis and the functional description of novel enzymatic DNA demethylation pathways have provided significant insights into the molecular processes that prepare the mammalian embryo for normal development.
Collapse
|
Review |
11 |
473 |
12
|
Yui S, Azzolin L, Maimets M, Pedersen MT, Fordham RP, Hansen SL, Larsen HL, Guiu J, Alves MRP, Rundsten CF, Johansen JV, Li Y, Madsen CD, Nakamura T, Watanabe M, Nielsen OH, Schweiger PJ, Piccolo S, Jensen KB. YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration. Cell Stem Cell 2017; 22:35-49.e7. [PMID: 29249464 PMCID: PMC5766831 DOI: 10.1016/j.stem.2017.11.001] [Citation(s) in RCA: 464] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 12/23/2022]
Abstract
Tissue regeneration requires dynamic cellular adaptation to the wound environment. It is currently unclear how this is orchestrated at the cellular level and how cell fate is affected by severe tissue damage. Here we dissect cell fate transitions during colonic regeneration in a mouse dextran sulfate sodium (DSS) colitis model, and we demonstrate that the epithelium is transiently reprogrammed into a primitive state. This is characterized by de novo expression of fetal markers as well as suppression of markers for adult stem and differentiated cells. The fate change is orchestrated by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous YAP/TAZ and induce conversion of cell fate. This provides a simple model for tissue regeneration, implicating cellular reprogramming as an essential element.
The repairing epithelium can be isolated based on Sca1 expression Markers upregulated during tissue repair are expressed in the fetal intestine Mechano-transduction via FAK, Src, and YAP/TAZ facilitate efficient tissue repair YAP/TAZ activation is required and sufficient to induce cellular reprogramming
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
464 |
13
|
Abstract
Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as “pioneer factors” to initiate events in closed chromatin. This review by Iwafuchi-Doi and Zaret focuses on the most recent studies of pioneer factors in cell programming and reprogramming, how pioneer factors have special chromatin-binding properties, and facilitators and impediments to chromatin binding. A subset of eukaryotic transcription factors possesses the remarkable ability to reprogram one type of cell into another. The transcription factors that reprogram cell fate are invariably those that are crucial for the initial cell programming in embryonic development. To elicit cell programming or reprogramming, transcription factors must be able to engage genes that are developmentally silenced and inappropriate for expression in the original cell. Developmentally silenced genes are typically embedded in “closed” chromatin that is covered by nucleosomes and not hypersensitive to nuclease probes such as DNase I. Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as “pioneer factors” to initiate events in closed chromatin. Other reprogramming factors appear dependent on pioneer factors for engaging nucleosomes and closed chromatin. However, certain genomic domains in which nucleosomes are occluded by higher-order chromatin structures, such as in heterochromatin, are resistant to pioneer factor binding. Understanding the means by which pioneer factors can engage closed chromatin and how heterochromatin can prevent such binding promises to advance our ability to reprogram cell fates at will and is the topic of this review.
Collapse
|
Review |
10 |
455 |
14
|
Chen T, You Y, Jiang H, Wang ZZ. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol 2017; 232:3261-3272. [PMID: 28079253 DOI: 10.1002/jcp.25797] [Citation(s) in RCA: 406] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/14/2022]
Abstract
The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future.
Collapse
|
Review |
8 |
406 |
15
|
Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason M, Heidersbach A, Ramalho-Santos J, McManus MT, Plath K, Meshorer E, Ramalho-Santos M. Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 2009; 460:863-8. [PMID: 19587682 PMCID: PMC3891576 DOI: 10.1038/nature08212] [Citation(s) in RCA: 389] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/18/2009] [Indexed: 02/06/2023]
Abstract
An open chromatin largely devoid of heterochromatin is a hallmark of stem cells. It remains unknown whether an open chromatin is necessary for the differentiation potential of stem cells, and which molecules are needed to maintain open chromatin. Here we show that the chromatin remodelling factor Chd1 is required to maintain the open chromatin of pluripotent mouse embryonic stem cells. Chd1 is a euchromatin protein that associates with the promoters of active genes, and downregulation of Chd1 leads to accumulation of heterochromatin. Chd1-deficient embryonic stem cells are no longer pluripotent, because they are incapable of giving rise to primitive endoderm and have a high propensity for neural differentiation. Furthermore, Chd1 is required for efficient reprogramming of fibroblasts to the pluripotent stem cell state. Our results indicate that Chd1 is essential for open chromatin and pluripotency of embryonic stem cells, and for somatic cell reprogramming to the pluripotent state.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
389 |
16
|
Chronis C, Fiziev P, Papp B, Butz S, Bonora G, Sabri S, Ernst J, Plath K. Cooperative Binding of Transcription Factors Orchestrates Reprogramming. Cell 2017; 168:442-459.e20. [PMID: 28111071 DOI: 10.1016/j.cell.2016.12.016] [Citation(s) in RCA: 383] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
Abstract
Oct4, Sox2, Klf4, and cMyc (OSKM) reprogram somatic cells to pluripotency. To gain a mechanistic understanding of their function, we mapped OSKM-binding, stage-specific transcription factors (TFs), and chromatin states in discrete reprogramming stages and performed loss- and gain-of-function experiments. We found that OSK predominantly bind active somatic enhancers early in reprogramming and immediately initiate their inactivation genome-wide by inducing the redistribution of somatic TFs away from somatic enhancers to sites elsewhere engaged by OSK, recruiting Hdac1, and repressing the somatic TF Fra1. Pluripotency enhancer selection is a stepwise process that also begins early in reprogramming through collaborative binding of OSK at sites with high OSK-motif density. Most pluripotency enhancers are selected later in the process and require OS and other pluripotency TFs. Somatic and pluripotency TFs modulate reprogramming efficiency when overexpressed by altering OSK targeting, somatic-enhancer inactivation, and pluripotency enhancer selection. Together, our data indicate that collaborative interactions among OSK and with stage-specific TFs direct both somatic-enhancer inactivation and pluripotency-enhancer selection to drive reprogramming.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
383 |
17
|
Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV, Fidalgo M, Saunders A, Lawrence M, Dietmann S, Das S, Levasseur DN, Li Z, Xu M, Reik W, Silva JC, Wang J. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 2013; 495:370-4. [PMID: 23395962 PMCID: PMC3606645 DOI: 10.1038/nature11925] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 01/22/2013] [Indexed: 12/19/2022]
Abstract
Molecular control of the pluripotent state is thought to reside in a core circuitry of master transcription factors including the homeodomain-containing protein NANOG, which has an essential role in establishing ground state pluripotency during somatic cell reprogramming. Whereas the genomic occupancy of NANOG has been extensively investigated, comparatively little is known about NANOG-associated proteins and their contribution to the NANOG-mediated reprogramming process. Using enhanced purification techniques and a stringent computational algorithm, we identify 27 high-confidence protein interaction partners of NANOG in mouse embryonic stem cells. These consist of 19 previously unknown partners of NANOG that have not been reported before, including the ten-eleven translocation (TET) family methylcytosine hydroxylase TET1. We confirm physical association of NANOG with TET1, and demonstrate that TET1, in synergy with NANOG, enhances the efficiency of reprogramming. We also find physical association and reprogramming synergy of TET2 with NANOG, and demonstrate that knockdown of TET2 abolishes the reprogramming synergy of NANOG with a catalytically deficient mutant of TET1. These results indicate that the physical interaction between NANOG and TET1/TET2 proteins facilitates reprogramming in a manner that is dependent on the catalytic activity of TET1/TET2. TET1 and NANOG co-occupy genomic loci of genes associated with both maintenance of pluripotency and lineage commitment in embryonic stem cells, and TET1 binding is reduced upon NANOG depletion. Co-expression of NANOG and TET1 increases 5-hydroxymethylcytosine levels at the top-ranked common target loci Esrrb and Oct4 (also called Pou5f1), resulting in priming of their expression before reprogramming to naive pluripotency. We propose that TET1 is recruited by NANOG to enhance the expression of a subset of key reprogramming target genes. These results provide an insight into the reprogramming mechanism of NANOG and uncover a new role for 5-methylcytosine hydroxylases in the establishment of naive pluripotency.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
338 |
18
|
Schiebinger G, Shu J, Tabaka M, Cleary B, Subramanian V, Solomon A, Gould J, Liu S, Lin S, Berube P, Lee L, Chen J, Brumbaugh J, Rigollet P, Hochedlinger K, Jaenisch R, Regev A, Lander ES. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming. Cell 2019; 176:928-943.e22. [PMID: 30712874 PMCID: PMC6402800 DOI: 10.1016/j.cell.2019.01.006] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/15/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
336 |
19
|
Becker JS, Nicetto D, Zaret KS. H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes. Trends Genet 2015; 32:29-41. [PMID: 26675384 DOI: 10.1016/j.tig.2015.11.001] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 01/26/2023]
Abstract
Establishing and maintaining cell identity depends on the proper regulation of gene expression, as specified by transcription factors and reinforced by epigenetic mechanisms. Among the epigenetic mechanisms, heterochromatin formation is crucial for the preservation of genome stability and the cell type-specific silencing of genes. The heterochromatin-associated histone mark H3K9me3, although traditionally associated with the noncoding portions of the genome, has emerged as a key player in repressing lineage-inappropriate genes and shielding them from activation by transcription factors. Here we describe the role of H3K9me3 heterochromatin in impeding the reprogramming of cell identity and the mechanisms by which H3K9me3 is reorganized during development and cell fate determination.
Collapse
|
Review |
10 |
328 |
20
|
Mali P, Chou BK, Yen J, Ye Z, Zou J, Dowey S, Brodsky RA, Ohm JE, Yu W, Baylin SB, Yusa K, Bradley A, Meyers DJ, Mukherjee C, Cole PA, Cheng L. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 2010; 28:713-20. [PMID: 20201064 PMCID: PMC3015217 DOI: 10.1002/stem.402] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
325 |
21
|
Pdx1 maintains β cell identity and function by repressing an α cell program. Cell Metab 2014; 19:259-71. [PMID: 24506867 PMCID: PMC3950964 DOI: 10.1016/j.cmet.2013.12.002] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/10/2013] [Accepted: 11/19/2013] [Indexed: 12/13/2022]
Abstract
Pdx1 is a homeobox-containing transcription factor that plays a key role in pancreatic development and adult β cell function. In this study, we traced the fate of adult β cells after Pdx1 deletion. As expected, β-cell-specific removal of Pdx1 resulted in severe hyperglycemia within days. Surprisingly, a large fraction of Pdx1-deleted cells rapidly acquired ultrastructural and physiological features of α cells, indicating that a robust cellular reprogramming had occurred. Reprogrammed cells exhibited a global transcriptional shift that included derepression of the α cell transcription factor MafB, resulting in a transcriptional profile that closely resembled that of α cells. These findings indicate that Pdx1 acts as a master regulator of β cell fate by simultaneously activating genes essential for β cell identity and repressing those associated with α cell identity. We discuss the significance of these findings in the context of the emerging notion that loss of β cell identity contributes to the pathogenesis of type 2 diabetes.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
318 |
22
|
Renthal W, Tochitsky I, Yang L, Cheng YC, Li E, Kawaguchi R, Geschwind DH, Woolf CJ. Transcriptional Reprogramming of Distinct Peripheral Sensory Neuron Subtypes after Axonal Injury. Neuron 2020; 108:128-144.e9. [PMID: 32810432 PMCID: PMC7590250 DOI: 10.1016/j.neuron.2020.07.026] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/27/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
Primary somatosensory neurons are specialized to transmit specific types of sensory information through differences in cell size, myelination, and the expression of distinct receptors and ion channels, which together define their transcriptional and functional identity. By profiling sensory ganglia at single-cell resolution, we find that all somatosensory neuronal subtypes undergo a similar transcriptional response to peripheral nerve injury that both promotes axonal regeneration and suppresses cell identity. This transcriptional reprogramming, which is not observed in non-neuronal cells, resolves over a similar time course as target reinnervation and is associated with the restoration of original cell identity. Injury-induced transcriptional reprogramming requires ATF3, a transcription factor that is induced rapidly after injury and necessary for axonal regeneration and functional recovery. Our findings suggest that transcription factors induced early after peripheral nerve injury confer the cellular plasticity required for sensory neurons to transform into a regenerative state.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
308 |
23
|
Genard G, Lucas S, Michiels C. Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo- and Immunotherapies. Front Immunol 2017; 8:828. [PMID: 28769933 PMCID: PMC5509958 DOI: 10.3389/fimmu.2017.00828] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play a central role in tumor progression, metastasis, and recurrence after treatment. Macrophage plasticity and diversity allow their classification along a M1–M2 polarization axis. Tumor-associated macrophages usually display a M2-like phenotype, associated with pro-tumoral features whereas M1 macrophages exert antitumor functions. Targeting the reprogramming of TAMs toward M1-like macrophages would thus be an efficient way to promote tumor regression. This can be achieved through therapies including chemotherapy, immunotherapy, and radiotherapy (RT). In this review, we first describe how chemo- and immunotherapies can target TAMs and, second, we detail how RT modifies macrophage phenotype and present the molecular pathways that may be involved. The identification of irradiation dose inducing macrophage reprogramming and of the underlying mechanisms could lead to the design of novel therapeutic strategies and improve synergy in combined treatments.
Collapse
|
Review |
8 |
294 |
24
|
Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 2008; 3:346-353. [PMID: 18786421 PMCID: PMC4097107 DOI: 10.1016/j.stem.2008.08.014] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 08/25/2008] [Accepted: 08/25/2008] [Indexed: 11/28/2022]
Abstract
Current approaches to reprogram human somatic cells to pluripotent iPSCs utilize viral transduction of different combinations of transcription factors. These protocols are highly inefficient because only a small fraction of cells carry the appropriate number and stoichiometry of proviral insertions to initiate the reprogramming process. Here we have generated genetically homogeneous "secondary" somatic cells, which carry the reprogramming factors as defined doxycycline (DOX)-inducible transgenes. These cells were obtained by infecting fibroblasts with DOX-inducible lentiviruses, isolating "primary" iPSCs in the presence of the drug, and finally differentiating to "secondary" fibroblasts. When "secondary" fibroblast lines were cultured in the presence of DOX without further viral infection, up to 2% of the cells were reprogrammed to pluripotent "secondary" human iPSCs. This system will facilitate the characterization of the reprogramming process and provides a unique platform for genetic or chemical screens to enhance reprogramming or replace individual factors.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
278 |
25
|
Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc Natl Acad Sci U S A 2013; 111:829-32. [PMID: 24379375 DOI: 10.1073/pnas.1314085111] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration, paralysis, and death. Accurate disease modeling, identifying disease mechanisms, and developing therapeutics is urgently needed. We previously reported motor neuron toxicity through postmortem ALS spinal cord-derived astrocytes. However, these cells can only be harvested after death, and their expansion is limited. We now report a rapid, highly reproducible method to convert adult human fibroblasts from living ALS patients to induced neuronal progenitor cells and subsequent differentiation into astrocytes (i-astrocytes). Non-cell autonomous toxicity to motor neurons is found following coculture of i-astrocytes from familial ALS patients with mutation in superoxide dismutase or hexanucleotide expansion in C9orf72 (ORF 72 on chromosome 9) the two most frequent causes of ALS. Remarkably, i-astrocytes from sporadic ALS patients are as toxic as those with causative mutations, suggesting a common mechanism. Easy production and expansion of i-astrocytes now enables rapid disease modeling and high-throughput drug screening to alleviate astrocyte-derived toxicity.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
278 |