1
|
Wu C, Chiu DT. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Ed Engl 2013; 52:3086-109. [PMID: 23307291 PMCID: PMC5616106 DOI: 10.1002/anie.201205133] [Citation(s) in RCA: 727] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Indexed: 12/22/2022]
Abstract
In recent years, semiconducting polymer nanoparticles have attracted considerable attention because of their outstanding characteristics as fluorescent probes. These nanoparticles, which primarily consist of π-conjugated polymers and are called polymer dots (Pdots) when they exhibit small particle size and high brightness, have demonstrated utility in a wide range of applications such as fluorescence imaging and biosensing. In this review, we summarize recent findings of the photophysical properties of Pdots which speak to the merits of these entities as fluorescent labels. This review also highlights the surface functionalization and biomolecular conjugation of Pdots, and their applications in cellular labeling, in vivo imaging, single-particle tracking, biosensing, and drug delivery. We discuss the relationship between the physical properties and performance, and evaluate the merits and limitations of the Pdot probes for certain imaging tasks and fluorescence assays. We also tackle the current challenges of Pdots and share our perspective on the future directions of the field.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
727 |
2
|
Zhang S, Yan Z, Li Y, Chen Z, Zeng H. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed Engl 2015; 54:3112-5. [PMID: 25564773 DOI: 10.1002/anie.201411246] [Citation(s) in RCA: 482] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 11/06/2022]
Abstract
The typical two-dimensional (2D) semiconductors MoS2, MoSe2, WS2, WSe2 and black phosphorus have garnered tremendous interest for their unique electronic, optical, and chemical properties. However, all 2D semiconductors reported thus far feature band gaps that are smaller than 2.0 eV, which has greatly restricted their applications, especially in optoelectronic devices with photoresponse in the blue and UV range. Novel 2D mono-elemental semiconductors, namely monolayered arsenene and antimonene, with wide band gaps and high stability were now developed based on first-principles calculations. Interestingly, although As and Sb are typically semimetals in the bulk, they are transformed into indirect semiconductors with band gaps of 2.49 and 2.28 eV when thinned to one atomic layer. Significantly, under small biaxial strain, these materials were transformed from indirect into direct band-gap semiconductors. Such dramatic changes in the electronic structure could pave the way for transistors with high on/off ratios, optoelectronic devices working under blue or UV light, and mechanical sensors based on new 2D crystals.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
482 |
3
|
Ran J, Jaroniec M, Qiao SZ. Cocatalysts in Semiconductor-based Photocatalytic CO 2 Reduction: Achievements, Challenges, and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29315885 DOI: 10.1002/adma.201704649] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/02/2017] [Indexed: 05/03/2023]
Abstract
Ever-increasing fossil-fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO2 conversion with an oxidative half reaction, e.g., H2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2 -reduction cocatalysts for semiconductor-based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided.
Collapse
|
Review |
7 |
481 |
4
|
Furue R, Nishimoto T, Park IS, Lee J, Yasuda T. Aggregation-Induced Delayed Fluorescence Based on Donor/Acceptor-Tethered Janus Carborane Triads: Unique Photophysical Properties of Nondoped OLEDs. Angew Chem Int Ed Engl 2016; 55:7171-5. [PMID: 27145481 DOI: 10.1002/anie.201603232] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Indexed: 11/09/2022]
Abstract
Luminescent materials consisting of boron clusters, such as carboranes, have attracted immense interest in recent years. In this study, luminescent organic-inorganic conjugated systems based on o-carboranes directly bonded to electron-donating and electron-accepting π-conjugated units were elaborated as novel optoelectronic materials. These o-carborane derivatives simultaneously possessed aggregation-induced emission (AIE) and thermally activated delayed fluorescence (TADF) capabilities, and showed strong yellow-to-red emissions with high photoluminescence quantum efficiencies of up to 97 % in their aggregated states or in solid neat films. Organic light-emitting diodes utilizing these o-carborane derivatives as a nondoped emission layer exhibited maximum external electroluminescence quantum efficiencies as high as 11 %, originating from TADF.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
260 |
5
|
Guo Z, Zhu S, Yong Y, Zhang X, Dong X, Du J, Xie J, Wang Q, Gu Z, Zhao Y. Synthesis of BSA-Coated BiOI@Bi 2 S 3 Semiconductor Heterojunction Nanoparticles and Their Applications for Radio/Photodynamic/Photothermal Synergistic Therapy of Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1704136. [PMID: 29035426 DOI: 10.1002/adma.201704136] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Developing an effective theranostic nanoplatform remains a great challenge for cancer diagnosis and treatment. Here, BiOI@Bi2 S3 @BSA (bovine serum albumin) semiconductor heterojunction nanoparticles (SHNPs) for triple-combination radio/photodynamic/photothermal cancer therapy and multimodal computed tomography/photoacoustic (CT/PA) bioimaging are reported. On the one hand, SHNPs possess strong X-ray attenuation capability since they contain high-Z elements, and thus they are anticipated to be a very competent candidate as radio-sensitizing materials for radiotherapy enhancement. On the other hand, as a semiconductor, the as-prepared SHNPs offer an extra approach for reactive oxygen species generation based on electron-hole pair under the irradiation of X-ray through the photodynamic therapy process. This X-ray excited photodynamic therapy obviously has better penetration depth in bio-tissue. What's more, the SHNPs also possess well photothermal conversion efficiency for photothermal therapy, because Bi2 S3 is a thin band semiconductor with strong near-infrared absorption that can cause local overheat. In vivo tumor ablation studies show that synergistic radio/photodynamic/photothermal therapy achieves more significant therapeutic effect than any single treatment. In addition, with the strong X-ray attenuation and high near-infrared absorption, the as-obtained SHNPs can also be applied as a multimodal contrast agent in CT/PA imaging.
Collapse
|
|
8 |
201 |
6
|
Jafari T, Moharreri E, Amin AS, Miao R, Song W, Suib SL. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances. Molecules 2016; 21:molecules21070900. [PMID: 27409596 PMCID: PMC6274578 DOI: 10.3390/molecules21070900] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023] Open
Abstract
Photocatalytic water splitting using sunlight is a promising technology capable of providing high energy yield without pollutant byproducts. Herein, we review various aspects of this technology including chemical reactions, physiochemical conditions and photocatalyst types such as metal oxides, sulfides, nitrides, nanocomposites, and doped materials followed by recent advances in computational modeling of photoactive materials. As the best-known catalyst for photocatalytic hydrogen and oxygen evolution, TiO2 is discussed in a separate section, along with its challenges such as the wide band gap, large overpotential for hydrogen evolution, and rapid recombination of produced electron-hole pairs. Various approaches are addressed to overcome these shortcomings, such as doping with different elements, heterojunction catalysts, noble metal deposition, and surface modification. Development of a photocatalytic corrosion resistant, visible light absorbing, defect-tuned material with small particle size is the key to complete the sunlight to hydrogen cycle efficiently. Computational studies have opened new avenues to understand and predict the electronic density of states and band structure of advanced materials and could pave the way for the rational design of efficient photocatalysts for water splitting. Future directions are focused on developing innovative junction architectures, novel synthesis methods and optimizing the existing active materials to enhance charge transfer, visible light absorption, reducing the gas evolution overpotential and maintaining chemical and physical stability.
Collapse
|
Review |
9 |
190 |
7
|
Dang Y, Zhou Y, Liu X, Ju D, Xia S, Xia H, Tao X. Formation of Hybrid Perovskite Tin Iodide Single Crystals by Top-Seeded Solution Growth. Angew Chem Int Ed Engl 2016; 55:3447-50. [PMID: 26889919 DOI: 10.1002/anie.201511792] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 11/11/2022]
Abstract
Hybrid perovskites have generated a great deal of interest because of their potential in photovoltaic applications. However, the toxicity of lead means that there is interest in finding a nontoxic substitute. Bulk single crystals of both cubic CH3NH3 SnI3 and CH(NH2)2 SnI3 were obtained by using the top-seeded solution growth method under an ambient atmosphere. Structural refinement, band gap, thermal properties, and XPS measurements of CH3NH3 SnI3 and CH(NH2)2 SnI3 single crystals are also reported in detail. These results should pave the way for further applications of CH3NH3 SnI3 and CH(NH2)2 SnI3.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
184 |
8
|
Chen C, Mou F, Xu L, Wang S, Guan J, Feng Z, Wang Q, Kong L, Li W, Wang J, Zhang Q. Light-Steered Isotropic Semiconductor Micromotors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 27748536 DOI: 10.1002/adma.201603374] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/11/2016] [Indexed: 05/08/2023]
Abstract
Intelligent photoresponsive isotropic semiconductor micromotors are developed by taking advantage of the limited penetration depth of light to induce asymmetrical surface chemical reactions. Independent of the Brownian motion of themselves, the as-proposed isotropic micromotors are able to continuously move with both motion direction and speed just controlled by light, as well as precisely manipulate particles for nanoengineering.
Collapse
|
|
8 |
183 |
9
|
Yang S, Li W, Ye C, Wang G, Tian H, Zhu C, He P, Ding G, Xie X, Liu Y, Lifshitz Y, Lee ST, Kang Z, Jiang M. C 3 N-A 2D Crystalline, Hole-Free, Tunable-Narrow-Bandgap Semiconductor with Ferromagnetic Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28240434 DOI: 10.1002/adma.201605625] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/30/2016] [Indexed: 05/17/2023]
Abstract
Graphene has initiated intensive research efforts on 2D crystalline materials due to its extraordinary set of properties and the resulting host of possible applications. Here the authors report on the controllable large-scale synthesis of C3 N, a 2D crystalline, hole-free extension of graphene, its structural characterization, and some of its unique properties. C3 N is fabricated by polymerization of 2,3-diaminophenazine. It consists of a 2D honeycomb lattice with a homogeneous distribution of nitrogen atoms, where both N and C atoms show a D6h -symmetry. C3 N is a semiconductor with an indirect bandgap of 0.39 eV that can be tuned to cover the entire visible range by fabrication of quantum dots with different diameters. Back-gated field-effect transistors made of single-layer C3 N display an on-off current ratio reaching 5.5 × 1010 . Surprisingly, C3 N exhibits a ferromagnetic order at low temperatures (<96 K) when doped with hydrogen. This new member of the graphene family opens the door for both fundamental basic research and possible future applications.
Collapse
|
|
8 |
178 |
10
|
Stoumpos CC, Kanatzidis MG. Halide Perovskites: Poor Man's High-Performance Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5778-93. [PMID: 27174223 DOI: 10.1002/adma.201600265] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/06/2016] [Indexed: 05/02/2023]
Abstract
Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature.
Collapse
|
|
9 |
172 |
11
|
Fleischmann EK, Zentel R. Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices. Angew Chem Int Ed Engl 2013; 52:8810-27. [PMID: 23881749 DOI: 10.1002/anie.201300371] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Indexed: 11/10/2022]
Abstract
While the unique optical properties of liquid crystals (LCs) are already well exploited for flat-panel displays, their intrinsic ability to self-organize into ordered mesophases, which are intermediate states between crystal and liquid, gives rise to a broad variety of additional applications. The high degree of molecular order, the possibility for large scale orientation, and the structural motif of the aromatic subunits recommend liquid-crystalline materials as organic semiconductors, which are solvent-processable and can easily be deposited on a substrate. The anisotropy of liquid crystals can further cause a stimuli-responsive macroscopic shape change of cross-linked polymer networks, which act as reversibly contracting artificial muscles. After illustrating the concept of liquid-crystalline order in this Review, emphasis will be placed on synthetic strategies for novel classes of LC materials, and the design and fabrication of active devices.
Collapse
|
Journal Article |
12 |
166 |
12
|
Bai S, Li X, Kong Q, Long R, Wang C, Jiang J, Xiong Y. Toward Enhanced Photocatalytic Oxygen Evolution: Synergetic Utilization of Plasmonic Effect and Schottky Junction via Interfacing Facet Selection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3444-52. [PMID: 25925245 DOI: 10.1002/adma.201501200] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 05/21/2023]
|
|
10 |
166 |
13
|
Hu Z, Yuan L, Liu Z, Shen Z, Yu JC. An Elemental Phosphorus Photocatalyst with a Record High Hydrogen Evolution Efficiency. Angew Chem Int Ed Engl 2016; 55:9580-5. [PMID: 27145537 DOI: 10.1002/anie.201603331] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/10/2022]
Abstract
Semiconductive property of elementary substance is an interesting and attractive phenomenon. We obtain a breakthrough that fibrous phase red phosphorus, a recent discovered modification of red phosphorus by Ruck et al., can work as a semiconductor photocatalyst for visible-light-driven hydrogen (H2 ) evolution. Small sized fibrous phosphorus is obtained by 1) loading it on photoinactive SiO2 fibers or by 2) smashing it ultrasonically. They display the steady hydrogen evolution rates of 633 μmol h(-1) g(-1) and 684 μmol h(-1) g(-1) , respectively. These values are much higher than previous amorphous P (0.6 μmol h(-1) g(-1) ) and Hittorf P (1.6 μmol h(-1) g(-1) ). Moreover, they are the highest records in the family of elemental photocatalysts to date. This discovery is helpful for further understanding the semiconductive property of elementary substance. It is also favorable for the development of elemental photocatalysts.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
150 |
14
|
Snyder GJ, Snyder AH, Wood M, Gurunathan R, Snyder BH, Niu C. Weighted Mobility. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001537. [PMID: 32410214 DOI: 10.1002/adma.202001537] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 05/27/2023]
Abstract
Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2 V-1 s-1 . With the availability of combined Seebeck coefficient and electrical resistivity measurement systems, it is now easy to measure the weighted mobility (electron mobility weighted by the density of electronic states). A simple method to calculate the weighted mobility from Seebeck coefficient and electrical resistivity measurements is introduced, which gives good results at room temperature and above, and for mobilities as low as 10-3 cm2 V-1 s-1 , [Formula: see text] Here, μw is the weighted mobility, ρ is the electrical resistivity measured in mΩ cm, T is the absolute temperature in K, S is the Seebeck coefficient, and kB /e = 86.3 µV K-1 . Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials and is particularly helpful in understanding and optimizing thermoelectric systems.
Collapse
|
|
5 |
144 |
15
|
Peng L, Hu L, Fang X. Low-dimensional nanostructure ultraviolet photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5321-8. [PMID: 24089350 DOI: 10.1002/adma.201301802] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 05/26/2023]
Abstract
Low-dimensional (LD) nanostructures are ideal systems for constructing high-performance photodetectors due to their tailored geometries, high surface-area-to-volume ratios and rationally designed surfaces. This article provides a brief summary about recent progress on LD nanostructures based visible-light-blind ultraviolet photodetectors. The current challenges and an outlook on the future developments of this research field are summarized and highlighted.
Collapse
|
Review |
12 |
137 |
16
|
Usman M, Mendiratta S, Lu KL. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605071. [PMID: 27859732 DOI: 10.1002/adma.201605071] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/17/2016] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices.
Collapse
|
Review |
8 |
134 |
17
|
Yin Z, Wei J, Zheng Q. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500362. [PMID: 27812480 PMCID: PMC5067618 DOI: 10.1002/advs.201500362] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Indexed: 05/22/2023]
Abstract
Organic solar cells (OSCs) have shown great promise as low-cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single-junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single-junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small-molecules, metals and metal salts/complexes, carbon-based materials, organic-inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron-transporting and hole-transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure-property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research.
Collapse
|
research-article |
9 |
128 |
18
|
Ji L, Shi J, Wei J, Yu T, Huang W. Air-Stable Organic Radicals: New-Generation Materials for Flexible Electronics? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908015. [PMID: 32583945 DOI: 10.1002/adma.201908015] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 05/28/2023]
Abstract
In the last few years, air-stable organic radicals and radical polymers have attracted tremendous attention due to their outstanding performance in flexible electronic devices, including transistors, batteries, light-emitting diodes, thermoelectric and photothermal conversion devices, and among many others. The main issue of radicals from laboratory studies to real-world applications is that the number of known air-stable radicals is very limited, and the radicals that have been used as materials are even less. Here, the known and newly developed air-stable organic radicals are summarized, generalizing the way of observing air-stable radicals. The special electric and photophysical properties of organic radicals and radical polymers are interpreted, which give radicals a wide scope for various of potential applications. Finally, the exciting applications of radicals that have been achieved in flexible electronic devices are summarized. The aim herein is to highlight the recent achievements in radicals in chemistry, materials science, and flexible electronics, and further bridge the gap between these three disciplines.
Collapse
|
Review |
5 |
126 |
19
|
Gu C, Huang N, Chen Y, Qin L, Xu H, Zhang S, Li F, Ma Y, Jiang D. π-Conjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions. Angew Chem Int Ed Engl 2015; 54:13594-8. [PMID: 26418672 PMCID: PMC4678513 DOI: 10.1002/anie.201506570] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/02/2015] [Indexed: 11/11/2022]
Abstract
Conjugated microporous polymers are a unique class of polymers that combine extended π-conjugation with inherent porosity. However, these polymers are synthesized through solution-phase reactions to yield insoluble and unprocessable solids, which preclude not only the evaluation of their conducting properties but also the fabrication of thin films for device implementation. Here, we report a strategy for the synthesis of thin films of π-conjugated microporous polymers by designing thiophene-based electropolymerization at the solution-electrode interface. High-quality films are prepared on a large area of various electrodes, the film thickness is controllable, and the films are used for device fabrication. These films are outstanding hole conductors and, upon incorporation of fullerenes into the pores, function as highly efficient photoactive layers for energy conversions. Our film strategy may boost the applications in photocatalysis, energy storage, and optoelectronics.
Collapse
|
research-article |
10 |
115 |
20
|
Teng F, Hu K, Ouyang W, Fang X. Photoelectric Detectors Based on Inorganic p-Type Semiconductor Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706262. [PMID: 29888448 DOI: 10.1002/adma.201706262] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/18/2018] [Indexed: 05/03/2023]
Abstract
Photoelectric detectors are the central part of modern photodetection systems with numerous commercial and scientific applications. p-Type semiconductor materials play important roles in optoelectronic devices. Photodetectors based on p-type semiconductor materials have attracted a great deal of attention in recent years because of their unique properties. Here, a comprehensive summary of the recent progress mainly on photodetectors based on inorganic p-type semiconductor materials is presented. Various structures, including photoconductors, phototransistors, homojunctions, heterojunctions, p-i-n junctions, and metal-semiconductor junctions of photodetectors based on inorganic p-type semiconductor materials, are discussed and summarized. Perspectives and an outlook, highlighting the promising future directions of this research field, are also given.
Collapse
|
Review |
7 |
115 |
21
|
Rakita Y, Bar-Elli O, Meirzadeh E, Kaslasi H, Peleg Y, Hodes G, Lubomirsky I, Oron D, Ehre D, Cahen D. Tetragonal CH 3NH 3PbI 3 is ferroelectric. Proc Natl Acad Sci U S A 2017; 114:E5504-E5512. [PMID: 28588141 PMCID: PMC5514731 DOI: 10.1073/pnas.1702429114] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Halide perovskite (HaP) semiconductors are revolutionizing photovoltaic (PV) solar energy conversion by showing remarkable performance of solar cells made with HaPs, especially tetragonal methylammonium lead triiodide (MAPbI3). In particular, the low voltage loss of these cells implies a remarkably low recombination rate of photogenerated carriers. It was suggested that low recombination can be due to the spatial separation of electrons and holes, a possibility if MAPbI3 is a semiconducting ferroelectric, which, however, requires clear experimental evidence. As a first step, we show that, in operando, MAPbI3 (unlike MAPbBr3) is pyroelectric, which implies it can be ferroelectric. The next step, proving it is (not) ferroelectric, is challenging, because of the material's relatively high electrical conductance (a consequence of an optical band gap suitable for PV conversion) and low stability under high applied bias voltage. This excludes normal measurements of a ferroelectric hysteresis loop, to prove ferroelectricity's hallmark switchable polarization. By adopting an approach suitable for electrically leaky materials as MAPbI3, we show here ferroelectric hysteresis from well-characterized single crystals at low temperature (still within the tetragonal phase, which is stable at room temperature). By chemical etching, we also can image the structural fingerprint for ferroelectricity, polar domains, periodically stacked along the polar axis of the crystal, which, as predicted by theory, scale with the overall crystal size. We also succeeded in detecting clear second harmonic generation, direct evidence for the material's noncentrosymmetry. We note that the material's ferroelectric nature, can, but need not be important in a PV cell at room temperature.
Collapse
|
research-article |
8 |
114 |
22
|
Liu Q, Bottle SE, Sonar P. Developments of Diketopyrrolopyrrole-Dye-Based Organic Semiconductors for a Wide Range of Applications in Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903882. [PMID: 31797456 DOI: 10.1002/adma.201903882] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
In recent times, fused aromatic diketopyrrolopyrrole (DPP)-based functional semiconductors have attracted considerable attention in the developing field of organic electronics. Over the past few years, DPP-based semiconductors have demonstrated remarkable improvements in the performance of both organic field-effect transistor (OFET) and organic photovoltaic (OPV) devices due to the favorable features of the DPP unit, such as excellent planarity and better electron-withdrawing ability. Driven by this success, DPP-based materials are now being exploited in various other electronic devices including complementary circuits, memory devices, chemical sensors, photodetectors, perovskite solar cells, organic light-emitting diodes, and more. Recent developments in the use of DPP-based materials for a wide range of electronic devices are summarized, focusing on OFET, OPV, and newly developed devices with a discussion of device performance in terms of molecular engineering. Useful guidance for the design of future DPP-based materials and the exploration of more advanced applications is provided.
Collapse
|
Review |
5 |
111 |
23
|
Ren G, Han H, Wang Y, Liu S, Zhao J, Meng X, Li Z. Recent Advances of Photocatalytic Application in Water Treatment: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1804. [PMID: 34361190 PMCID: PMC8308214 DOI: 10.3390/nano11071804] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 02/02/2023]
Abstract
Photocatalysis holds great promise as an efficient and sustainable oxidation technology for application in wastewater treatment. Rapid progress developing novel materials has propelled photocatalysis to the forefront of sustainable wastewater treatments. This review presents the latest progress on applications of photocatalytic wastewater treatment. Our focus is on strategies for improving performance. Challenges and outlooks in this promising field are also discussed. We hope this review will help researchers design low-cost and high-efficiency photocatalysts for water treatment.
Collapse
|
Review |
4 |
106 |
24
|
Yu H, Xue Y, Li Y. Graphdiyne and its Assembly Architectures: Synthesis, Functionalization, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803101. [PMID: 31119816 DOI: 10.1002/adma.201803101] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/02/2018] [Indexed: 06/09/2023]
Abstract
Graphdiyne (GDY), a novel one-atom-thick carbon allotrope that features assembled layers of sp- and sp2 -hybridized carbon atoms, has attracted great interest from both science and industry due to its unique and fascinating structural, physical, and chemical properties. GDY-based materials with different morphologies, such as nanowires, nanotube arrays, nanosheets, and ordered stripe arrays, have been applied in various areas such as catalysis, solar cells, energy storage, and optoelectronic devices. After an introduction to the fundamental properties of GDY, recent advances in the fabrication of GDY-based nanostructures and their applications, and corresponding mechanisms, are covered, and future critical perspectives are also discussed.
Collapse
|
Review |
6 |
101 |
25
|
Chiappini C, Liu X, Fakhoury JR, Ferrari M. Biodegradable porous silicon barcode nanowires with defined geometry. ADVANCED FUNCTIONAL MATERIALS 2010; 20:2231-2239. [PMID: 21057669 PMCID: PMC2971684 DOI: 10.1002/adfm.201000360] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Silicon nanowires are of proven importance in diverse fields such as energy production and storage, flexible electronics, and biomedicine due to the unique characteristics emerging from their one-dimensional semiconducting nature and their mechanical properties. Here we report the synthesis of biodegradable porous silicon barcode nanowires by metal assisted electroless etch of single crystal silicon with resistivity ranging from 0.0008 Ω-cm to 10 Ω-cm. We define the geometry of the barcode nanowiresby nanolithography and we characterize their multicolor reflectance and photoluminescence. We develop phase diagrams for the different nanostructures obtained as a function of metal catalyst, H(2)O(2) concentration, ethanol concentration and silicon resistivity, and propose a mechanism that explains these observations. We demonstrate that these nanowires are biodegradable, and their degradation time can be modulated by surface treatments.
Collapse
|
research-article |
15 |
99 |