1
|
Song J, Birn RM, Boly M, Meier TB, Nair VA, Meyerand ME, Prabhakaran V. Age-related reorganizational changes in modularity and functional connectivity of human brain networks. Brain Connect 2014; 4:662-76. [PMID: 25183440 DOI: 10.1089/brain.2014.0286] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human brain undergoes both morphological and functional modifications across the human lifespan. It is important to understand the aspects of brain reorganization that are critical in normal aging. To address this question, one approach is to investigate age-related topological changes of the brain. In this study, we developed a brain network model using graph theory methods applied to the resting-state functional magnetic resonance imaging data acquired from two groups of normal healthy adults classified by age. We found that brain functional networks demonstrated modular organization in both groups with modularity decreased with aging, suggesting less distinct functional divisions across whole brain networks. Local efficiency was also decreased with aging but not with global efficiency. Besides these brain-wide observations, we also observed consistent alterations of network properties at the regional level in the elderly, particularly in two major functional networks-the default mode network (DMN) and the sensorimotor network. Specifically, we found that measures of regional strength, local and global efficiency of functional connectivity were increased in the sensorimotor network while decreased in the DMN with aging. These results indicate that global reorganization of brain functional networks may reflect overall topological changes with aging and that aging likely alters individual brain networks differently depending on the functional properties. Moreover, these findings highly correspond to the observation of decline in cognitive functions but maintenance of primary information processing in normal healthy aging, implying an underlying compensation mechanism evolving with aging to support higher-level cognitive functioning.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
196 |
2
|
Contrasting variability patterns in the default mode and sensorimotor networks balance in bipolar depression and mania. Proc Natl Acad Sci U S A 2016; 113:4824-9. [PMID: 27071087 DOI: 10.1073/pnas.1517558113] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Depressive and manic phases in bipolar disorder show opposite constellations of affective, cognitive, and psychomotor symptoms. At a neural level, these may be related to topographical disbalance between large-scale networks, such as the default mode network (DMN) and sensorimotor network (SMN). We investigated topographical patterns of variability in the resting-state signal-measured by fractional SD (fSD) of the BOLD signal-of the DMN and SMN (and other networks) in two frequency bands (Slow5 and Slow4) with their ratio and clinical correlations in depressed (n = 20), manic (n = 20), euthymic (n = 20) patients, and healthy controls (n = 40). After controlling for global signal changes, the topographical balance between the DMN and SMN, specifically in the lowest frequency band, as calculated by the Slow5 fSD DMN/SMN ratio, was significantly increased in depression, whereas the same ratio was significantly decreased in mania. Additionally, Slow5 variability was increased in the DMN and decreased in the SMN in depressed patients, whereas the opposite topographical pattern was observed in mania. Finally, the Slow5 fSD DMN/SMN ratio correlated positively with clinical scores of depressive symptoms and negatively with those of mania. Results were replicated in a smaller independent bipolar disorder sample. We demonstrated topographical abnormalities in frequency-specific resting-state variability in the balance between DMN and SMN with opposing patterns in depression and mania. The Slow5 DMN/SMN ratio was tilted toward the DMN in depression but was shifted toward the SMN in mania. The Slow5 fSD DMN/SMN pattern could constitute a state-biomarker in diagnosis and therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
161 |
3
|
tDCS-Induced Modulation of GABA Levels and Resting-State Functional Connectivity in Older Adults. J Neurosci 2017; 37:4065-4073. [PMID: 28314813 DOI: 10.1523/jneurosci.0079-17.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) modulates human behavior, neuronal patterns, and metabolite concentrations, with exciting potential for neurorehabilitation. However, the understanding of tDCS-induced alterations on the neuronal level is incomplete, and conclusions from young adults, in whom the majority of studies have been conducted, cannot be easily transferred to older populations. Here, we investigated tDCS-induced effects in older adults (N = 48; age range, 50-79 years) using magnetic resonance spectroscopy to quantify GABA levels as well as resting-state functional magnetic resonance imaging to assess sensorimotor network strength and interhemispheric connectivity. In a randomized, counterbalanced, crossover design, we applied anodal tDCS (atDCS), cathodal tDCS (ctDCS), and sham tDCS (stDCS) over the left sensorimotor region. We observed a significant reduction of GABA levels after atDCS compared with stDCS, reflecting the preserved neuromodulatory effect of atDCS in older adults. Moreover, resting-state functional coupling was decreased during atDCS compared with stDCS, most likely indicating augmented efficiency in brain network functioning. Increased levels of interhemispheric connectivity with age were diminished by atDCS, suggesting stimulation-induced functional decoupling. Further, the magnitude of atDCS-induced local plasticity was related to baseline functional network strength. Our findings provide novel insight into the neuronal correlates underlying tDCS-induced neuronal plasticity in older adults and thus might help to develop tDCS interventions tailored to the aging brain.SIGNIFICANCE STATEMENT Transcranial direct current stimulation (tDCS) modulates human behavior, neuronal patterns, and metabolite concentrations, with exciting potential for neurorehabilitation. However, the understanding of tDCS-induced alterations on the neuronal level is incomplete, and conclusions from young adults cannot be easily transferred to older populations. We used a systematic multimodal imaging approach to investigate the neurophysiological effects of tDCS in older adults and found stimulation-induced effects on GABA levels, reflecting augmented local plasticity and functional connectivity, suggesting modulation of network efficiency. Our findings may help to reconcile some of the recent reports on the variability of tDCS-induced effects, not only implicating age as a crucial modulating factor, but detailing its specific impact on the functionality of neural networks.
Collapse
|
Randomized Controlled Trial |
8 |
103 |
4
|
Abstract
As we begin to acquire a new motor skill, we face the dual challenge of determining and refining the somatosensory goals of our movements and establishing the best motor commands to achieve our ends. The two typically proceed in parallel, and accordingly it is unclear how much of skill acquisition is a reflection of changes in sensory systems and how much reflects changes in the brain's motor areas. Here we have intentionally separated perceptual and motor learning in time so that we can assess functional changes to human sensory and motor networks as a result of perceptual learning. Our subjects underwent fMRI scans of the resting brain before and after a somatosensory discrimination task. We identified changes in functional connectivity that were due to the effects of perceptual learning on movement. For this purpose, we used a neural model of the transmission of sensory signals from perceptual decision making through to motor action. We used this model in combination with a partial correlation technique to parcel out those changes in connectivity observed in motor systems that could be attributed to activity in sensory brain regions. We found that, after removing effects that are linearly correlated with somatosensory activity, perceptual learning results in changes to frontal motor areas that are related to the effects of this training on motor behavior and learning. This suggests that perceptual learning produces changes to frontal motor areas of the brain and may thus contribute directly to motor learning.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
75 |
5
|
Bisecco A, Nardo FD, Docimo R, Caiazzo G, d'Ambrosio A, Bonavita S, Capuano R, Sinisi L, Cirillo M, Esposito F, Tedeschi G, Gallo A. Fatigue in multiple sclerosis: The contribution of resting-state functional connectivity reorganization. Mult Scler 2017; 24:1696-1705. [PMID: 28911257 DOI: 10.1177/1352458517730932] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To investigate resting-state functional connectivity (RS-FC) of the default-mode network (DMN) and of sensorimotor network (SMN) network in relapsing remitting (RR) multiple sclerosis (MS) patients with fatigue (F) and without fatigue(NF). METHODS In all, 59 RRMS patients and 29 healthy controls (HC) underwent magnetic resonance imaging (MRI) protocol including resting-state fMRI (RS-fMRI). Functional connectivity of the DMN and SMN was evaluated by independent component analysis (ICA). A linear regression analysis was performed to explore whether fatigue was mainly driven by changes observed in the DMN or in the SMN. Regional gray matter atrophy was assessed by voxel-based morphometry (VBM). RESULTS Compared to HC, F-MS patients showed a stronger RS-FC in the posterior cingulate cortex (PCC) and a reduced RS-FC in the anterior cingulated cortex (ACC) of the DMN. F-MS patients, compared to NF-MS patients, revealed (1) an increased RS-FC in the PCC and a reduced RS-FC in the ACC of the DMN and (2) an increased RS-FC in the primary motor cortex and in the supplementary motor cortex of the SMN. The regression analysis suggested that fatigue is mainly driven by RS-FC changes of the DMN. CONCLUSIONS Fatigue in RRMS is mainly associated to a functional rearrangement of non-motor RS networks.
Collapse
|
Journal Article |
8 |
51 |
6
|
Tessitore A, Giordano A, De Micco R, Russo A, Tedeschi G. Sensorimotor connectivity in Parkinson's disease: the role of functional neuroimaging. Front Neurol 2014; 5:180. [PMID: 25309505 PMCID: PMC4173645 DOI: 10.3389/fneur.2014.00180] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/04/2014] [Indexed: 01/07/2023] Open
Abstract
The diagnosis of Parkinson’s disease (PD) remains still clinical; nevertheless, in the last decades, the rapid evolution of advanced MRI techniques has made it possible to detect structural and, increasingly, functional brain changes in patients with PD. Indeed, functional MRI (fMRI) techniques have offered the opportunity to directly measure the brain’s activity and connectivity in patients with PD both in early and complicated stage of the disease. The aims of the following review are (1) to present an overview of recent fMRI reports investigating the activity and connectivity of sensorimotor areas in patients with PD using both task-related and “resting-state” fMRI analysis (2) to elucidate potential pathophysiological mechanisms underlying dyskinetic motor complications in the advanced stage of PD.
Collapse
|
Review |
11 |
48 |
7
|
Martino M, Magioncalda P, Conio B, Capobianco L, Russo D, Adavastro G, Tumati S, Tan Z, Lee HC, Lane TJ, Amore M, Inglese M, Northoff G. Abnormal Functional Relationship of Sensorimotor Network With Neurotransmitter-Related Nuclei via Subcortical-Cortical Loops in Manic and Depressive Phases of Bipolar Disorder. Schizophr Bull 2020; 46:163-174. [PMID: 31150559 PMCID: PMC6942162 DOI: 10.1093/schbul/sbz035] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Manic and depressive phases of bipolar disorder (BD) show opposite psychomotor symptoms. Neuronally, these may depend on altered relationships between sensorimotor network (SMN) and subcortical structures. The study aimed to investigate the functional relationships of SMN with substantia nigra (SN) and raphe nuclei (RN) via subcortical-cortical loops, and their alteration in bipolar mania and depression, as characterized by psychomotor excitation and inhibition. METHOD In this resting-state functional magnetic resonance imaging (fMRI) study on healthy (n = 67) and BD patients (n = 100), (1) functional connectivity (FC) between thalamus and SMN was calculated and correlated with FC from SN or RN to basal ganglia (BG)/thalamus in healthy; (2) using an a-priori-driven approach, thalamus-SMN FC, SN-BG/thalamus FC, and RN-BG/thalamus FC were compared between healthy and BD, focusing on manic (n = 34) and inhibited depressed (n = 21) patients. RESULTS (1) In healthy, the thalamus-SMN FC showed a quadratic correlation with SN-BG/thalamus FC and a linear negative correlation with RN-BG/thalamus FC. Accordingly, the SN-related FC appears to enable the thalamus-SMN coupling, while the RN-related FC affects it favoring anti-correlation. (2) In BD, mania showed an increase in thalamus-SMN FC toward positive values (ie, thalamus-SMN abnormal coupling) paralleled by reduction of RN-BG/thalamus FC. By contrast, inhibited depression showed a decrease in thalamus-SMN FC toward around-zero values (ie, thalamus-SMN disconnection) paralleled by reduction of SN-BG/thalamus FC (and RN-BG/thalamus FC). The results were replicated in independent HC and BD datasets. CONCLUSIONS These findings suggest an abnormal relationship of SMN with neurotransmitters-related areas via subcortical-cortical loops in mania and inhibited depression, finally resulting in psychomotor alterations.
Collapse
|
research-article |
5 |
47 |
8
|
Rocca MA, Absinta M, Valsasina P, Ciccarelli O, Marino S, Rovira A, Gass A, Wegner C, Enzinger C, Korteweg T, Sormani MP, Mancini L, Thompson AJ, De Stefano N, Montalban X, Hirsch J, Kappos L, Ropele S, Palace J, Barkhof F, Matthews PM, Filippi M. Abnormal connectivity of the sensorimotor network in patients with MS: a multicenter fMRI study. Hum Brain Mapp 2009; 30:2412-25. [PMID: 19034902 PMCID: PMC6871126 DOI: 10.1002/hbm.20679] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/05/2008] [Accepted: 09/10/2008] [Indexed: 11/11/2022] Open
Abstract
In this multicenter study, we used dynamic causal modeling to characterize the abnormalities of effective connectivity of the sensorimotor network in 61 patients with multiple sclerosis (MS) compared with 74 age-matched healthy subjects. We also investigated the correlation of such abnormalities with findings derived from structural MRI. In a subgroup of subjects, diffusion tensor (DT) MRI metrics of the corpus callosum and the left corticospinal tract (CST) were also assessed. MS patients showed increased effective connectivity relative to controls between: (a) the left primary SMC and the left dorsal premotor cortex (PMd), (b) the left PMd and the supplementary motor areas (SMA), (c) the left secondary sensorimotor cortex (SII) and the SMA, (d) the right SII and the SMA, (e) the left SII and the right SII, and (f) the right SMC and the SMA. MS patients had relatively reduced effective connectivity between the left SMC and the right cerebellum. No interaction was found between disease group and center. Coefficients of altered connectivity were weakly correlated with brain T2 LV, but moderately correlated with DT MRI-measured damage of the left CST. In conclusion, large multicenter fMRI studies of effective connectivity changes in diseased people are feasible and can facilitate studies with sample size large enough for robust outcomes. Increased effective connectivity in the patients for the simple motor task suggests local network modulation contributing to enhanced long-distance effective connectivity in MS patients. This extends and generalizes previous evidence that enhancement of effective connectivity may provide an important compensatory mechanism in MS.
Collapse
|
Multicenter Study |
16 |
45 |
9
|
Russo D, Martino M, Magioncalda P, Inglese M, Amore M, Northoff G. Opposing Changes in the Functional Architecture of Large-Scale Networks in Bipolar Mania and Depression. Schizophr Bull 2020; 46:971-980. [PMID: 32047938 PMCID: PMC7342167 DOI: 10.1093/schbul/sbaa004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Manic and depressive phases of bipolar disorder (BD) show opposite symptoms in psychomotor, thought, and affective dimensions. Neuronally, these may depend on distinct patterns of alterations in the functional architecture of brain intrinsic activity. Therefore, the study aimed to characterize the spatial and temporal changes of resting-state activity in mania and depression, by investigating the regional homogeneity (ReHo) and degree of centrality (DC), in different frequency bands. METHODS Using resting-state functional magnetic resonance imaging (fMRI), voxel-wise ReHo and DC were calculated-in the standard frequency band (SFB: 0.01-0.10 Hz), as well as in Slow5 (0.01-0.027 Hz) and Slow4 (0.027-0.073 Hz)-and compared between manic (n = 36), depressed (n = 43), euthymic (n = 29) patients, and healthy controls (n = 112). Finally, clinical correlations were investigated. RESULTS Mania was mainly characterized by decreased ReHo and DC in Slow4 in the medial prefrontal cortex (as part of the default-mode network [DMN]), which in turn correlated with manic symptomatology. Conversely, depression was mainly characterized by decreased ReHo in SFB in the primary sensory-motor cortex (as part of the sensorimotor network [SMN]), which in turn correlated with depressive symptomatology. CONCLUSIONS Our data show a functional reconfiguration of the spatiotemporal structure of intrinsic brain activity to occur in BD. Mania might be characterized by a predominance of sensorimotor over associative networks, possibly driven by a deficit of the DMN (reflecting in internal thought deficit). Conversely, depression might be characterized by a predominance of associative over sensorimotor networks, possibly driven by a deficit of the SMN (reflecting in psychomotor inhibition).
Collapse
|
research-article |
5 |
44 |
10
|
Carmona S, Hoekzema E, Castellanos FX, García-García D, Lage-Castellanos A, Van Dijk KRA, Navas-Sánchez FJ, Martínez K, Desco M, Sepulcre J. Sensation-to-cognition cortical streams in attention-deficit/hyperactivity disorder. Hum Brain Mapp 2015; 36:2544-57. [PMID: 25821110 DOI: 10.1002/hbm.22790] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 11/10/2022] Open
Abstract
We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120 children with ADHD and 120 age-matched typically developing children (TDC). Starting in unimodal primary cortex-visual, auditory, and somatosensory-we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link-step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention-regulatory areas is reduced. Third, at subsequent link-step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication-naïve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
41 |
11
|
Kazemi R, Rostami R, Khomami S, Baghdadi G, Rezaei M, Hata M, Aoki Y, Ishii R, Iwase M, Fitzgerald PB. Bilateral Transcranial Magnetic Stimulation on DLPFC Changes Resting State Networks and Cognitive Function in Patients With Bipolar Depression. Front Hum Neurosci 2018; 12:356. [PMID: 30233346 PMCID: PMC6135217 DOI: 10.3389/fnhum.2018.00356] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/20/2018] [Indexed: 01/13/2023] Open
Abstract
Introduction: Bipolar patients have abnormalities in cognitive functions and emotional processing. Two resting state networks (RSNs), the default mode network (DMN) and the sensorimotor network (SMN), play a decisive role in these two functions. Dorsolateral prefrontal cortex (DLPFC) is one of the main areas in the central executive network (CEN), which is linked to the activities of each of the two networks. Studies have found DLPFC abnormalities in both hemispheres of patients with bipolar depression. We hypothesized that the bilateral repetitive transcranial magnetic stimulation (rTMS) of DLPFC would produce changes in the activity of both the SMN and DMN as well as relevant cognitive function in patients with bipolar depression that responded to treatment. Methods: 20 patients with bipolar depression underwent 10 sessions of 1 Hz rTMS on right DLPFC with subsequent 10 Hz rTMS on left DLPFC. Changes in electroencephalography resting networks between pre and post rTMS were evaluated utilizing low-resolution electromagnetic tomography (eLORETA). Depression symptom was assessed using the Beck Depression Inventory (BDI-II) and cognitive function was assessed by Verbal Fluency Test (VFT), Rey Auditory Verbal Learning Test (RAVLT), Stroop Test, and Wisconsin Card Sorting Test (WCST). Results: Responders to rTMS showed significantly lower DMN activity at baseline and a significant decrease in SMN connectivity after treatment. Non-responders did not significantly differ from the control group at the baseline and they showed higher activity in the SMN, visual network, and visual perception network compared to control group following treatment. Bilateral rTMS resulted in significant changes in the executive functions, verbal memory, and depression symptoms. No significant changes were observed in selective attention and verbal fluency. Conclusion: Bilateral stimulation of DLPFC, as the main node of CEN, results in changes in the activity of the SMN and consequently improves verbal memory and executive functions in patients with bipolar depression.
Collapse
|
Journal Article |
7 |
40 |
12
|
Feusner JD, Madsen S, Moody TD, Bohon C, Hembacher E, Bookheimer SY, Bystritsky A. Effects of cranial electrotherapy stimulation on resting state brain activity. Brain Behav 2012; 2:211-20. [PMID: 22741094 PMCID: PMC3381625 DOI: 10.1002/brb3.45] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/10/2012] [Indexed: 11/11/2022] Open
Abstract
Cranial electrotherapy stimulation (CES) is a U.S. Food and Drug Administration (FDA)-approved treatment for insomnia, depression, and anxiety consisting of pulsed, low-intensity current applied to the earlobes or scalp. Despite empirical evidence of clinical efficacy, its mechanism of action is largely unknown. The goal was to characterize the acute effects of CES on resting state brain activity. Our primary hypothesis was that CES would result in deactivation in cortical and subcortical regions. Eleven healthy controls were administered CES applied to the earlobes at subsensory thresholds while being scanned with functional magnetic resonance imaging in the resting state. We tested 0.5- and 100-Hz stimulation, using blocks of 22 sec "on" alternating with 22 sec of baseline (device was "off"). The primary outcome measure was differences in blood oxygen level dependent data associated with the device being on versus baseline. The secondary outcome measures were the effects of stimulation on connectivity within the default mode, sensorimotor, and fronto-parietal networks. Both 0.5- and 100-Hz stimulation resulted in significant deactivation in midline frontal and parietal regions. 100-Hz stimulation was associated with both increases and decreases in connectivity within the default mode network (DMN). Results suggest that CES causes cortical brain deactivation, with a similar pattern for high- and low-frequency stimulation, and alters connectivity in the DMN. These effects may result from interference from high- or low-frequency noise. Small perturbations of brain oscillations may therefore have significant effects on normal resting state brain activity. These results provide insight into the mechanism of action of CES, and may assist in the future development of optimal parameters for effective treatment.
Collapse
|
research-article |
13 |
39 |
13
|
Silvestro M, Tessitore A, Di Nardo F, Scotto di Clemente F, Trojsi F, Cirillo M, Esposito F, Tedeschi G, Russo A. Functional connectivity changes in complex migraine aura: beyond the visual network. Eur J Neurol 2022; 29:295-304. [PMID: 34382315 PMCID: PMC9291958 DOI: 10.1111/ene.15061] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/31/2021] [Accepted: 08/07/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Although the majority of migraine with aura (MwA) patients experience simple visual aura, a discrete percentage also report somatosensory, dysphasic or motor symptoms (the so-called complex auras). The wide aura clinical spectrum led to an investigation of whether the heterogeneity of the aura phenomenon could be produced by different neural correlates, suggesting an increased visual cortical excitability in complex MwA. The aim was to explore whether complex MwA patients are characterized by more pronounced connectivity changes of the visual network and whether functional abnormalities may extend beyond the visual network encompassing also the sensorimotor network in complex MwA patients compared to simple visual MwA patients. METHODS By using a resting-state functional magnetic resonance imaging approach, the resting-state functional connectivity (RS-Fc) of both visual and sensorimotor networks in 20 complex MwA patients was compared with 20 simple visual MwA patients and 20 migraine without aura patients. RESULTS Complex MwA patients showed a significantly higher RS-Fc of the left lingual gyrus, within the visual network, and of the right anterior insula, within the sensorimotor network, compared to both simple visual MwA and migraine without aura patients (p < 0.001). The abnormal right anterior insula RS-Fc was able to discriminate complex MwA patients from simple aura MwA patients as demonstrated by logistic regression analysis (area under the curve 0.83). CONCLUSION Our findings suggest that higher extrastriate RS-Fc might promote cortical spreading depression onset representing the neural correlate of simple visual aura that can propagate to sensorimotor regions if an increased insula RS-Fc coexists, leading to complex aura phenotypes.
Collapse
|
research-article |
3 |
32 |
14
|
Bhat DI, Indira Devi B, Bharti K, Panda R. Cortical plasticity after brachial plexus injury and repair: a resting-state functional MRI study. Neurosurg Focus 2017; 42:E14. [PMID: 28245732 DOI: 10.3171/2016.12.focus16430] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The authors aimed to understand the alterations of brain resting-state networks (RSNs) in patients with pan-brachial plexus injury (BPI) before and after surgery, which might provide insight into cortical plasticity after peripheral nerve injury and regeneration. METHODS Thirty-five patients with left pan-BPI before surgery, 30 patients after surgery, and 25 healthy controls underwent resting-state functional MRI (rs-fMRI). The 30 postoperative patients were subdivided into 2 groups: 14 patients with improvement in muscle power and 16 patients with no improvement in muscle power after surgery. RSNs were extracted using independent component analysis to evaluate connectivity at a significance level of p < 0.05 (familywise error corrected). RESULTS The patients with BPI had lower connectivity in their sensorimotor network (SMN) and salience network (SN) and greater connectivity in their default mode network (DMN) before surgery than the controls. Connectivity of the left supplementary motor cortex in the SMN and medial frontal gyrus and in the anterior cingulate cortex in the SN increased in patients whose muscle power had improved after surgery, whereas no significant changes were noted in the unimproved patients. There was a trend toward reduction in DMN connectivity in all the patients after surgery compared with that in the preoperative patients; however, this result was not statistically significant. CONCLUSIONS The results of this study highlight the fact that peripheral nerve injury, its management, and successful treatment cause dynamic changes within the brain's RSNs, which includes not only the obvious SMN but also the higher cognitive networks such as the SN and DMN, which indicates brain plasticity and compensatory mechanisms at work.
Collapse
|
Journal Article |
8 |
31 |
15
|
Rao J, Liu Z, Zhao C, Wei R, Zhao W, Yang Z, Li X. Longitudinal evaluation of functional connectivity variation in the monkey sensorimotor network induced by spinal cord injury. Acta Physiol (Oxf) 2016; 217:164-73. [PMID: 26706280 DOI: 10.1111/apha.12645] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023]
Abstract
AIM Given the unclear pattern of cerebral function reorganization induced by spinal cord injury (SCI), this study aimed to longitudinally evaluate the changes in resting-state functional connectivity (FC) in the sensorimotor network after SCI and explore their relationship with gait performance. METHODS Four adult female rhesus monkeys were examined using resting-state functional magnetic resonance imaging during their healthy stage and after hemitransected SCI (4, 8 and 12 weeks after SCI), and the gait characteristics of their hindlimbs were recorded (except 4 weeks after SCI). Twenty sensorimotor-related cortical areas were adopted in the FC analysis to evaluate the functional network reorganization. Correlation analyses were then used to explore the relationship between functional network variations and gait characteristic changes. RESULTS Compared with that during the healthy stage, the FC strength during post-SCI period was significantly increased in multiple areas of the motor control network, including the primary sensorimotor cortex, supplementary motor area (SMA) and putamen (Pu). However, the FC strength was remarkably reduced in the thalamus and parieto-occipital association cortex of the sensory network 8 weeks after SCI. Most FC intensities gradually approached the normal level 12 weeks after the SCI. Correlation analyses revealed that the enhanced FC strength between Pu and SMA in the left hemisphere, which regulates motor functions of the right side, was negatively correlated with the gait height of the right hindlimb. CONCLUSION The cerebral functional network presents an adjust-recover pattern after SCI, which may help us further understand the cerebral function reorganization after SCI.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
29 |
16
|
Athanasiou A, Klados MA, Pandria N, Foroglou N, Kavazidi KR, Polyzoidis K, Bamidis PD. A Systematic Review of Investigations into Functional Brain Connectivity Following Spinal Cord Injury. Front Hum Neurosci 2017; 11:517. [PMID: 29163098 PMCID: PMC5669283 DOI: 10.3389/fnhum.2017.00517] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Complete or incomplete spinal cord injury (SCI) results in varying degree of motor, sensory and autonomic impairment. Long-lasting, often irreversible disability results from disconnection of efferent and afferent pathways. How does this disconnection affect brain function is not so clear. Changes in brain organization and structure have been associated with SCI and have been extensively studied and reviewed. Yet, our knowledge regarding brain connectivity changes following SCI is overall lacking. Methods: In this study we conduct a systematic review of articles regarding investigations of functional brain networks following SCI, searching on PubMed, Scopus and ScienceDirect according to PRISMA-P 2015 statement standards. Results: Changes in brain connectivity have been shown even during the early stages of the chronic condition and correlate with the degree of neurological impairment. Connectivity changes appear as dynamic post-injury procedures. Sensorimotor networks of patients and healthy individuals share similar patterns but new functional interactions have been identified as unique to SCI networks. Conclusions: Large-scale, multi-modal, longitudinal studies on SCI patients are needed to understand how brain network reorganization is established and progresses through the course of the condition. The expected insight holds clinical relevance in preventing maladaptive plasticity after SCI through individualized neurorehabilitation, as well as the design of connectivity-based brain-computer interfaces and assistive technologies for SCI patients.
Collapse
|
Journal Article |
8 |
28 |
17
|
Olivo G, Wiemerslage L, Nilsson EK, Solstrand Dahlberg L, Larsen AL, Olaya Búcaro M, Gustafsson VP, Titova OE, Bandstein M, Larsson EM, Benedict C, Brooks SJ, Schiöth HB. Resting-State Brain and the FTO Obesity Risk Allele: Default Mode, Sensorimotor, and Salience Network Connectivity Underlying Different Somatosensory Integration and Reward Processing between Genotypes. Front Hum Neurosci 2016; 10:52. [PMID: 26924971 PMCID: PMC4756146 DOI: 10.3389/fnhum.2016.00052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/01/2016] [Indexed: 11/17/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) of the fat mass and obesity associated (FTO) gene are linked to obesity, but how these SNPs influence resting-state neural activation is unknown. Few brain-imaging studies have investigated the influence of obesity-related SNPs on neural activity, and no study has investigated resting-state connectivity patterns. We tested connectivity within three, main resting-state networks: default mode (DMN), sensorimotor (SMN), and salience network (SN) in 30 male participants, grouped based on genotype for the rs9939609 FTO SNP, as well as punishment and reward sensitivity measured by the Behavioral Inhibition (BIS) and Behavioral Activation System (BAS) questionnaires. Because obesity is associated with anomalies in both systems, we calculated a BIS/BAS ratio (BBr) accounting for features of both scores. A prominence of BIS over BAS (higher BBr) resulted in increased connectivity in frontal and paralimbic regions. These alterations were more evident in the obesity-associated AA genotype, where a high BBr was also associated with increased SN connectivity in dopaminergic circuitries, and in a subnetwork involved in somatosensory integration regarding food. Participants with AA genotype and high BBr, compared to corresponding participants in the TT genotype, also showed greater DMN connectivity in regions involved in the processing of food cues, and in the SMN for regions involved in visceral perception and reward-based learning. These findings suggest that neural connectivity patterns influence the sensitivity toward punishment and reward more closely in the AA carriers, predisposing them to developing obesity. Our work explains a complex interaction between genetics, neural patterns, and behavioral measures in determining the risk for obesity and may help develop individually-tailored strategies for obesity prevention.
Collapse
|
Journal Article |
9 |
28 |
18
|
Zhu W, Tang W, Liang Y, Jiang X, Li Y, Chen Z, Zhu C. Aberrant Functional Connectivity of Sensorimotor Network and Its Relationship With Executive Dysfunction in Bipolar Disorder Type I. Front Neurosci 2022; 15:823550. [PMID: 35264921 PMCID: PMC8898951 DOI: 10.3389/fnins.2021.823550] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background The key pathophysiological mechanism of executive dysfunction in patients with bipolar disorder type I (BD-I) is still unclear. Previous studies have demonstrated that it may be related to the disbalance of the sensory motor network (SMN). Objective This study was designed to explore the aberrant functional connectivity (FC) of SMN in BD-I patients and its potential associations with executive dysfunction. Methods Eighteen BD-I patients and 20 healthy controls (HCs) underwent resting-state fMRI scans. The intranetwork and internetwork functional connectivities of SMN were extracted by independent component analysis (ICA). Clinical symptoms were assessed by the Bech-Rafaelsen Mania Rating Scale (BRMS) and Positive and Negative Syndrome Scale (PANSS). Executive function was measured by digit span tasks and a verbal fluency test. Finally, linear regression and correlation analyses were applied to measure the potential associations between clinical symptoms, intranetwork and internetwork functional connectivities, and executive function performance. Results (1) Patients with BD-I showed increased connectivity in the right paracentral lobule and the right postcentral gyrus within the SMN, and the increased connectivity value was positively correlated with the BRMS score (P < 0.05) but negatively correlated with digit span forward scores (P < 0.05). (2) Compared with HC, the connectivity value increased between the SMN and dorsal attention network (DAN) (P < 0.01) and between the default mode network (DMN) and DAN (P < 0.05) but decreased between the DAN and auditory network (AN) (P < 0.05) and between the SMN and DMN (P < 0.01) in patients with BD-I. (3) Digit span forward scores and education of all participants were negatively correlated with FC between SMN and DAN. Age of all subjects was positively correlated with FC between SMN and DMN. Conclusion Our findings suggest that the sensorimotor network of BD-I has abnormal functional connections within and between networks, and the abnormal FC value correlated with clinical symptoms and executive function, which provide new information for exploring the neural physiopathology of executive dysfunction in BD-I patients.
Collapse
|
research-article |
3 |
23 |
19
|
Minkova L, Peter J, Abdulkadir A, Schumacher LV, Kaller CP, Nissen C, Klöppel S, Lahr J. Determinants of Inter-Individual Variability in Corticomotor Excitability Induced by Paired Associative Stimulation. Front Neurosci 2019; 13:841. [PMID: 31474818 PMCID: PMC6702284 DOI: 10.3389/fnins.2019.00841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a well-established tool in probing cortical plasticity in vivo. Changes in corticomotor excitability can be induced using paired associative stimulation (PAS) protocol, in which TMS over the primary motor cortex is conditioned with an electrical peripheral nerve stimulation of the contralateral hand. PAS with an inter-stimulus interval of 25 ms induces long-term potentiation (LTP)-like effects in cortical excitability. However, the response to a PAS protocol tends to vary substantially across individuals. In this study, we used univariate and multivariate data-driven methods to investigate various previously proposed determinants of inter-individual variability in PAS efficacy, such as demographic, cognitive, clinical, neurophysiological, and neuroimaging measures. Forty-one right-handed participants, comprising 22 patients with amnestic mild cognitive impairment (MCI) and 19 healthy controls (HC), underwent the PAS protocol. Prior to stimulation, demographic, genetic, clinical, as well as structural and resting-state functional MRI data were acquired. The two groups did not differ in any of the variables, except by global cognitive status. Univariate analysis showed that only 61% of all participants were classified as PAS responders, irrespective of group membership. Higher PAS response was associated with lower TMS intensity and with higher resting-state connectivity within the sensorimotor network, but only in responders, as opposed to non-responders. We also found an overall positive correlation between PAS response and structural connectivity within the corticospinal tract, which did not differ between groups. A multivariate random forest (RF) model identified age, gender, education, IQ, global cognitive status, sleep quality, alertness, TMS intensity, genetic factors, and neuroimaging measures (functional and structural connectivity, gray matter (GM) volume, and cortical thickness as poor predictors of PAS response. The model resulted in low accuracy of the RF classifier (58%; 95% CI: 42 - 74%), with a higher relative importance of brain connectivity measures compared to the other variables. We conclude that PAS variability in our sample was not well explained by factors known to influence PAS efficacy, emphasizing the need for future replication studies.
Collapse
|
Journal Article |
6 |
23 |
20
|
Jiang Y, Zhu M, Hu Y, Wang K. Altered Resting-State Electroencephalography Microstates in Idiopathic Generalized Epilepsy: A Prospective Case-Control Study. Front Neurol 2021; 12:710952. [PMID: 34880822 PMCID: PMC8645577 DOI: 10.3389/fneur.2021.710952] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
Objective: Idiopathic generalized epilepsy (IGE) involves aberrant organization and functioning of large-scale brain networks. This study aims to investigate whether the resting-state EEG microstate analysis could provide novel insights into the abnormal temporal and spatial properties of intrinsic brain activities in patients with IGE. Methods: Three groups of participants were chosen for this study (namely IGE-Seizure, IGE-Seizure Free, and Healthy Controls). EEG microstate analysis on the resting-state EEG datasets was conducted for all participants. The average duration (“Duration”), the average number of microstates per second (“Frequency”), as well as the percentage of total analysis time occupied in that state (“Coverage”) of the EEG microstate were compared among the three groups. Results: For microstate classes B and D, the differences in Duration, Frequency, and Coverage among the three groups were not statistically significant. Both Frequency and Coverage of microstate class A were statistically significantly larger in the IGE-Seizure group than in the other two groups. The Duration and Coverage of microstate class C were statistically significantly smaller in the IGE-Seizure group than those in the other two groups. Conclusions: The Microstate class A was regarded as a sensorimotor network and Microstate class C was mainly related to the salience network, this study indicated an altered sensorimotor and salience network in patients with IGE, especially in those who had experienced seizures in the past 2 years, while the visual and attention networks seemed to be intact. Significance: The temporal dynamics of resting-state networks were studied through EEG microstate analysis in patients with IGE, which is expected to generate indices that could be utilized in clinical researches of epilepsy.
Collapse
|
|
4 |
20 |
21
|
Andrushko JW, Gould LA, Renshaw DW, Ekstrand C, Hortobágyi T, Borowsky R, Farthing JP. High Force Unimanual Handgrip Contractions Increase Ipsilateral Sensorimotor Activation and Functional Connectivity. Neuroscience 2020; 452:111-125. [PMID: 33197497 DOI: 10.1016/j.neuroscience.2020.10.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/23/2020] [Accepted: 10/26/2020] [Indexed: 01/10/2023]
Abstract
Imaging and brain stimulation studies seem to correct the classical understanding of how brain networks, rather than contralateral focal areas, control the generation of unimanual voluntary force. However, the scaling and hemispheric-specificity of network activation remain less understood. Using fMRI, we examined the effects of parametrically increasing right-handgrip force on activation and functional connectivity among the sensorimotor network bilaterally with 25%, 50%, and 75% maximal voluntary contractions (MVC). High force (75% MVC) unimanual handgrip contractions resulted in greater ipsilateral motor activation and functional connectivity with the contralateral hemisphere compared to a low force 25% MVC condition. The ipsilateral motor cortex activation and network strength correlated with relative handgrip force (% MVC). Increases in unimanual handgrip force resulted in greater ipsilateral sensorimotor activation and greater functional connectivity between hemispheres within the sensorimotor network.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
19 |
22
|
Long X, Little G, Beaulieu C, Lebel C. Sensorimotor network alterations in children and youth with prenatal alcohol exposure. Hum Brain Mapp 2018; 39:2258-2268. [PMID: 29436054 PMCID: PMC6866525 DOI: 10.1002/hbm.24004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 01/06/2023] Open
Abstract
Children with prenatal alcohol exposure (PAE) often have impaired sensorimotor function. While altered brain structure has been noted in sensorimotor areas, the functional brain alterations remain unclear. This study aims to investigate sensorimotor brain networks in children and youth with PAE using resting-state functional magnetic resonance imaging (rs-fMRI). A parcellation-based network analysis was performed to identify brain networks related to hand/lower limb and face/upper limb function in 59 children and youth with PAE and 50 typically developing controls. Participants with PAE and controls had similar organization of the hand and face areas within the primary sensorimotor cortex, but participants with PAE had altered functional connectivity (FC) between the sensorimotor regions and the rest of the brain. The sensorimotor regions in the PAE group showed less connectivity to certain hubs of the default mode network and more connectivity to areas of the salience network. Overall, our results show that despite similar patterns of organization in the sensorimotor network, subjects with PAE have increased FC between this network and other brain areas, perhaps suggesting overcompensation. These alterations in the sensorimotor network lay the foundation for future studies to evaluate interventions and treatments to improve motor function in children with PAE.
Collapse
|
research-article |
7 |
18 |
23
|
Conio B, Magioncalda P, Martino M, Tumati S, Capobianco L, Escelsior A, Adavastro G, Russo D, Amore M, Inglese M, Northoff G. Opposing patterns of neuronal variability in the sensorimotor network mediate cyclothymic and depressive temperaments. Hum Brain Mapp 2018; 40:1344-1352. [PMID: 30367740 DOI: 10.1002/hbm.24453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
Affective temperaments have been described since the early 20th century and may play a central role in psychiatric illnesses, such as bipolar disorder (BD). However, the neuronal basis of temperament is still unclear. We investigated the relationship of temperament with neuronal variability in the resting state signal-measured by fractional standard deviation (fSD) of Blood-Oxygen-Level Dependent signal-of the different large-scale networks, that is, sensorimotor network (SMN), along with default-mode, salience and central executive networks, in standard frequency band (SFB) and its sub-frequencies slow4 and slow5, in a large sample of healthy subject (HC, n = 109), as well as in the various temperamental subgroups (i.e., cyclothymic, hyperthymic, depressive, and irritable). A replication study on an independent dataset of 121 HC was then performed. SMN fSD positively correlated with cyclothymic z-score and was significantly increased in the cyclothymic temperament compared to the depressive temperament subgroups, in both SFB and slow4. We replicated our findings in the independent dataset. A relationship between cyclothymic temperament and neuronal variability, an index of intrinsic neuronal activity, in the SMN was found. Cyclothymic and depressive temperaments were associated with opposite changes in the SMN variability, resembling changes previously described in manic and depressive phases of BD. These findings shed a novel light on the neural basis of affective temperament and also carry important implications for the understanding of a potential dimensional continuum between affective temperaments and BD, on both psychological and neuronal levels.
Collapse
|
Journal Article |
7 |
17 |
24
|
Sandström A, Ellerbrock I, Löfgren M, Altawil R, Bileviciute-Ljungar I, Lampa J, Kosek E. Distinct aberrations in cerebral pain processing differentiating patients with fibromyalgia from patients with rheumatoid arthritis. Pain 2022; 163:538-547. [PMID: 34224497 PMCID: PMC8832547 DOI: 10.1097/j.pain.0000000000002387] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The current study used functional magnetic resonance imaging to directly compare disease-relevant cerebral pain processing in well-characterized patient cohorts of fibromyalgia (FM, nociplastic pain) and rheumatoid arthritis (RA, nociceptive pain). Secondary aims were to identify pain-related cerebral alterations related to the severity of clinical symptoms such as pain intensity, depression, and anxiety. Twenty-six patients with FM (without RA-comorbidity) and 31 patients with RA (without FM-comorbidity) underwent functional magnetic resonance imaging while stimulated with subjectively calibrated painful pressures corresponding to a pain sensation of 50 mm on a 100-mm visual analogue scale. Stimulation sites were at the most inflamed proximal interphalangeal joint in the left hand in patients with RA and the left thumbnail in patients with FM, 2 sites that have previously been shown to yield the same brain activation in healthy controls. The current results revealed disease-distinct differences during pain modulation in RA and FM. Specifically, in response to painful stimulation, patients with FM compared to patients with RA exhibited increased brain activation in bilateral inferior parietal lobe (IPL), left inferior frontal gyrus (IFG)/ventrolateral prefrontal cortex (vlPFC) encapsulating left dorsolateral prefrontal cortex, and right IFG/vlPFC. However, patients with RA compared to patients with FM exhibited increased functional connectivity (during painful stimulation) between right and left IPL and sensorimotor network and between left IPL and frontoparietal network. Within the FM group only, anxiety scores positively correlated with pain-related brain activation in left dorsolateral prefrontal cortex and right IFG/vlPFC, which further highlights the complex interaction between affective (ie, anxiety scores) and sensory (ie, cerebral pain processing) dimensions in this patient group.
Collapse
|
research-article |
3 |
16 |
25
|
Xu J, Luo Y, Peng K, Guo Y, Zhong L, Liu Y, Weng A, Ou Z, Yan Z, Wang Y, Zeng J, Zhang W, Hu Q, Liu G. Supplementary motor area driving changes of structural brain network in blepharospasm. Brain 2022; 146:1542-1553. [PMID: 36130317 DOI: 10.1093/brain/awac341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Blepharospasm is traditionally thought to be a movement disorder that results from basal ganglia dysfunction. Recently, accumulating morphometric studies have revealed structural alterations outside the basal ganglia, such as in the brainstem, cerebellum, and sensorimotor cortex, suggesting that blepharospasm may result from network disorders. However, the temporal and causal relationships between structural alterations, and whether there are disease duration-related hierarchical structural changes in these patients remain largely unknown. Structural magnetic resonance imaging was performed in 62 patients with blepharospasm, 62 patients with hemifacial spasm, and 62 healthy controls to assess the structural alterations using voxel-based morphology and structural covariance networks. The use of the causal structural covariance network, modularity analysis, and functional decoding were subsequently performed to map the causal effect of gray matter change pattern, hierarchical topography, and functional characterizations of the structural network throughout the disease duration of blepharospasm. Greater gray matter volume in the left and right supplementary motor areas was identified in patients with blepharospasm compared to that in patients with hemifacial spasm and healthy controls, whereas no significant difference was identified between patients with hemifacial spasm and healthy controls. In addition, increased gray matter volume covariance between the right supplementary motor area and right brainstem, left superior frontal gyrus, left supplementary motor area, and left paracentral gyrus was found in patients with blepharospasm compared to healthy controls. Further causal structural covariance network, modularity analysis, and functional decoding showed that the right supplementary motor area served as a driving core in patients with blepharospasm, extending greater gray matter volume to areas in the cortico-basal ganglia-brainstem motor pathway and cortical regions in the vision-motor integration pathway. Taken together, our results suggest that the right supplementary motor area is an early and important pathologically impaired region in patients with blepharospasm. With a longer duration of blepharospasm, increased gray matter volume extends from the right supplementary motor area to the cortico-basal ganglia motor and visual-motor integration pathways, showing a hierarchy of structural abnormalities in the disease progression of blepharospasm, which provides novel evidence to support the notion that blepharospasm may arise from network disorders and is associated with a wide range of gray matter abnormalities.
Collapse
|
|
3 |
14 |