1
|
Youn W, Kim JY, Park J, Kim N, Choi H, Cho H, Choi IS. Single-Cell Nanoencapsulation: From Passive to Active Shells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907001. [PMID: 32255241 DOI: 10.1002/adma.201907001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 06/11/2023]
Abstract
Single-cell nanoencapsulation is an emerging field in cell-surface engineering, emphasizing the protection of living cells against external harmful stresses in vitro and in vivo. Inspired by the cryptobiotic state found in nature, cell-in-shell structures are formed, which are called artificial spores and which show suppression or retardation in cell growth and division and enhanced cell survival under harsh conditions. The property requirements of the shells suggested for realization of artificial spores, such as durability, permselectivity, degradability, and functionalizability, are demonstrated with various cytocompatible materials and processes. The first-generation shells in single-cell nanoencapsulation are passive in the operation mode, and do not biochemically regulate the cellular metabolism or activities. Recent advances indicate that the field has shifted further toward the formation of active shells. Such shells are intimately involved in the regulation and manipulation of biological processes. Not only endowing the cells with new properties that they do not possess in their native forms, active shells also regulate cellular metabolism and/or rewire biological pathways. Recent developments in shell formation for microbial and mammalian cells are discussed and an outlook on the field is given.
Collapse
|
Review |
5 |
52 |
2
|
Su D, Qi J, Liu X, Wang L, Zhang H, Xie H, Huang X. Enzyme-Modulated Anaerobic Encapsulation of Chlorella Cells Allows Switching from O 2 to H 2 Production. Angew Chem Int Ed Engl 2019; 58:3992-3995. [PMID: 30653806 DOI: 10.1002/anie.201900255] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Single-cell encapsulation has become an effective strategy in cell surface engineering; however, the construction of cell wall-like layers that allow the switching of the inherent functionality of the engineered cell is still rare. In this study, we show a universal way to create an enzyme-modulated oxygen-consuming sandwich-like layer by using polydopamine, laccase, and tannic acid as building blocks, which then could generate an anaerobic microenvironment around the cell. This layer protected the encapsulated C. pyrenoidosa cell against external stresses and enabled it to switch from normal photosynthetic O2 production to photobiological H2 production. The layer showed an smaller effect on the PSII activity, which contributed a significant enhancement on the rate (0.32 μmol H2 h-1 (mg chlorophyll)-1 ) and the duration (7 d) of H2 production. This strategy is expected to provide a pathway for modulating the functionality of cells and for breakthroughs in the development of green energy alternatives.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
43 |
3
|
Lee H, Kim N, Rheem HB, Kim BJ, Park JH, Choi IS. A Decade of Advances in Single-Cell Nanocoating for Mammalian Cells. Adv Healthc Mater 2021; 10:e2100347. [PMID: 33890422 DOI: 10.1002/adhm.202100347] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Indexed: 12/14/2022]
Abstract
Strategic advances in the single-cell nanocoating of mammalian cells have noticeably been made during the last decade, and many potential applications have been demonstrated. Various cell-coating strategies have been proposed via adaptation of reported methods in the surface sciences and/or materials identification that ensure the sustainability of labile mammalian cells during chemical manipulation. Here an overview of the methodological development and potential applications to the healthcare sector in the nanocoating of mammalian cells made during the last decade is provided. The materials used for the nanocoating are categorized into polymers, hydrogels, polyphenolic compounds, nanoparticles, and minerals, and the corresponding strategies are described under the given set of materials. It also suggests, as a future direction, the creation of the cytospace system that is hierarchically composed of the physically separated but mutually interacting cellular hybrids.
Collapse
|
Review |
4 |
37 |
4
|
Lee H, Nguyen DT, Kim N, Han SY, Hong YJ, Yun G, Kim BJ, Choi IS. Enzyme-Mediated Kinetic Control of Fe 3+-Tannic Acid Complexation for Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52385-52394. [PMID: 34699188 DOI: 10.1021/acsami.1c15503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supramolecular self-assembly of Fe3+ and tannic acid (TA) has received great attention in the fields of materials science and interface engineering because of its exceptional surface coating properties. Although advances in coating strategies often suggest that kinetics in the generation of interface-active Fe3+-TA species is deeply involved in the film formation, there is no acceptable elucidation for the coating process. In this work, we developed the enzyme-mediated kinetic control of Fe2+ oxidation to Fe3+ in a Fe2+-TA complex in the iron-gall-ink-revisited coating method. Specifically, hydrogen peroxide, produced in the glucose oxidase (GOx)-catalyzed reaction of d-glucose, accelerated Fe2+ oxidation, and the optimized kinetics profoundly facilitated the film formation to be about 9 times thicker. We also proposed a perspective considering the coating process as nucleation and growth. From this viewpoint, the kinetics in the generation of interface-active Fe3+-TA species should be optimized because it determines whether the interface-active species forms a film on the substrate (i.e., heterogeneous nucleation and film growth) or flocculates in solution (i.e., homogeneous nucleation and particle growth). Moreover, GOx was concomitantly embedded into the Fe3+-TA films with sustained catalytic activities, and the GOx-mediated coating system was delightfully adapted to catalytic single-cell nanoencapsulation.
Collapse
|
|
4 |
9 |
5
|
Park J, Kim N, Han SY, Rhee SY, Nguyen DT, Lee H, Choi IS. A Micrometric Transformer: Compositional Nanoshell Transformation of Fe 3+ -Trimesic-Acid Complex with Concomitant Payload Release in Cell-in-Catalytic-Shell Nanobiohybrids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306450. [PMID: 37907409 PMCID: PMC10767450 DOI: 10.1002/advs.202306450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 11/02/2023]
Abstract
Nanoencapsulation of living cells within artificial shells is a powerful approach for augmenting the inherent capacity of cells and enabling the acquisition of extrinsic functions. However, the current state of the field requires the development of nanoshells that can dynamically sense and adapt to environmental changes by undergoing transformations in form and composition. This paper reports the compositional transformation of an enzyme-embedded nanoshell of Fe3+ -trimesic acid complex to an iron phosphate shell in phosphate-containing media. The cytocompatible transformation allows the nanoshells to release functional molecules without loss of activities and biorecognition, while preserving the initial shell properties, such as cytoprotection. Demonstrations include the lysis and killing of Escherichia coli by lysozyme, and the secretion of interleukin-2 by Jurkat T cells in response to paracrine stimulation by antibodies. This work on micrometric Transformers will benefit the creation of cell-in-shell nanobiohybrids that can interact with their surroundings in active and adaptive ways.
Collapse
|
research-article |
1 |
2 |
6
|
Han SY, Nguyen DT, Kim BJ, Kim N, Kang EK, Park JH, Choi IS. Cytoprotection of Probiotic Lactobacillus acidophilus with Artificial Nanoshells of Nature-Derived Eggshell Membrane Hydrolysates and Coffee Melanoidins in Single-Cell Nanoencapsulation. Polymers (Basel) 2023; 15:polym15051104. [PMID: 36904345 PMCID: PMC10007236 DOI: 10.3390/polym15051104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
One-step fabrication method for thin films and shells is developed with nature-derived eggshell membrane hydrolysates (ESMHs) and coffee melanoidins (CMs) that have been discarded as food waste. The nature-derived polymeric materials, ESMHs and CMs, prove highly biocompatible with living cells, and the one-step method enables cytocompatible construction of cell-in-shell nanobiohybrid structures. Nanometric ESMH-CM shells are formed on individual probiotic Lactobacillus acidophilus, without any noticeable decrease in viability, and the ESMH-CM shells effectively protected L. acidophilus in the simulated gastric fluid (SGF). The cytoprotection power is further enhanced by Fe3+-mediated shell augmentation. For example, after 2 h of incubation in SGF, the viability of native L. acidophilus is 30%, whereas nanoencapsulated L. acidophilus, armed with the Fe3+-fortified ESMH-CM shells, show 79% in viability. The simple, time-efficient, and easy-to-process method developed in this work would contribute to many technological developments, including microbial biotherapeutics, as well as waste upcycling.
Collapse
|
research-article |
2 |
2 |
7
|
Rheem HB, Choi H, Yang S, Han S, Rhee SY, Jeong H, Lee KB, Lee Y, Kim IS, Lee H, Choi IS. Fugetaxis of Cell-in-Catalytic-Coat Nanobiohybrids in Glucose Gradients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301431. [PMID: 37282761 DOI: 10.1002/smll.202301431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Manipulation and control of cell chemotaxis remain an underexplored territory despite vast potential in various fields, such as cytotherapeutics, sensors, and even cell robots. Herein is achieved the chemical control over chemotactic movement and direction of Jurkat T cells, as a representative model, by the construction of cell-in-catalytic-coat structures in single-cell nanoencapsulation. Armed with the catalytic power of glucose oxidase (GOx) in the artificial coat, the nanobiohybrid cytostructures, denoted as Jurkat[Lipo_GOx] , exhibit controllable, redirected chemotactic movement in response to d-glucose gradients, in the opposite direction to the positive-chemotaxis direction of naïve, uncoated Jurkat cells in the same gradients. The chemically endowed, reaction-based fugetaxis of Jurkat[Lipo_GOx] operates orthogonally and complementarily to the endogenous, binding/recognition-based chemotaxis that remains intact after the formation of a GOx coat. For instance, the chemotactic velocity of Jurkat[Lipo_GOx] can be adjusted by varying the combination of d-glucose and natural chemokines (CXCL12 and CCL19) in the gradient. This work offers an innovative chemical tool for bioaugmenting living cells at the single-cell level through the use of catalytic cell-in-coat structures.
Collapse
|
|
2 |
1 |
8
|
Li C, Feng M, Li B, Feng X, Zhang Y, Wang B. Nanoencapsulation of Living Microbial Cells in Porous Covalent Organic Framework Shells. ACS NANO 2025; 19:2890-2899. [PMID: 39763451 DOI: 10.1021/acsnano.4c16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Encapsulating living cells within nanoshells offers an important approach to enhance their stability against environmental stressors and broaden their application scope. However, this often leads to impaired mass transfer at the cell biointerface. Strengthening the protective shell with well-defined, ordered transport channels is crucial to regulating molecular transport and maintaining cell viability and biofunctionality. Herein, we report the construction of covalent organic framework (COF) mesoporous shells for single-cell nanoencapsulation, providing selective permeability and comprehensive protection for living microbial cells. The COF shells ensure nutrient uptake while blocking large harmful molecules and UV-C radiation, thereby preserving cell viability and metabolic activity. Integration of such crystalline porous shells with genetically modified cell factories for metabolic production is further investigated, revealing no adverse effects, as demonstrated by riboflavin production. Moreover, the COF shell effectively shields cells, ensuring efficient bioproduction even after being treated under harsh conditions. This versatile encapsulation approach is applicable for different cell types, providing a robust platform for cell surface engineering.
Collapse
|
|
1 |
|
9
|
Yang S, Youn W, Rheem HB, Han SY, Kim N, Han S, Schattling P, Städler B, Choi IS. Construction of Liposome-Based Extracellular Artificial Organelles on Individual Living Cells. Angew Chem Int Ed Engl 2025; 64:e202415823. [PMID: 39233597 DOI: 10.1002/anie.202415823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Integration of living cells with extrinsic functional entities gives rise to bioaugmented nanobiohybrids, which hold tremendous potential across diverse fields such as cell therapy, biocatalysis, and cell robotics. This study presents a biocompatible method for incorporating multilayered functional liposomes onto the cell surface, creating extracellular artificial organelles or exorganelles. The introduction of various extrinsic functionalities to cells is achieved without comprising their viabilities. The integration of extrinsic enzymatic reactions is exemplified through the cascade reaction involving glucose oxidase and horseradish peroxidase. Furthermore, our protocol offers the design flexibility to customize liposome compositions, thereby providing effective cell modification. The versatility of the liposome-based exorganelle approach establishes an advanced chemical tool, empowering cells with novel functionalities that surpass or are complementary to their innate capabilities.
Collapse
|
|
1 |
|