1
|
Jung C, Park J, Lim KH, Park S, Heo J, Her N, Oh J, Yun S, Yoon Y. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. JOURNAL OF HAZARDOUS MATERIALS 2013; 263 Pt 2:702-10. [PMID: 24231319 DOI: 10.1016/j.jhazmat.2013.10.033] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/14/2013] [Accepted: 10/17/2013] [Indexed: 05/12/2023]
Abstract
Chemically activated biochar produced under oxygenated (O-biochar) and oxygen-free (N-biochar) conditions were characterized and the adsorption of endocrine disrupting compounds (EDCs): bisphenol A (BPA), atrazine (ATR), 17 α-ethinylestradiol (EE2), and pharmaceutical active compounds (PhACs); sulfamethoxazole (SMX), carbamazepine (CBM), diclofenac (DCF), ibuprofen (IBP) on both biochars and commercialized powdered activated carbon (PAC) were investigated. Characteristic analysis of adsorbents by solid-state nuclear magnetic resonance (NMR) was conducted to determine better understanding about the EDCs/PhACs adsorption. N-biochar consisted of higher polarity moieties with more alkyl (0-45 ppm), methoxyl (45-63 ppm), O-alkyl (63-108 ppm), and carboxyl carbon (165-187 ppm) content than other adsorbents, while aromaticity of O-biochar was higher than that of N-biochar. O-biochar was composed mostly of aromatic moieties, with low H/C and O/C ratios compared to the highly polarized N-biochar that contained diverse polar functional groups. The higher surface area and pore volume of N-biochar resulted in higher adsorption capacity toward EDCs/PhACs along with atomic-level molecular structural property than O-biochar and PAC. N-biochar had a highest adsorption capacity of all chemicals, suggesting that N-biochar derived from loblolly pine chip is a promising sorbent for agricultural and environmental applications. The adsorption of pH-sensitive dissociable SMX, DCF, IBP, and BPA varied and the order of adsorption capacity was correlated with the hydrophobicity (Kow) of adsorbates throughout the all adsorbents, whereas adsorption of non-ionizable CBM, ATR, and EE2 in varied pH allowed adsorbents to interact with hydrophobic property of adsorbates steadily throughout the study.
Collapse
|
|
12 |
158 |
2
|
Roghair M, Liu Y, Strik DPBTB, Weusthuis RA, Bruins ME, Buisman CJN. Development of an Effective Chain Elongation Process From Acidified Food Waste and Ethanol Into n-Caproate. Front Bioeng Biotechnol 2018; 6:50. [PMID: 29755978 PMCID: PMC5934429 DOI: 10.3389/fbioe.2018.00050] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/13/2018] [Indexed: 01/10/2023] Open
Abstract
Introduction: Medium chain fatty acids (MCFAs), such as n-caproate, are potential valuable platform chemicals. MCFAs can be produced from low-grade organic residues by anaerobic reactor microbiomes through two subsequent biological processes: hydrolysis combined with acidogenesis and chain elongation. Continuous chain elongation with organic residues becomes effective when the targeted MCFA(s) are produced at high concentrations and rates, while excessive ethanol oxidation and base consumption are limited. The objective of this study was to develop an effective continuous chain elongation process with hydrolyzed and acidified food waste and additional ethanol. Results: We fed acidified food waste (AFW) and ethanol to an anaerobic reactor while operating the reactor at long (4 d) and at short (1 d) hydraulic retention time (HRT). At long HRT, n-caproate was continuously produced (5.5 g/L/d) at an average concentration of 23.4 g/L. The highest n-caproate concentration was 25.7 g/L which is the highest reported n-caproate concentration in a chain elongation process to date. Compared to short HRT (7.1 g/L n-caproate at 5.6 g/L/d), long HRT resulted in 6.2 times less excessive ethanol oxidation. This led to a two times lower ethanol consumption and a two times lower base consumption per produced MCFA at long HRT compared to short HRT. Conclusions: Chain elongation from AFW and ethanol is more effective at long HRT than at short HRT not only because it results in a higher concentration of MCFAs but also because it leads to a more efficient use of ethanol and base. The HRT did not influence the n-caproate production rate. The obtained n-caproate concentration is more than twice as high as the maximum solubility of n-caproic acid in water which is beneficial for its separation from the fermentation broth. This study does not only set the record on the highest n-caproate concentration observed in a chain elongation process to date, it notably demonstrates that such high concentrations can be obtained from AFW under practical circumstances in a continuous process.
Collapse
|
Journal Article |
7 |
60 |
3
|
Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J Chromatogr A 2013; 1313:78-95. [PMID: 23899380 DOI: 10.1016/j.chroma.2013.07.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/25/2013] [Accepted: 07/11/2013] [Indexed: 12/11/2022]
Abstract
Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided.
Collapse
|
Review |
12 |
57 |
4
|
Barbosa MR, Sampaio IH, Teodoro BG, Sousa TA, Zoppi CC, Queiroz AL, Passos MA, Alberici LC, Teixeira FR, Manfiolli AO, Batista TM, Cappelli APG, Reis RI, Frasson D, Kettelhut IC, Parreiras-e-Silva LT, Costa-Neto CM, Carneiro EM, Curi R, Silveira LR. Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: effect of catalase overexpression. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1591-604. [PMID: 23643711 DOI: 10.1016/j.bbadis.2013.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/29/2013] [Accepted: 04/11/2013] [Indexed: 01/06/2023]
Abstract
The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
30 |
5
|
Rachtanapun P, Jantrawut P, Klunklin W, Jantanasakulwong K, Phimolsiripol Y, Leksawasdi N, Seesuriyachan P, Chaiyaso T, Insomphun C, Phongthai S, Sommano SR, Punyodom W, Reungsang A, Ngo TMP. Carboxymethyl Bacterial Cellulose from Nata de Coco: Effects of NaOH. Polymers (Basel) 2021; 13:348. [PMID: 33499064 PMCID: PMC7865890 DOI: 10.3390/polym13030348] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial cellulose from nata de coco was prepared from the fermentation of coconut juice with Acetobacter xylinum for 10 days at room temperature under sterile conditions. Carboxymethyl cellulose (CMC) was transformed from the bacterial cellulose from the nata de coco by carboxymethylation using different concentrations of sodium hydroxide (NaOH) and monochloroacetic acid (MCA) in an isopropyl (IPA) medium. The effects of various NaOH concentrations on the degree of substitution (DS), chemical structure, viscosity, color, crystallinity, morphology and the thermal properties of carboxymethyl bacterial cellulose powder from nata de coco (CMCn) were evaluated. In the carboxymethylation process, the optimal condition resulted from NaOH amount of 30 g/100 mL, as this provided the highest DS value (0.92). The crystallinity of CMCn declined after synthesis but seemed to be the same in each condition. The mechanical properties (tensile strength and percentage of elongation at break), water vapor permeability (WVP) and morphology of CMCn films obtained from CMCn synthesis using different NaOH concentrations were investigated. The tensile strength of CMCn film synthesized with a NaOH concentration of 30 g/100 mL increased, however it declined when the amount of NaOH concentration was too high. This result correlated with the DS value. The highest percent elongation at break was obtained from CMCn films synthesized with 50 g/100 mL NaOH, whereas the elongation at break decreased when NaOH concentration increased to 60 g/100 mL.
Collapse
|
research-article |
4 |
29 |
6
|
Sengyoku H, Tsuchiya T, Obata T, Doi R, Hashimoto Y, Ishii M, Sakai H, Matsuo N, Taniguchi D, Suematsu T, Lawn M, Matsumoto K, Miyazaki T, Nagayasu T. Sodium hydroxide based non-detergent decellularizing solution for rat lung. Organogenesis 2018; 14:94-106. [PMID: 29889592 PMCID: PMC6150056 DOI: 10.1080/15476278.2018.1462432] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lung transplantation is the last option for the treatment of end stage chronic lung disorders. Because the shortage of donor lung organs represents the main hurdle, lung regeneration has been considered to overcome this hurdle. Recellularization of decellularized organ scaffold is a promising option for organ regeneration. Although detergents are ordinarily used for decellularization, other approaches are possible. Here we used high alkaline (pH12) sodium hydroxide (NaOH)-PBS solution without detergents for lung decellularization and compared the efficacy on DNA elimination and ECM preservation with detergent based decellularization solutions CHAPS and SDS. Immunohistochemical image analysis showed that cell components were removed by NaOH solution as well as other detergents. A Collagen and GAG assay showed that the collagen reduction of the NaOH group was comparable to that of the CHAPS and SDS groups. However, DNA reduction was more significant in the NaOH group than in other groups (p < 0.0001). The recellularization of HUVEC revealed cell attachment was not inferior to that of the SDS group. Ex vivo functional analysis showed 100% oxygen ventilation increased oxygen partial pressure as artificial hemoglobin vesicle-PBS solution passed through regenerated lungs in the SDS or NaOH group. It was concluded that the NaOH-PBS based decellularization solution was comparable to ordinal decellularizaton solutions and competitive in cost effectiveness and residues in the decellularized scaffold negligible, thus providing another potential option to detergent for future clinical usage.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
23 |
7
|
Zhou Q, Zhang H, Zhou Y, Yu Z, Yuan H, Feng B, van Rijn P, Zhang Y. Alkali-Mediated Miscibility of Gelatin/Polycaprolactone for Electrospinning Homogeneous Composite Nanofibers for Tissue Scaffolding. Macromol Biosci 2017; 17. [PMID: 29068545 DOI: 10.1002/mabi.201700268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/12/2017] [Indexed: 11/12/2022]
Abstract
Electrospun natural-synthetic composite nanofibers, which possess favorable biological and mechanical properties, have gained widespread attention in tissue engineering. However, the development of biomimetic nanofibers of hybrids remains a huge challenge due to phase separation of the polymer blends. Here, aqueous sodium hydroxide (NaOH) solution is proposed to modulate the miscibility of a representative natural-synthetic hybrid of gelatin (GT) and polycaprolactone (PCL) for electrospinning homogeneous composite nanofibers. Alkali-doped GT/PCL solutions and nanofibers examined at macroscopic, microscopic, and internal molecular levels demonstrate appropriate miscibility of GT and PCL after introducing the alkali dopant. Particularly, homogeneous GT/PCL nanofibers with smooth surface and uniform diameter are obtained when aqueous NaOH solution with a concentration of 10 m is used. The fibers become more hydrophilic and possess improved mechanical properties both in dry and wet conditions. Moreover, biocompatibility experiments show that stem cells adhere to and proliferate better on the alkali-modified nanofibers than the untreated one. This study provides a facile and effective approach to solve the phase separation issue of the synthetic-natural hybrid GT/PCL and establishes a correlation of compositionally and morphologically homogeneous composite nanofibers with respect to cell responses.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
21 |
8
|
Garzon-Sanabria AJ, Ramirez-Caballero SS, Moss FEP, Nikolov ZL. Effect of algogenic organic matter (AOM) and sodium chloride on Nannochloropsis salina flocculation efficiency. BIORESOURCE TECHNOLOGY 2013; 143:231-7. [PMID: 23796606 DOI: 10.1016/j.biortech.2013.05.125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 05/06/2023]
Abstract
This study evaluates the effect of polymer molecular weight and charge density, algogenic organic matter (AOM), and salt concentration on harvesting efficiency of marine microalgae. Aluminum chloride (AlCl3), chitosan, and five synthetic cationic polymers of different molecular weights and charge density levels were used as flocculation agents. Polymer flocculation of marine microalgae was most efficient when using the highest charge density polymer (FO4990). The flocculant dosage irrespectively of the agent chemistry and charge density was affected by the amount of AOM secreted into the culture media. The presence of AOM increased the amount of required flocculant 7-fold when using synthetic cationic polymers; 10-fold with chitosan; and ~3-fold with AlCl3. Salt concentration of 5 or 35 g/L NaCl alone did not significantly affect removal efficiency, indicating that AOM were the main cause for the increased flocculant dosage requirement. The synthetic cationic polymer (FO4990) was the least expensive flocculation agent.
Collapse
|
|
12 |
19 |
9
|
Sahoo R, Sasmal AK, Ray C, Dutta S, Pal A, Pal T. Suitable Morphology Makes CoSn(OH)6 Nanostructure a Superior Electrochemical Pseudocapacitor. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17987-98. [PMID: 27348764 DOI: 10.1021/acsami.6b02568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Morphology of a material with different facet, edge, kink, etc., generally influences the rate of a catalytic reaction.1,2 Herein, we account for the importance of altered morphology of a nanomaterial for a supercapacitor device and employed CoSn(OH)6 as an electrode material. Suitable fabrication of a stable aqueous asymmetric supercapacitor (AAS) using metal hydroxide as positive electrode can be beneficial if the high energy density is derived without sacrificing the power density. Here we have synthesized an uncommon hierarchical mesoporous nanostructured (HNS) CoSn(OH)6 to fabricate a pseudocapacitor. In this endeavor, NH3 is found to be a well-suited hydrolyzing agent for the synthesis.3 Serendipitously, HNS was transformed into favored cubic nanostructure (CNS) in NaOH solution. In solution, NaOH acts as a structure directing as well as an etching agent. Both the samples (HNS & CNS) were used as pseudocapacitor electrodes in KOH electrolyte independently, which is reported for the first time. The HNS exhibits very high specific capacitance value (2545 F/g at 2.5 A/g specific current) with better cyclic durability over CNS sample (851 F/g at 2.5 A/g specific current). To examine the real cell application, we used HNS sample as the positive electrode material with the activated carbon (AC) as the negative electrode material for the development of an aqueous asymmetric supercapacitor (AAS). The as-fabricated AAS exhibited very high specific capacitance value of 713 F/g at a specific current of 1.5 A/g and retained 92% specific capacitance value even after 10 000 charge-discharge cycles. A maximum energy density of 63.5 Wh kg(-1) and a maximum power density of 5277 W kg(-1) were ascertained from the as-fabricated AAS, HNS CoSn(OH)6//AC.
Collapse
|
|
9 |
18 |
10
|
Eibl C, Munoz L, Tomassoli I, Stokes C, Papke RL, Gündisch D. The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor ligands. Part 2: carboxamide derivatives with different spacer motifs. Bioorg Med Chem 2013; 21:7309-29. [PMID: 24145137 PMCID: PMC4519236 DOI: 10.1016/j.bmc.2013.09.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/15/2013] [Accepted: 09/24/2013] [Indexed: 11/30/2022]
Abstract
3,7-Diazabicyclo[3.3.1]nonane (bispidine) based nicotinic acetylcholine receptor (nAChR) ligands have been synthesized and evaluated for nAChRs interaction. Diverse spacer motifs were incorporated between the hydrogen bond acceptor (HBA) part and a variety of substituted (hetero)aryl moieties. Bispidine carboxamides bearing spacer motifs often showed high affinity in the low nanomolar range and selectivity for the α4β2(∗) nAChR. Compounds 15, 25, and 47 with Ki values of about 1 nM displayed the highest affinities for α4β2(∗) nAChR. All evaluated compounds are partial agonists or antagonists at α4β2(∗), with reduced or no effects on α3β4(∗) with the exception of compound 15 (agonist), and reduced or no effect at α7 and muscle subtypes.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
15 |
11
|
Adsorption of Deoxynivalenol (DON) from Corn Steep Liquor (CSL) by the Microsphere Adsorbent SA/CMC Loaded with Calcium. Toxins (Basel) 2020; 12:toxins12040208. [PMID: 32218143 PMCID: PMC7232427 DOI: 10.3390/toxins12040208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
The occurrence of deoxynivalenol (DON) in animal feed is a serious issue for the livestock industry. Approaches using mycotoxin adsorbents are key to decreasing mycotoxin carryover from contaminated feed to animals. In this paper, a novel functional microsphere adsorbent comprising an alginate/carboxymethyl cellulose sodium composite loaded with calcium (SA/CMC-Ca) was prepared by an emulsification process to adsorb DON from polluted corn steep liquor (CSL) containing DON at a concentration of 3.60 μg/mL. Batch experiments were conducted under different experimental conditions: CSL volumes, reaction times, desorption times, and microsphere recyclability. Results showed that 5 g of microspheres reacted with 5 mL of DON-polluted CSL for 5 min, the microspheres can be recycled 155 times, and the maximum DON adsorption for the microspheres was 2.34 μg/mL. During recycling, microspheres were regenerated by deionized water every time; after the microspheres were cleaned, DON in the deionized water was degraded by sodium hydroxide (NaOH) at 70 °C for 1 h at pH 12. The mechanism for physical adsorption and hydrogen bonding was analyzed by scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR). To the best of our knowledge, this is the first report showing that the microsphere adsorbent SA/CMC-Ca adsorbs DON. Therefore, we suggest that using microsphere absorbents would be a possible way to address DON-contaminated CSL issues in animal feed.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
12 |
12
|
Eibl C, Tomassoli I, Munoz L, Stokes C, Papke RL, Gündisch D. The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor (nAChR) ligands. Part 1: the influence of different hydrogen bond acceptor systems on alkyl and (hetero)aryl substituents. Bioorg Med Chem 2013; 21:7283-308. [PMID: 24156938 PMCID: PMC4519239 DOI: 10.1016/j.bmc.2013.09.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/15/2013] [Accepted: 09/24/2013] [Indexed: 12/21/2022]
Abstract
3,7-Diazabicyclo[3.3.1]nonane is a naturally occurring scaffold interacting with nicotinic acetylcholine receptors (nAChRs). When one nitrogen of the 3,7-diazabicyclo[3.3.1]nonane scaffold was implemented in a carboxamide motif displaying a hydrogen bond acceptor (HBA) functionality, compounds with higher affinities and subtype selectivity for α4β2(∗) were obtained. The nature of the HBA system (carboxamide, sulfonamide, urea) had a strong impact on nAChR interaction. High affinity ligands for α4β2(∗) possessed small alkyl chains, small un-substituted hetero-aryl groups or para-substituted phenyl ring systems along with a carboxamide group. Electrophysiological responses of selected 3,7-diazabicyclo[3.3.1]nonane derivatives to Xenopus oocytes expressing various nAChR subtypes showed diverse activation profiles. Compounds with strongest agonistic profiles were obtained with small alkyl groups whereas a shift to partial agonism/antagonism was observed for aryl substituents.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
11 |
13
|
Combining Autoclaving with Mild Alkaline Solution as a Pretreatment Technique to Enhance Glucose Recovery from the Invasive Weed Chloris barbata. Biomolecules 2019; 9:biom9040120. [PMID: 30925658 PMCID: PMC6523731 DOI: 10.3390/biom9040120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 01/10/2023] Open
Abstract
Developing an optimum pretreatment condition to enhance glucose recovery assessed the potential of Chloris barbata, which is a common invasive weed in Thailand, as a feedstock for bioethanol production. Chloris barbata was exposed to autoclave-assisted alkaline pretreatment by using different sodium hydroxide (NaOH) concentrations (1% to 4%) and heat intensities (110 °C to 130 °C) that were dissipated from autoclaving. The optimum condition for pretreatment was determined to be 2% NaOH at 110 °C for 60 min. At this condition, maximum hydrolysis efficiency (90.0%) and glucose recovery (30.7%), as compared to those of raw C. barbata (15.15% and 6.20%, respectively), were observed. Evaluation of glucose production from 1000 g of C. barbata based on material balance analysis revealed an estimated yield of 304 g after pretreatment at the optimum condition when compared to that of raw C. barbata (61 g), an increase of five-fold. Structural analysis by the scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed the disruption of the intact structure of C. barbata and an increase in the cellulose crystallinity index (CrI), respectively. The results from this study demonstrate the efficiency of using C. barbata as a potential feedstock for bioethanol production.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
11 |
14
|
[Letter to the Editor] NaOH concentration and streptavidin bead type are key factors for optimal DNA aptamer strand separation and isolation. Biotechniques 2016; 61:114-6. [PMID: 27625204 DOI: 10.2144/000114449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/20/2016] [Indexed: 11/23/2022] Open
Abstract
Address correspondence to Geoffrey K. Kilili or Christine M. Karbiwnyk, Winchester Engineering and Analytical Center, US Food and Drug Administration, Winchester, MA, 01890. E-mail: Geoffrey.Kilili@fda.hhs.gov or Christine.Karbiwnyk@fda.hhs.gov.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
9 |
10 |
15
|
Li P, Lu P, Zhai Y, Li C, Chen T, Qing R, Zhang W. Low temperature SCR of NO with catalysts prepared by modified ACF loading Mn and Ce: effects of modification method. ENVIRONMENTAL TECHNOLOGY 2015; 36:2390-2400. [PMID: 25799366 DOI: 10.1080/09593330.2015.1031829] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Achievement of a higher NOx conversion ratio in selective catalytic reduction (SCR) at low temperature is challenging. In this work, pure activated carbon fibres (ACFs) were modified with different ratios of H2O (g), NaOH, CO2 and HNO3, respectively (named as modified ACF). The chemical and physical properties of modified ACFs were identified by Brunauer-Emmett-Teller, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy methods. The NOx conversion ratio of ACF was improved from 56.1% to 82.4% at 80°C after modification with 30% (mass ratio) NaOH. These modified ACFs were further loaded with the mixture of MnO2 and CeO2 in the form of metal salt solutions (named as Mn0.5Ce0.5O2/modified ACF). The NOx conversion ratio of 30% SHACF remained similar at 80°C but was increased from 60.0% to 98.5% at 360°C after loading with Mn and Ce, which showed the best performance in SCR of NOx at low temperature. It could be seen that ACF delivered higher performance in low temperature SCR after being modified with the aforementioned reactants and further loading with metals. Based on chemical and physical characterization and the performance of the catalysts, the reasons for different performances of these catalysts in low temperature SCR are discussed.
Collapse
|
|
10 |
9 |
16
|
Bipolar Membrane Electrodialysis for Sulfate Recycling in the Metallurgical Industries. MEMBRANES 2021; 11:membranes11090718. [PMID: 34564535 PMCID: PMC8468557 DOI: 10.3390/membranes11090718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/04/2022]
Abstract
Demand for nickel and cobalt sulfate is expected to increase due to the rapidly growing Li-battery industry needed for the electrification of automobiles. This has led to an increase in the production of sodium sulfate as a waste effluent that needs to be processed to meet discharge guidelines. Using bipolar membrane electrodialysis (BPED), acids and bases can be effectively produced from corresponding salts found in these waste effluents. However, the efficiency and environmental sustainability of the overall BPED process depends upon several factors, including the properties of the ion exchange membranes employed, effluent type, and temperature which affects the viscosity and conductivity of feed effluent, and the overpotentials. This work focuses on the recycling of Na2SO4 rich waste effluent, through a feed and bleed BPED process. A high ion-exchange capacity and ionic conductivity with excellent stability up to 41 °C is observed during the proposed BPED process, with this temperature increase also leading to improved current efficiency. Five and ten repeating units were tested to determine the effect on BPED stack performance, as well as the effect of temperature and current density on the stack voltage and current efficiency. Furthermore, the concentration and maximum purity (>96.5%) of the products were determined. Using the experimental data, both the capital expense (CAPEX) and operating expense (OPEX) for a theoretical plant capacity of 100 m3 h−1 of Na2SO4 at 110 g L−1 was calculated, yielding CAPEX values of 20 M EUR, and OPEX at 14.2 M EUR/year with a payback time of 11 years, however, the payback time is sensitive to chemical and electricity prices.
Collapse
|
|
4 |
9 |
17
|
Romero J, Agustí-Brisach C, Santa Bárbara AE, Cherifi F, Oliveira R, Roca LF, Moral J, Trapero A. Detection of latent infections caused by Colletotrichum sp. in olive fruit. J Appl Microbiol 2017; 124:209-219. [PMID: 29024331 DOI: 10.1111/jam.13610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/05/2017] [Accepted: 09/11/2017] [Indexed: 11/29/2022]
Abstract
AIMS To set up a practical method to detect latent infections of Colletotrichum sp., the causal agent of olive anthracnose, on olives before the onset of disease symptoms. METHODS AND RESULTS Freezing, sodium hydroxide (NaOH), ethanol and ethylene treatments were evaluated to detect latent infections on inoculated and naturally infected olive fruit by Colletotrichum sp. as non-hazardous alternatives to paraquat. Treatments were conducted using fruit of cultivars Arbequina and Hojiblanca. The disease incidence and T50 were calculated. Dipping in NaOH 0·05% solution and the paraquat method were the most effective treatments on both inoculated and naturally infected fruit, although the value of T50 was lower for the NaOH method than for the paraquat method in one of the experiments. Subsequently, the dipping time in NaOH 0·05% was evaluated. Longer dipping times in NaOH 0·05% were better than shorter ones in cultivar Arbequina, with 72 h being the most effective in cultivar Hojiblanca. CONCLUSIONS NaOH solution is a practical method to detect latent infections of Colletotrichum sp. on immature olive fruit. SIGNIFICANCE AND IMPACT OF THE STUDY This study is relevant because we set up a viable, non-hazardous alternative to paraquat to detect latent infections of Colletotrichum sp. using NaOH. The use of NaOH is a simple and eco-friendly tool that allows the determination of the level of latent infections by Colletotrichum in olives. Therefore, our method will be useful in decision-making processes for disease management before the appearance of the first visible symptoms.
Collapse
|
Journal Article |
8 |
8 |
18
|
Zhang J, Wang S, Li Y, Lu J, Chen S, Luo X. Supercritical water oxidation treatment of textile sludge. ENVIRONMENTAL TECHNOLOGY 2017; 38:1949-1960. [PMID: 27745007 DOI: 10.1080/09593330.2016.1242655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.
Collapse
|
|
8 |
7 |
19
|
Bhakta S, Dixit CK, Bist I, Jalil KA, Suib SL, Rusling JF. Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles. MATERIALS RESEARCH EXPRESS 2016; 3:075025. [PMID: 27606068 PMCID: PMC5010867 DOI: 10.1088/2053-1591/3/7/075025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ~60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ~3-fold higher silane can be used as efficient probes for biosensor applications.
Collapse
|
research-article |
9 |
7 |
20
|
Roblin NV, DeBari MK, Shefter SL, Iizuka E, Abbott RD. Development of a More Environmentally Friendly Silk Fibroin Scaffold for Soft Tissue Applications. J Funct Biomater 2023; 14:jfb14040230. [PMID: 37103320 PMCID: PMC10143335 DOI: 10.3390/jfb14040230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
A push for environmentally friendly approaches to biomaterials fabrication has emerged from growing conservational concerns in recent years. Different stages in silk fibroin scaffold production, including sodium carbonate (Na2CO3)-based degumming and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-based fabrication, have drawn attention for their associated environmental concerns. Environmentally friendly alternatives have been proposed for each processing stage; however, an integrated green fibroin scaffold approach has not been characterized or used for soft tissue applications. Here, we show that the combination of sodium hydroxide (NaOH) as a substitute degumming agent with the popular "aqueous-based" alternative silk fibroin gelation method yields fibroin scaffolds with comparable properties to traditional Na2CO3-degummed aqueous-based scaffolds. The more environmentally friendly scaffolds were found to have comparable protein structure, morphology, compressive modulus, and degradation kinetics, with increased porosity and cell seeding density relative to traditional scaffolds. Human adipose-derived stem cells showed high viability after three days of culture while seeded in each scaffold type, with uniform cell attachment to pore walls. Adipocytes from human whole adipose tissue seeded into scaffolds were found to have similar levels of lipolytic and metabolic function between conditions, in addition to a healthy unilocular morphology. Results indicate that our more environmentally friendly methodology for silk scaffold production is a viable alternative and well suited to soft tissue applications.
Collapse
|
|
2 |
6 |
21
|
Nazir S, Zaka M, Adil M, Abbasi BH, Hano C. Synthesis, characterisation and bactericidal effect of ZnO nanoparticles via chemical and bio-assisted ( Silybum marianum in vitro plantlets and callus extract) methods: a comparative study. IET Nanobiotechnol 2018; 12:604-608. [PMID: 30095420 PMCID: PMC8676179 DOI: 10.1049/iet-nbt.2017.0067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 12/22/2017] [Accepted: 01/25/2018] [Indexed: 11/09/2023] Open
Abstract
Currently, the evolution of green chemistry in the synthesis of nanoparticles (NPs) with the usage of plants has captivated a great response. In this study, in vitro plantlets and callus of Silybum marianum were exploited as a stabilising agent for the synthesis of zinc oxide (ZnO) NPs using zinc acetate and sodium hydroxide as a substitute for chemical method. The contemporary investigation defines the synthesis of ZnO NPs prepared by chemical and bio-extract-assisted methods. Characterisation techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and energy dispersive X-ray were used to confirm the synthesis. Although chemical and bio-assisted methods are suitable choices for NPs synthesis, the bio-assisted green assembly is advantageous due to superior stability. Moreover, this report describes the antibacterial activity of the synthesised NPs against standard strains of Klebsiella pneumonia and Bacillus subtilis.
Collapse
|
Comparative Study |
7 |
6 |
22
|
Cuellar-Flores M, Acosta-Torres LS, Martínez-Alvarez O, Sánchez-Trocino B, de la Fuente-Hernández J, Garcia-Garduño R, Garcia-Contreras R. Effects of alkaline treatment for fibroblastic adhesion on titanium. Dent Res J (Isfahan) 2017; 13:473-477. [PMID: 28182066 PMCID: PMC5256009 DOI: 10.4103/1735-3327.197043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: The surface energy of titanium (Ti) implants is very important when determining hydrophilicity or hydrophobicity, which is vital in osseointegration. The purpose of this study was to determine how Ti plates with an alkaline treatment (NaOH) affect the adhesion and proliferation of human periodontal ligament fibroblasts (HPLF). Materials and Methods: In vitro experimental study was carried out. Type 1 commercially pure Ti plates were analyzed with atomic force microscopy to evaluate surface roughness. The plates were treated ultrasonically with NaOH at 5 M (pH 13.7) for 45 s. HPLF previously established from periodontal tissue was inoculated on the treated Ti plates. The adhered and proliferated viable cell numbers were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method for 60 min and 24 h, respectively. The data were analyzed using Kruskal–Wallis tests and multiple comparisons of the Mann–Whitney U-test,P value was fixed at 0.05. Results: The mean roughness values equaled 0.04 μm with an almost flat surface and some grooves. The alkaline treatment of Ti plates caused significantly (P < 0.05) more pronounced HPLF adhesion and proliferation compared to untreated Ti plates. Conclusion: The treatment of Ti plates with NaOH enhances cell adhesion and the proliferation of HPLF cells. Clinically, the alkaline treatment of Ti-based implants could be an option to improve and accelerate osseointegration.
Collapse
|
|
8 |
5 |
23
|
Aggarwal P, Baker J, Boyd MT, Coyle S, Probert C, Chapman EA. Optimisation of Urine Sample Preparation for Headspace-Solid Phase Microextraction Gas Chromatography-Mass Spectrometry: Altering Sample pH, Sulphuric Acid Concentration and Phase Ratio. Metabolites 2020; 10:metabo10120482. [PMID: 33255680 PMCID: PMC7760603 DOI: 10.3390/metabo10120482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) can be used to measure volatile organic compounds (VOCs) in human urine. However, there is no widely adopted standardised protocol for the preparation of urine samples for analysis resulting in an inability to compare studies reliably between laboratories. This paper investigated the effect of altering urine sample pH, volume, and vial size for optimising detection of VOCs when using HS-SPME-GC-MS. This is the first, direct comparison of H2SO4, HCl, and NaOH as treatment techniques prior to HS-SPME-GC-MS analysis. Altering urine sample pH indicates that H2SO4 is more effective at optimising detection of VOCs than HCl or NaOH. H2SO4 resulted in a significantly larger mean number of VOCs being identified per sample (on average, 33.5 VOCs to 24.3 in HCl or 12.2 in NaOH treated urine) and more unique VOCs, produced a more diverse range of classes of VOCs, and led to less HS-SPME-GC-MS degradation. We propose that adding 0.2 mL of 2.5 M H2SO4 to 1 mL of urine within a 10 mL headspace vial is the optimal sample preparation prior to HS-SPME-GC-MS analysis. We hope the use of our optimised method for urinary HS-SPME-GC-MS analysis will enhance our understanding of human disease and bolster metabolic biomarker identification.
Collapse
|
|
5 |
5 |
24
|
Day RC, Bradberry SM, Sandilands EA, Thomas SHL, Thompson JP, Vale JA. Toxicity resulting from exposure to oven cleaners as reported to the UK National Poisons Information Service (NPIS) from 2009 to 2015. Clin Toxicol (Phila) 2017; 55:645-651. [PMID: 28443378 DOI: 10.1080/15563650.2017.1306070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Oven cleaning products contain corrosive substances, typically sodium or potassium hydroxide. OBJECTIVE To determine the reported toxicity from exposure to oven cleaning products. METHODS Telephone enquiries to the UK National Poisons Information Service regarding oven cleaning products were analysed retrospectively for the period January 2009 to December 2015. RESULTS There were 796 enquiries relating to 780 patients. Ninety-six percent of the products involved in the reported exposures contained sodium hydroxide and/or potassium hydroxide. Ingestion alone (n = 285) or skin contact alone (n = 208) accounted for the majority of cases; inhalation alone (n = 101), eye contact alone (n = 97), and multiple routes of exposure (n = 89) accounted for the remainder. Ninety-five percent of patients exposed by inhalation, 94% exposed dermally and 85% reporting eye exposure, developed features of toxicity. Patients exposed by multiple routes developed symptoms in 70% of cases. Only 103 of the 285 patients ingested oven cleaner directly, whereas 182 patients ingested food they considered to have been contaminated with oven cleaner. In 100 of the 103 direct ingestions where the features and World Health Organisation/International Programme on Chemical Safety/European Commission/European Association of Poison Centres and Clinical Toxicologists Poisoning Severity Score were known, 56 reported symptoms which were minor in 51 cases. The most common features following ingestion were vomiting (n = 26), abdominal pain (n = 22) or pharyngitis (n = 15). Skin burns (n = 91) predominantly involving the hands or arms, occurred in 44% of dermal exposures. Following inhalation, patients frequently developed respiratory features (n = 52) including coughing and chest pain/tightness. Eye pain (n = 43) and conjunctivitis (n = 33) commonly occurred following ocular exposure. CONCLUSIONS Most (71%) patients exposed to an oven cleaner irrespective of the route of exposure developed features of toxicity, though in most cases only minor features developed; moderate or severe features ensued in ∼4%. Those patients exposed dermally, ophthalmically or by inhalation developed features more frequently (≥85%) than those who ingested a product directly (56%).
Collapse
|
Journal Article |
8 |
5 |
25
|
Emoto Y, Yoshizawa K, Shikata N, Tsubura A, Nagasaki Y. Autopsy results of a case of ingestion of sodium hydroxide solution. J Toxicol Pathol 2015; 29:45-7. [PMID: 26989301 PMCID: PMC4766079 DOI: 10.1293/tox.2015-0049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/29/2015] [Indexed: 11/19/2022] Open
Abstract
Sodium hydroxide is a strongly corrosive alkali. We describe herein a case of suicide by ingestion of sodium hydroxide. A man in his 80s was found dead with a mug and a bottle of caustic soda. Macroscopically, liquefaction and/or disappearance of esophagus, trachea and lung tissue and a grayish discoloration of the mucosa of the stomach were seen along with blackish brown coloration of the skin, mouth, and oral cavity. The contents of the gastrointestinal tract showed a pH level of 7-8 on pH indicator strips. Histopathologically, liquefactive necrosis of remnant lung tissue and the stomach were seen. As biological reactions such as vasodilatation and inflammation were not detected in these organs, only a short number of hours must have passed between ingestion and death. This human case provides valuable information concerning the direct irritation induced by systemic exposure to corrosive substances.
Collapse
|
Case Reports |
10 |
4 |