1
|
Choosang J, Numnuam A, Thavarungkul P, Kanatharana P, Radu T, Ullah S, Radu A. Simultaneous Detection of Ammonium and Nitrate in Environmental Samples Using on Ion-Selective Electrode and Comparison with Portable Colorimetric Assays. SENSORS 2018; 18:s18103555. [PMID: 30347779 PMCID: PMC6210283 DOI: 10.3390/s18103555] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022]
Abstract
Simple, robust, and low-cost nitrate- and ammonium-selective electrodes were made using substrate prepared from household materials. We explored phosphonium-based ILs and poly (methyl methacrylate)/poly(decyl methacrylate)(MMA-DMA) copolymer as matrix materials alternative to classical PVC-based membranes. IL-based membranes showed suitability only for nitrate-selective electrode exhibiting linear concentration range between 5.0 × 10-6 and 2.5 × 10-3 M with a detection limit of 5.5 × 10-7 M. On the other hand, MMA-DMA-based membranes showed suitability for both ammonium- and nitrate-selective electrodes, and were successfully applied to detect NO₃- and NH₄⁺ in water and soil samples. The proposed ISEs exhibited near-Nernstian potentiometric responses to NO₃- and NH₄⁺ with the linear range concentration between 5.0 × 10-5 and 5.0 × 10-2 M (LOD = 11.3 µM) and 5.0 × 10-6 and 1.0 × 10-3 M (LOD = 1.2 µM), respectively. The power of ISEs to detect NO₃- and NH₄⁺ in water and soils was tested by comparison with traditional, portable colorimetric techniques. Procedures required for analysis by each technique from the perspective of a non-trained person (e.g., farmer) and the convenience of the use on the field are compared and contrasted.
Collapse
|
Journal Article |
7 |
26 |
2
|
Zhu X, Wang K, Yan H, Liu C, Zhu X, Chen B. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:711-731. [PMID: 34985862 DOI: 10.1021/acs.est.1c03899] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Investigating environmental processes, especially those occurring in soils, calls for innovative and multidisciplinary technologies that can provide insights at the microscale. The heterogeneity, opacity, and dynamics make the soil a "black box" where interactions and processes are elusive. Recently, microfluidics has emerged as a powerful research platform and experimental tool which can create artificial soil micromodels, enabling exploring soil processes on a chip. Micro/nanofabricated microfluidic devices can mimic some of the key features of soil with highly controlled physical and chemical microenvironments at the scale of pores, aggregates, and microbes. The combination of various techniques makes microfluidics an integrated approach for observation, reaction, analysis, and characterization. In this review, we systematically summarize the emerging applications of microfluidic soil platforms, from investigating soil interfacial processes and soil microbial processes to soil analysis and high-throughput screening. We highlight how innovative microfluidic devices are used to provide new insights into soil processes, mechanisms, and effects at the microscale, which contribute to an integrated interrogation of the soil systems across different scales. Critical discussions of the practical limitations of microfluidic soil platforms and perspectives of future research directions are summarized. We envisage that microfluidics will represent the technological advances toward microscopic, controllable, and in situ soil research.
Collapse
|
Review |
3 |
22 |
3
|
Graber LK, Asher D, Anandaraja N, Bopp RF, Merrill K, Cullen MR, Luboga S, Trasande L. Childhood lead exposure after the phaseout of leaded gasoline: an ecological study of school-age children in Kampala, Uganda. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:884-9. [PMID: 20194080 PMCID: PMC2898868 DOI: 10.1289/ehp.0901768] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/01/2010] [Indexed: 05/02/2023]
Abstract
BACKGROUND Tetraethyl lead was phased out of gasoline in Uganda in 2005. Recent mitigation of an important source of lead exposure suggests examination and re-evaluation of the prevalence of childhood lead poisoning in this country. Ongoing concerns persist about exposure from the Kiteezi landfill in Kampala, the country's capital. OBJECTIVES We determined blood lead distributions among Kampala schoolchildren and identified risk factors for elevated blood lead levels (EBLLs; >or= 10 microg/dL). Analytical approach: Using a stratified, cross-sectional design, we obtained blood samples, questionnaire data, and soil and dust samples from the homes and schools of 163 4- to 8-year-old children representing communities with different risks of exposure. RESULTS The mean blood lead level (BLL) was 7.15 microg/dL; 20.5% of the children were found to have EBLL. Multivariable analysis found participants whose families owned fewer household items, ate canned food, or used the community water supply as their primary water source to have higher BLLs and likelihood of EBLLs. Distance < 0.5 mi from the landfill was the factor most strongly associated with increments in BLL (5.51 microg/dL, p < 0.0001) and likelihood of EBLL (OR = 4.71, p = 0.0093). Dust/soil lead was not significantly predictive of BLL/EBLL. CONCLUSIONS Lead poisoning remains highly prevalent among school-age children in Kampala. Confirmatory studies are needed, but further efforts are indicated to limit lead exposure from the landfill, whether through water contamination or through another mechanism. Although African nations are to be lauded for the removal of lead from gasoline, this study serves as a reminder that other sources of exposure to this potent neurotoxicant merit ongoing attention.
Collapse
|
research-article |
15 |
19 |
4
|
Constructing of Bacillus subtilis-Based Lux-Biosensors with the Use of Stress-Inducible Promoters. Int J Mol Sci 2021; 22:ijms22179571. [PMID: 34502476 PMCID: PMC8431380 DOI: 10.3390/ijms22179571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we present a new lux-biosensor based on Bacillus subtilis for detecting of DNA-tropic and oxidative stress-causing agents. Hybrid plasmids pNK-DinC, pNK-AlkA, and pNK-MrgA have been constructed, in which the Photorhabdus luminescens reporter genes luxABCDE are transcribed from the stress-inducible promoters of B. subtilis: the SOS promoter PdinC, the methylation-specific response promoter PalkA, and the oxidative stress promoter PmrgA. The luminescence of B. subtilis-based biosensors specifically increases in response to the appearance in the environment of such common toxicants as mitomycin C, methyl methanesulfonate, and H2O2. Comparison with Escherichia coli-based lux-biosensors, where the promoters PdinI, PalkA, and Pdps were used, showed generally similar characteristics. However, for B. subtilis PdinC, a higher response amplitude was observed, and for B. subtilis PalkA, on the contrary, both the amplitude and the range of detectable toxicant concentrations were decreased. B. subtilis PdinC and B. subtilis PmrgA showed increased sensitivity to the genotoxic effects of the 2,2'-bis(bicyclo [2.2.1] heptane) compound, which is a promising propellant, compared to E. coli-based lux-biosensors. The obtained biosensors are applicable for detection of toxicants introduced into soil. Such bacillary biosensors can be used to study the differences in the mechanisms of toxicity against Gram-positive and Gram-negative bacteria.
Collapse
|
|
4 |
11 |
5
|
Gaál G, da Silva TA, Gaál V, Hensel RC, Amaral LR, Rodrigues V, Riul A. 3D Printed e-Tongue. Front Chem 2018; 6:151. [PMID: 29774211 PMCID: PMC5943488 DOI: 10.3389/fchem.2018.00151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/16/2018] [Indexed: 11/25/2022] Open
Abstract
Nowadays, one of the biggest issues addressed to electronic sensor fabrication is the build-up of efficient electrodes as an alternative way to the expensive, complex and multistage processes required by traditional techniques. Printed electronics arises as an interesting alternative to fulfill this task due to the simplicity and speed to stamp electrodes on various surfaces. Within this context, the Fused Deposition Modeling 3D printing is an emerging, cost-effective and alternative technology to fabricate complex structures that potentiates several fields with more creative ideas and new materials for a rapid prototyping of devices. We show here the fabrication of interdigitated electrodes using a standard home-made CoreXY 3D printer using transparent and graphene-based PLA filaments. Macro 3D printed electrodes were easily assembled within 6 min with outstanding reproducibility. The electrodes were also functionalized with different nanostructured thin films via dip-coating Layer-by-Layer technique to develop a 3D printed e-tongue setup. As a proof of concept, the printed e-tongue was applied to soil analysis. A control soil sample was enriched with several macro-nutrients to the plants (N, P, K, S, Mg, and Ca) and the discrimination was done by electrical impedance spectroscopy of water solution of the soil samples. The data was analyzed by Principal Component Analysis and the 3D printed sensor distinguished clearly all enriched samples despite the complexity of the soil chemical composition. The 3D printed e-tongue successfully used in soil analysis encourages further investments in developing new sensory tools for precision agriculture and other fields exploiting the simplicity and flexibility offered by the 3D printing techniques.
Collapse
|
Journal Article |
7 |
10 |
6
|
Felföldi Z, Vidican R, Stoian V, Roman IA, Sestras AF, Rusu T, Sestras RE. Arbuscular Mycorrhizal Fungi and Fertilization Influence Yield, Growth and Root Colonization of Different Tomato Genotype. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131743. [PMID: 35807693 PMCID: PMC9269228 DOI: 10.3390/plants11131743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 05/27/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are beneficial for plant development and help absorb water and minerals from the soil. The symbiosis between these fungi and plant roots is extremely important and could limit crop dependence on fertilizers. The aim of this study was to evaluate the influence of AMF on tomatoes (Solanum lycopersicum L.), based on important agronomic traits of vegetative biomass, production, and fruits. The experiment was conducted in high tunnels, using 12 tomato genotypes under three different treatments: T1, control, without fertilizer and mycorrhizae colonization; T2, fertigation, without mycorrhizae colonization; and T3, arbuscular mycorrhizal fungi (AMF), seedling roots being inoculated with specialized soil-borne fungi. Plant growth, yield and fruit parameters indicated better results under mycorrhizal treatment. Root colonization with fungi varied significantly depending on the treatment and genotype, with a variation of 6.0-80.3% for frequency and 2.6-24.6% for intensity. For a majority of characteristics, the mycorrhization (T3) induced significant differences compared with the T1 and T2 treatments. In addition, AMF treatment induced a different response among the genotypes. Among the elements analyzed in the soil, significant differences were observed in phosphorous levels between planting the seedlings and after tomato harvesting and clearing of the plants. The results suggest that reducing fertilizers and promoting the symbiotic relationships of plants with soil microorganisms may have beneficial consequences for tomato crops.
Collapse
|
research-article |
3 |
9 |
7
|
Machine Learning Strategy for Soil Nutrients Prediction Using Spectroscopic Method. SENSORS 2021; 21:s21124208. [PMID: 34205281 PMCID: PMC8235466 DOI: 10.3390/s21124208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
The research presented in this paper is based on the hypothesis that the machine learning approach improves the accuracy of soil properties prediction. The correlations obtained in this research are important for understanding the overall strategy for soil properties prediction using optical spectroscopy sensors. Several research results have been stated and investigated. A comparison is made between six commonly used techniques: Random Forest, Decision Tree, Naïve Bayes, Support Vector Machine, Least-Square Support Vector Machine and Artificial Neural Network, showing that the best prediction accuracy cannot always be achieved by the most common and complicated method. The influence of the chosen category for nutrient characterization was investigated, indicating better prediction when a multi-component strategy was used. In contrast, the prediction of single-component soil properties was less accurate. In addition, the influence of category levels was not as significant as expected when choosing between 3-level, 5-level or 13-level nutrient characterization for some nutrients, which can be used for a more precise nutrient characterization strategy. A comparative analysis was performed between soil from a local farm with similar texture and soils collected from different locations in Slovenia, which gave a better prediction for a local farm. Finally, the influence of principal component analysis was validated using 5, 10, 20 and 50 first principal components, indicating the better performance of machine learning when using the 50 principal components.
Collapse
|
Journal Article |
4 |
8 |
8
|
Brahmi F, Lounis N, Mebarakou S, Guendouze N, Yalaoui-Guellal D, Madani K, Boulekbache-Makhlouf L, Duez P. Impact of Growth Sites on the Phenolic Contents and Antioxidant Activities of Three Algerian Mentha Species ( M. pulegium L., M. rotundifolia (L.) Huds., and M. spicata L.). Front Pharmacol 2022; 13:886337. [PMID: 35784700 PMCID: PMC9247617 DOI: 10.3389/fphar.2022.886337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Research studies about the effect of environmental agents on the accumulation of phenolic compounds in medicinal plants are required to establish a set of optimal growth conditions. Hence, in this work, we considered the impact of habitat types, soil composition, climatic factors, and altitude on the content of phenolics in Mentha species [M. pulegium L. (MP), M. rotundifolia (L.) Huds. (MR), and M. spicata L. (MS)] grown in different regions of Algeria. The phenolic contents and antioxidant activities were analyzed using spectrophotometric and HPTLC methods. The harvesting localities differ by their altitudes and climates, but their soils are quite similar, characterized by slight alkalinity, moderate humidity, no-salinity, and high levels in organic matter. Both the contents in total phenolics (TPC), total flavonoids (TFC), and rosmarinic acid (RAC), and the antioxidant activities of Mentha samples collected from these Algerian localities are affected by the geographical regions of origin. The samples of MS and MP from the Khemis-Miliana region showed the highest concentration in TPC (MS, 7853 ± 265 mg GAE/100 g DW; MP, 5250 ± 191 mg GAE/100 g DW), while in Chemini, the MR samples were the richest in these compounds (MR, 3568 ± 195 mg GAE/100 g DW). Otherwise, the MP (from Tichy), MR (from Tajboudjth), and MS (from Khemis-Miliana) specimens exhibited the highest levels of TFC and RAC. The antioxidant levels in a total activity test (reduction of phosphomolybdate) appear correlated with the total phenolic contents, but this was not the case for most of the important ROS-scavenging and iron-chelating capacities for which the quality of polyphenols is probably more important than their amounts. A principal component analysis (PCA) score plot indicates that all of the Mentha samples can be divided into four groups. These discriminated groups appear comparatively similar in phenolic contents and antioxidant activities. As for the harvest localities, the Mentha samples were divided into four groups in which the phenolic contents and antioxidant activities were comparatively equivalent.
Collapse
|
research-article |
3 |
6 |
9
|
Pechlivani EM, Papadimitriou A, Pemas S, Ntinas G, Tzovaras D. IoT-Based Agro-Toolbox for Soil Analysis and Environmental Monitoring. MICROMACHINES 2023; 14:1698. [PMID: 37763861 PMCID: PMC10534498 DOI: 10.3390/mi14091698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
The agricultural sector faces numerous challenges in ensuring optimal soil health and environmental conditions for sustainable crop production. Traditional soil analysis methods are often time-consuming and labor-intensive, and provide limited real-time data, making it challenging for farmers to make informed decisions. In recent years, Internet of Things (IoT) technology has emerged as a promising solution to address these challenges by enabling efficient and automated soil analysis and environmental monitoring. This paper presents a 3D-printed IoT-based Agro-toolbox, designed for comprehensive soil analysis and environmental monitoring in the agricultural domain. The toolbox integrates various sensors for both soil and environmental measurements. By deploying this tool across fields, farmers can continuously monitor key soil parameters, including pH levels, moisture content, and temperature. Additionally, environmental factors such as ambient temperature, humidity, intensity of visible light, and barometric pressure can be monitored to assess the overall health of agricultural ecosystems. To evaluate the effectiveness of the Agro-toolbox, a case study was conducted in an aquaponics floating system with rocket, and benchmarking was performed using commercial tools that integrate sensors for soil temperature, moisture, and pH levels, as well as for air temperature, humidity, and intensity of visible light. The results showed that the Agro-toolbox had an acceptable error percentage, and it can be useful for agricultural applications.
Collapse
|
research-article |
2 |
5 |
10
|
Frentiu T, Ponta M, Hategan R. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil. Chem Cent J 2013; 7:43. [PMID: 23452327 PMCID: PMC3771560 DOI: 10.1186/1752-153x-7-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. RESULTS The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. CONCLUSIONS High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry.
Collapse
|
research-article |
12 |
5 |
11
|
Morales-Ramos V, Escamilla-Prado E, Ruiz-Carbajal RA, Pérez-Sato JA, Velázquez-Morales JA, Servín-Juárez R. On the soil-bean-cup relationships in Coffea arabica L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5434-5441. [PMID: 32562262 DOI: 10.1002/jsfa.10594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/13/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The relationships between soil and coffee beans variables were evaluated and then the influence of bean composition on cup quality attributes was computed by means of relation studies. A total of 139 coffee and soil samples were collected directly from the same number of coffee plantations in Chiapas, Mexico. RESULTS In the elemental composition, only phosphorus, potassium, calcium, and copper in coffee beans had a significant (P < 0.05) relationship with the content of the same elements in soil. The level of macro- and microelements in the coffee bean affected some of the cup quality attributes, but variables such as texture, titratable acidity, and pH of water in soil had a major influence on those attributes. Caffeine, trigonelline, and 5-caffeoylquinic acid in green coffee beans also had a significant influence (P < 0.05) on the sensory attributes of the beverage. CONCLUSION The elemental composition of soil and coffee beans was important in explaining the cup quality attributes, but the most important variables influencing the sensory quality of coffee were altitude of plantations and moisture of coffee beans. © 2020 Society of Chemical Industry.
Collapse
|
|
5 |
4 |
12
|
Aguirre JL, Martín MT, González S, Peinado M. Effects and Economic Sustainability of Biochar Application on Corn Production in a Mediterranean Climate. Molecules 2021; 26:3313. [PMID: 34073001 PMCID: PMC8198257 DOI: 10.3390/molecules26113313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022] Open
Abstract
The effects of two types of biochar on corn production in the Mediterranean climate during the growing season were analyzed. The two types of biochar were obtained from pyrolysis of Pinus pinaster. B1 was fully pyrolyzed with 55.90% organic carbon, and B2 was medium pyrolyzed with 23.50% organic carbon. B1 and B2 were supplemented in the soil of 20 plots (1 m2) at a dose of 4 kg/m2. C1 and C2 (10 plots each) served as control plots. The plots were automatically irrigated and fertilizer was not applied. The B1-supplemented plots exhibited a significant 84.58% increase in dry corn production per square meter and a 93.16% increase in corn wet weight (p << 0.001). Corn production was no different between B2-supplemented, C1, and C2 plots (p > 0.01). The weight of cobs from B1-supplemented plots was 62.3%, which was significantly higher than that of cobs from C1 and C2 plots (p < 0.01). The grain weight increased significantly by 23% in B1-supplemented plots (p < 0.01) and there were no differences between B2-supplemented, C1, and C2 plots. At the end of the treatment, the soil of the B1-supplemented plots exhibited increased levels of sulfate, nitrate, magnesium, conductivity, and saturation percentage. Based on these results, the economic sustainability of this application in agriculture was studied at a standard price of €190 per ton of biochar. Amortization of this investment can be achieved in 5.52 years according to this cost. Considering the fertilizer cost savings of 50% and the water cost savings of 25%, the amortization can be achieved in 4.15 years. If the price of biochar could be reduced through the CO2 emission market at €30 per ton of non-emitted CO2, the amortization can be achieved in 2.80 years. Biochar markedly improves corn production in the Mediterranean climate. However, the amortization time must be further reduced, and enhanced production must be guaranteed over the years with long term field trials so that the product is marketable or other high value-added crops must be identified.
Collapse
|
research-article |
4 |
4 |
13
|
Fayose T, Thomas E, Radu T, Dillingham P, Ullah S, Radu A. Concurrent measurement of nitrate and ammonium in water and soil samples using ion-selective electrodes: Tackling sensitivity and precision issues. ANALYTICAL SCIENCE ADVANCES 2021; 2:279-288. [PMID: 38716159 PMCID: PMC10989628 DOI: 10.1002/ansa.202000124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2024]
Abstract
In this paper, we demonstrate the suitability, sensitivity, and precision of low-cost and easy-to-use ion-selective electrodes (ISEs) for concurrent detection of NH4 + and NO3 - in soil and water by technical and non-technical end-users to enable efficient soil and water management exposed to chronic reactive nitrogen loading. We developed a simplified methodology for sample preparation followed by the demonstration of an analytical methodology resulting in improvements of sensitivity and precision of ISEs. Herein, we compared and contrasted ISEs with traditional laboratory-based technique such as Flow Injection Analysis (FIA) and portable colorimetric assay followed by comparisons of linear regression and Bayesian nonlinear calibration approaches applied on both direct potentiometry and standard addition modes of analysis in terms of in-field applications and improvement of sensitivity and precision. The ISEs were validated for sensing on a range of ambient soil and water samples representing a range of NH4 + and NO3 - concentrations from pristine to excessive saturation conditions. Herein developed methodology showed excellent agreement with lab-based and portable analytical techniques while demonstrating improvements in precision and sensitivity analysis illustrated by a decrease in confidence intervals by 50-60%. We also demonstrated the utilization of the entire ISE response curve thus removing the biases originating from linear approximation which is often currently employed. Therefore, we show that ISEs are robust yet low cost and an easy to use technology that can enable high-frequency measurement of mineral N and help to improve our understanding of N transformation processes as influenced by soil management, fertilization, land use, and climate change.
Collapse
|
research-article |
4 |
3 |
14
|
Gunasekaran P, Immanuel David C, Shanmugam S, Ramanagul K, Rajendran R, Gothandapani V, Kannan VR, Prabhu J, Nandhakumar R. Positional Isomeric Symmetric Dipodal Receptors Dangled with Rotatable Binding Scaffolds: Fluorescent Sensing of Silver Ions and Sequential Detection of l-Histidine and Their Multifarious Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:802-814. [PMID: 36548786 DOI: 10.1021/acs.jafc.2c05823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Three simple dipodal artificial acyclic symmetric receptors, SDO, SDM, and SDP, driven by positional isomerism based on xylelene scaffolds were designed, synthesized, and characterized by 1H NMR, 13C NMR, and mass spectroscopy techniques. Probes SDO, SDM, and SDP demonstrated selective detection of Ag+ metal ions and amino acid l-histidine in a DMSO-H2O solution (1:1 v/v, HEPES 50 mM, pH = 7.4). The detection of Ag+ metal ions occurred in three ways: (i) inhibition of the photoinduced electron-transfer (PET) process, (ii) blueshifted fluorescence enhancement via the intramolecular charge-transfer (ICT) process, and (iii) restricted rotation of the dangling benzylic scaffold following coordination with a Ag+ metal ion. Job's plot analysis and quantum yields confirm the binding of probes to Ag+ in 1:1, 1:2, and 1:2 ratios with LODs and LOQs found to be 1.3 μM and 3.19 × 10-7 M, 6.40 × 10-7 and 2.44 × 10 -6 M, and 9.76 × 10-7 and 21.01 × 10-7 M, respectively. 1H NMR titration, HRMS, ESI-TOF, IR analysis, and theoretical DFT investigations were also used to establish the binding stoichiometry. Furthermore, the probes were utilized for the detection of Ag+ ions in water samples, food samples, soil analysis, and bacterial imaging in Escherichia coli cells and a molecular logic gate was constructed.
Collapse
|
|
2 |
3 |
15
|
Skaggs CS, Logue BA. Ultratrace analysis of atrazine in soil using Ice Concentration Linked with Extractive Stirrer and High Performance Liquid Chromatography-Tandem Mass Spectrometry. J Chromatogr A 2020; 1635:461753. [PMID: 33285417 DOI: 10.1016/j.chroma.2020.461753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/19/2022]
Abstract
Atrazine is a widely-used pesticide with a relatively long half-life in the environment. This leads to persistent soil contamination with the potential of migration to ground and surface waters. Analysis of atrazine in soil is difficult due to the inherent complexity of soil as a sample matrix. Moreover, the moderate hydrophobicity of atrazine makes it difficult to extract into typical sorbent phases during sample preparation. Therefore, a method for the ultratrace determination of atrazine in soil using Ice Concentration Linked with Extractive Stirrer (ICECLES) and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed to address these issues. For the method, soil samples (10 g) were initially extracted with methanol:water (8:2, v:v), followed by solvent exchange to 100% water. The samples then underwent ICECLES with back-extraction into 100% methanol prior to HPLC-MS/MS analysis. The ICECLES-HPLC-MS/MS method produced a wide linear range of 10 to 1000 ng/kg, featured excellent limits of quantification and detection of 10 and 5 ng/kg, respectively, and good accuracy (100 ± 12%) and precision (≤9.6% relative standard deviation). This method was tested on field soil samples and provided ultratrace detection of atrazine. With this method, previously unachievable low parts per trillion (ppt) detection of atrazine in soil is now possible.
Collapse
|
Journal Article |
5 |
2 |
16
|
Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change. PLANTS 2020; 9:plants9101251. [PMID: 32977553 PMCID: PMC7598256 DOI: 10.3390/plants9101251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023]
Abstract
Thalictrum maritimum is an endangered, endemic species in East Spain, growing in areas of relatively low salinity in littoral salt marshes. A regression of its populations and the number of individuals has been registered in the last decade. This study aimed at establishing the causes of this reduction using a multidisciplinary approach, including climatic, ecological, physiological and biochemical analyses. The climatic data indicated that there was a direct negative correlation between increased drought, especially during autumn, and the number of individuals censused in the area of study. The susceptibility of this species to water deficit was confirmed by the analysis of growth parameters upon a water deficit treatment applied under controlled greenhouse conditions, with the plants withstanding only 23 days of complete absence of irrigation. On the other hand, increased salinity does not seem to be a risk factor for this species, which behaves as a halophyte, tolerating in controlled treatments salinities much higher than those registered in its natural habitat. The most relevant mechanisms of salt tolerance in T. maritimum appear to be based on the control of ion transport, by (i) the active transport of toxic ions to the aerial parts of the plants at high external salinity—where they are presumably stored in the leaf vacuoles to avoid their deleterious effects in the cytosol, (ii) the maintenance of K+ concentrations in belowground and aboveground organs, despite the increase of Na+ levels, and (iii) the salt-induced accumulation of Ca2+, particularly in stems and leaves. This study provides useful information for the management of the conservation plans of this rare and endangered species.
Collapse
|
|
5 |
2 |
17
|
Vijay N, Wu SP, Velmathi S. "Covalent-Assembly"-Triggered Striking Far-Red to near-Infrared Emitting Fluorescent Probe for Abrupt Detection of Nerve-Agent Mimic (DCP): Real Time Application in Monitoring the Presence of Trace Amounts in Soil and Live Cells. ACS APPLIED BIO MATERIALS 2021; 4:7007-7015. [PMID: 35006933 DOI: 10.1021/acsabm.1c00647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Detection of chemical warfare agents (CWA) by simple and rapid methods with real-sample applications are quite inevitable in order to ease the threats to living systems caused by uncertain terror attacks and wars. Herein we have developed the first far-red to near infra-red (NIR) probe based on a covalent assembly approach for the detection of trace amounts of nerve agent mimic diethyl chloro phosphate (DCP) in soil and their fluorescent bio imaging in live cells. The probe features abrupt fluorescence turn on sensing of DCP with fluorescence quantum yield Φ = 0.622. It senses DCP selectively over other analytes in excellent sensitivity with a detection limit of 6.9 nM. In real time, the probe treated strips were employed to detect the DCP vapor effectively with eye catching fluorescence response. The presence of trace amounts of these acute warfare agents in the environment were monitored by soil analysis. Further fluorescent bio imaging was carried out to monitor trace level DCP in living cells using the HeLa cell line.
Collapse
|
|
4 |
2 |
18
|
Yotova G, Hristova M, Padareva M, Simeonov V, Dinev N, Tsakovski S. Multivariate Exploratory Analysis of the Bulgarian Soil Quality Monitoring Network. Molecules 2023; 28:6091. [PMID: 37630343 PMCID: PMC10459422 DOI: 10.3390/molecules28166091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The goal of the present study is to assess the soil quality in Bulgaria using (i) an appropriate set of soil quality indicators, namely primary nutrients (C, N, P), acidity (pH), physical clay content and potentially toxic elements (PTEs: Cu, Zn, Cd, Pb, Ni, Cr, As, Hg) and (ii) respective data mining and modeling using chemometrical and geostatistical methods. It has been shown that five latent factors are responsible for the explanation of nearly 70% of the total variance of the data set available (principal components analysis) and each factor is identified in terms of its contribution to the formation of the overall soil quality-the mountain soil factor, the geogenic factor, the ore deposit factor, the low nutrition factor, and the mercury-specific factor. The obtained soil quality patterns were additionally confirmed via hierarchical cluster analysis. The spatial distribution of the patterns throughout the whole Bulgarian territory was visualized via the mapping of the factor scores for all identified latent factors. The mapping of identified soil quality patterns was used to outline regions where additional measures for the monitoring of the phytoavailability of PTEs were required. The suggested regions are located near to thermoelectric power plants and mining and metal production facilities and are characterized by intensive agricultural activity.
Collapse
|
research-article |
2 |
1 |
19
|
Fusarium Species in Mangrove Soil in Northern Peninsular Malaysia and the Soil Physico-Chemical Properties. Microorganisms 2021; 9:microorganisms9030497. [PMID: 33652900 PMCID: PMC7996719 DOI: 10.3390/microorganisms9030497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/17/2022] Open
Abstract
Fusarium genus comprises important saprophytic and phytopathogenic fungi and is widespread in nature. The present study reports the occurrence of Fusarium spp. in soils from two mangrove forests in northern Peninsular Malaysia and analyzed physico-chemical properties of the mangrove soil. Based on TEF-1α sequences, nine Fusarium species were identified: Fusarium solani species complex (FSSC) (n = 77), Fusarium verticillioides (n = 20), Fusarium incarnatum (n = 10), Fusarium proliferatum (n = 7), Fusarium lateritium (n = 4), Fusarium oxysporum (n = 3), Fusarium rigidiuscula (n = 2), Fusarium chlamydosporum (n = 1), and Fusarium camptoceras (n = 1); FSSC isolates were the most prevalent. Phylogenetic analysis of the combined TEF-1α and ITS sequences revealed diverse phylogenetic affinities among the FSSC isolates and potentially new phylogenetic clades of FSSC. Soil analysis showed varied carbon content, pH, soil moisture, and salinity, but not nitrogen content, between sampling locations. Regardless of the physico-chemical properties, various Fusarium species were recovered from the mangrove soils. These were likely saprophytes; however, some were well-known plant pathogens and opportunistic human pathogens. Thus, mangrove soils might serve as inoculum sources for plant and human pathogenic Fusarium species. The present study demonstrates the occurrence of various Fusarium species in the extreme environment of mangrove soil, thereby contributing to the knowledge on species diversity in Fusarium.
Collapse
|
Journal Article |
4 |
1 |
20
|
Āboliņa L, Osvalde A, Karlsons A. Habitat Characteristics and Mineral Nutrition Status of Rubus chamaemorus L. in Latvia. PLANTS (BASEL, SWITZERLAND) 2023; 12:528. [PMID: 36771613 PMCID: PMC9920050 DOI: 10.3390/plants12030528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In Latvia, cloudberries are considered a valuable delicacy and have aroused interest in the possibility of commercial cultivation, as currently, they are collected only in the wild. A complex study was carried out to provide insight into the growth conditions of wild cloudberry in Latvia. The knowledge gained would provide a basis for the development of cloudberry cultivation technologies in the hemiboreal zone. Habitat characteristics, composition of surrounding vegetation, and plant mineral nutrition status were investigated in 18 study sites. Overall, the species composition of cloudberry study sites corresponded to two plant community classes: Cl. Vaccinio-Piceetea and Cl. Oxycocco-Sphagnetea. The most common species were Sphagnum magellanicum, Vaccinium myrtillus, and Oxycoccus palustris. The results clearly indicated acidic peat soils with high organic matter content and low degree of decomposition as being most suitable for cloudberry cultivation. High nutrient uptake capacity was found for wild cloudberry growing in nutrient-poor environments, as most of the leaf nutrients corresponded to the optimal levels determined for different cultivated berries. However, balanced fertilization to ensure successful plant vegetative and root growth would be recommended. The first results on wild cloudberry in Latvia indicated that optimization of P, S, B, and Mo should be the main focus.
Collapse
|
research-article |
2 |
1 |
21
|
Wada N, DI G, Itabashi H, Mori M, Lin Y, Deng S, Xu W, Guo W, Luo Y, Zhu D. Variations in Cadmium Concentrations in Rice and Oxidation-Reduction Potential at the Soil Surface with Supplementation of Fermented Botanical Waste-based Amendment in Large-scale Farmland. ANAL SCI 2020; 36:531-538. [PMID: 32173674 DOI: 10.2116/analsci.19sbp01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We monitored the relationship between the cadmium (Cd) concentration uptake of rice and the oxidation-reduction potential (ORP) at the soil surface with the supplementation of fermented botanical waste-based amendment (FBWA), an organic fertilizer prepared from woody and food wastes. This study was carried out for 3 years in the western part of Jiangsu Province, China. It was found that the Cd concentration taken up by rice was correlated to a decreased the ORP of the cultivated soil. The yield of rice was ∼1.20 times higher than that of the control plot. The effects of reducing the Cd content in rice and increasing the rice yield remained for 2 years after FBWA application. Finally, Cd was immobilized in the soil with adsorption to FBWA or the decomposed products. The ORP measurement during rice cultivation might be a key index to predict the suppression effect of Cd uptake into the rice or limitation of the sustainable effect by the FBWA.
Collapse
|
|
5 |
1 |
22
|
Zdybel JM, Sroka J, Karamon J, Bilska-Zając E, Wójcik-Fatla A, Kłapeć T, Skowron P, Siebielec G, Jadczyszyn T, Cencek T. Comparison of the effectiveness of various parasitological methods in detecting nematode eggs in different types of soil. ANNALS OF AGRICULTURAL AND ENVIRONMENTAL MEDICINE : AAEM 2023; 30:425-431. [PMID: 37772518 DOI: 10.26444/aaem/172454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
INTRODUCTION AND OBJECTIVE Natural fertilizers, sewage sludge, digestates, as well as organic fertilizers produced on their basis, can become a source of parasitological contamination of cultivated land. High concentration of invasive forms of parasites in the soil may pose a threat to human and animal health. Therefore, it is necessary to control the hygienic condition of fertilizers and fertilized soils with particular emphasis on parasites. The aim of the study was to compare the effectiveness of methods commonly used for parasitological examination of soil with own methods which were used to develop the standards. MATERIAL AND METHODS The study was carried out using samples of sandy soil (SS), horticultural mix soil (HS) and peat-based substrate (PS). Each sample was spiked with 100 dyed Ascaris suum eggs and examined with the use of 6 methods: Vasilkova, Dada, Quinn, and 3 methods according to the Polish Standards (PN-19000, PN- 19005, PN-19006). For each variant, 8 repetitions were made. RESULTS The largest number of A. suum eggs were found with PN-19006 (mean number of detected eggs was 21.25, 46.50, 23.00 for HS, SS, PS, respectively. Slightly lower results were obtained using PN-19005 - the mean number eggs was 21.25, 36.00, 16.75, respectively. On the other hand, the mean number of A. suum eggs found with the Dada method was about 2-3 times lower than with the PN-19006 - 15.75, 22.50, 6.50 for HS, SS, PS soil, respectively. Other methods were much less effective. CONCLUSIONS PN-19006 method turned out to be the most effective in detecting A. suum eggs. This method can be used for parasitological examination of soils and can be the basis for developing a system of methods dedicated to testing different types of soils for the presence of nematode eggs.
Collapse
|
|
2 |
|
23
|
Zdybel JM, Karamon J, Sroka J, Wójcik-Fatla A, Skowron P, Kowalczyk K, Jadczyszyn J, Cencek T. Parasitological contamination of arable soil in selected regions of Poland - preliminary study. ANNALS OF AGRICULTURAL AND ENVIRONMENTAL MEDICINE : AAEM 2023; 30:661-668. [PMID: 38153069 DOI: 10.26444/aaem/176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
INTRODUCTION AND OBJECTIVE The hygienic status of arable soils in most developed countries has been unknown. In the presented study, a preliminary investigation was undertaken to determine the contamination with eggs of parasitic nematodes in the soil of arable fields in Poland. The aim of the study was to determine whether such contamination is common enough to constitute a significant problem and what factors may influence it. MATERIAL AND METHODS The study was conducted in 5 Polish provinces from autumn 2021 to spring 2022. The provinces differed significantly in terms of the area of agricultural land, agricultural suitability, type of soil, scale of cattle and pig breeding, production of manure and slurry, and the use of manures and organic fertilizers for fertilization. A total of 133 soil samples were collected. Parasitological examination of soil samples was carried out using the PN-Z-19006 method [1], with confirmed high sensitivity. RESULTS Parasite eggs were found in a total of 67 samples, of which 56 samples contained eggs of roundworms of the genus Ascaris (an average of 3.29 eggs/100 g of soil), 23 contained eggs of whipworms (an average of 1.22 eggs/100 g), and 3 contained eggs of Toxocara (1 egg/100 g). CONCLUSIONS Differences in the percentage of positive samples were found depending on the period in which the samples were taken. The percentage of positive samples collected in autumn (53.57%) was higher than the percentage of positive samples collected in spring (48.05%). Similarly, the average number of eggs of in positive samples collected in autumn (3.43 eggs/100 g) was higher than the average number of eggs in samples collected in spring (2.90 eggs/100 g). Differences in the percentage of positive samples were also found depending on the region of origin of the samples.
Collapse
|
|
2 |
|
24
|
Mircea DM, Ferrer-Gallego PP, Ferrando-Pardo I, Vicente O, Mir R, Boscaiu M. Salt Tolerance of Sea Flax ( Linum maritimum L.), a Rare Species with Conservation Interest in Eastern Spain. PLANTS (BASEL, SWITZERLAND) 2024; 13:305. [PMID: 38276762 PMCID: PMC10821301 DOI: 10.3390/plants13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Seldom found in saltmarshes, Linum maritimum is a halophyte of great conservation interest in the eastern Iberian Peninsula. Although the species has been reported in different plant communities, there is no information on its range of salinity tolerance or mechanisms of response to environmental stress factors. In this study, L. maritimum plants were subjected to increasing salt concentrations in controlled conditions in a greenhouse. After six months of watering with salt solutions, only plants from the control, 50 mM and 100 mM NaCl treatment groups survived, but seeds were produced only in the first two. Significant differences were found between the plants from the various treatment groups in terms of their growth parameters, such as plant height, fresh weight, and the quantity of flowers and fruits. The main mechanism of salt tolerance is probably related to the species' ability to activate K+ uptake and transport to shoots to partly counteract the accumulation of toxic Na+ ions. A biochemical analysis showed significant increases in glycine betaine, flavonoids and total phenolic compounds, highlighting the importance of osmotic regulation and antioxidant compounds in the salt tolerance of Linum maritimum. These findings have implications for the conservation of the species, especially under changing climatic conditions that may lead to increased soil salinity in its Mediterranean distribution area.
Collapse
|
research-article |
1 |
|
25
|
Bessler AL, Nayee S, Garabed R, Krug P, Obrycki J, Rodriguez L. Surviving the summer: foot-and-mouth disease virus survival in U.S. regional soil types at high ambient temperatures. Front Vet Sci 2024; 11:1429760. [PMID: 39512919 PMCID: PMC11541954 DOI: 10.3389/fvets.2024.1429760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Foot-and-mouth disease (FMD) is one of the most economically significant global livestock diseases. In the U.S., economic optimization models run in 2011 demonstrate the highest mean epidemic impact of a potential FMD outbreak in California would occur in livestock-dense regions, resulting in national agriculture losses of $2.3 to $69.0 billion. In the case that an FMD outbreak occurred in the U.S., mass depopulation, carcass disposal, and disinfection protocols for infected premises have been designed to prevent further viral spread. Because the FMD virus (FMDV) is spread mechanically via the environment, characteristics of viral environmental stability are important. Temperature and adsorption to soil particles are reported to be the most important factors affecting general virus survival; however, how much these factors alter FMDV survival has not been tested. Methods Soil samples were examined from typical U.S. regions containing the highest cattle population densities: Tennessee, Georgia, Nebraska, California, Pennsylvania, Kentucky, and Iowa. Soils were spiked with known quantities of FMDV and FMDV stability was evaluated over seven distinct time points between 0 hours and 12 days at incubation temperatures of 25°C and 37°C to represent a range of typical ambient temperatures during the summer. FMDV stability was quantified via virus titration. Results Virus decayed faster at higher ambient temperatures for all soils, but decay at 25°C was faster in some soils. Consequently, areas with high ambient temperatures may have lower between-farm transmission rates, slower outbreak spread, and simpler farm decontamination. Discussion This study provides a helpful exploration into understanding soil survival of the virus. Additional investigations into FMDV survival across different soil types will aid in developing better disinfection protocols and further refining regional viral transmission rate estimates.
Collapse
|
research-article |
1 |
|