1
|
Asp M, Giacomello S, Larsson L, Wu C, Fürth D, Qian X, Wärdell E, Custodio J, Reimegård J, Salmén F, Österholm C, Ståhl PL, Sundström E, Åkesson E, Bergmann O, Bienko M, Månsson-Broberg A, Nilsson M, Sylvén C, Lundeberg J. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart. Cell 2020; 179:1647-1660.e19. [PMID: 31835037 DOI: 10.1016/j.cell.2019.11.025] [Citation(s) in RCA: 436] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/06/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
The process of cardiac morphogenesis in humans is incompletely understood. Its full characterization requires a deep exploration of the organ-wide orchestration of gene expression with a single-cell spatial resolution. Here, we present a molecular approach that reveals the comprehensive transcriptional landscape of cell types populating the embryonic heart at three developmental stages and that maps cell-type-specific gene expression to specific anatomical domains. Spatial transcriptomics identified unique gene profiles that correspond to distinct anatomical regions in each developmental stage. Human embryonic cardiac cell types identified by single-cell RNA sequencing confirmed and enriched the spatial annotation of embryonic cardiac gene expression. In situ sequencing was then used to refine these results and create a spatial subcellular map for the three developmental phases. Finally, we generated a publicly available web resource of the human developing heart to facilitate future studies on human cardiogenesis.
Collapse
|
Journal Article |
5 |
436 |
2
|
Asp M, Bergenstråhle J, Lundeberg J. Spatially Resolved Transcriptomes-Next Generation Tools for Tissue Exploration. Bioessays 2020; 42:e1900221. [PMID: 32363691 DOI: 10.1002/bies.201900221] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/28/2020] [Indexed: 02/04/2023]
Abstract
Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method-specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue-type dependence, and limited capacity to obtain detailed single-cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon.
Collapse
|
Review |
5 |
333 |
3
|
Ravi VM, Will P, Kueckelhaus J, Sun N, Joseph K, Salié H, Vollmer L, Kuliesiute U, von Ehr J, Benotmane JK, Neidert N, Follo M, Scherer F, Goeldner JM, Behringer SP, Franco P, Khiat M, Zhang J, Hofmann UG, Fung C, Ricklefs FL, Lamszus K, Boerries M, Ku M, Beck J, Sankowski R, Schwabenland M, Prinz M, Schüller U, Killmer S, Bengsch B, Walch AK, Delev D, Schnell O, Heiland DH. Spatially resolved multi-omics deciphers bidirectional tumor-host interdependence in glioblastoma. Cancer Cell 2022; 40:639-655.e13. [PMID: 35700707 DOI: 10.1016/j.ccell.2022.05.009] [Citation(s) in RCA: 292] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/30/2021] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Glioblastomas are malignant tumors of the central nervous system hallmarked by subclonal diversity and dynamic adaptation amid developmental hierarchies. The source of dynamic reorganization within the spatial context of these tumors remains elusive. Here, we characterized glioblastomas by spatially resolved transcriptomics, metabolomics, and proteomics. By deciphering regionally shared transcriptional programs across patients, we infer that glioblastoma is organized by spatial segregation of lineage states and adapts to inflammatory and/or metabolic stimuli, reminiscent of the reactive transformation in mature astrocytes. Integration of metabolic imaging and imaging mass cytometry uncovered locoregional tumor-host interdependence, resulting in spatially exclusive adaptive transcriptional programs. Inferring copy-number alterations emphasizes a spatially cohesive organization of subclones associated with reactive transcriptional programs, confirming that environmental stress gives rise to selection pressure. A model of glioblastoma stem cells implanted into human and rodent neocortical tissue mimicking various environments confirmed that transcriptional states originate from dynamic adaptation to various environments.
Collapse
|
|
3 |
292 |
4
|
Liao J, Lu X, Shao X, Zhu L, Fan X. Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics. Trends Biotechnol 2020; 39:43-58. [PMID: 32505359 DOI: 10.1016/j.tibtech.2020.05.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
Abstract
Revealing fine-scale cellular heterogeneity among spatial context and the functional and structural foundations of tissue architecture is fundamental within biological research and pharmacology. Unlike traditional approaches involving single molecules or bulk omics, cutting-edge, spatially resolved transcriptomics techniques offer near-single-cell or even subcellular resolution within tissues. Massive information across higher dimensions along with position-coordinating labels can better map the whole 3D transcriptional landscape of tissues. In this review, we focus on developments and strategies in spatially resolved transcriptomics, compare the cell and gene throughput and spatial resolution in detail for existing methods, and highlight the enormous potential in biomedical research.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
154 |
5
|
Strell C, Hilscher MM, Laxman N, Svedlund J, Wu C, Yokota C, Nilsson M. Placing RNA in context and space - methods for spatially resolved transcriptomics. FEBS J 2018. [PMID: 29542254 DOI: 10.1111/febs.14435] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Single-cell transcriptomics provides us with completely new insights into the molecular diversity of different cell types and the different states they can adopt. The technique generates inventories of cells that constitute the building blocks of multicellular organisms. However, since the method requires isolation of discrete cells, information about the original location within tissue is lost. Therefore, it is not possible to draw detailed cellular maps of tissue architecture and their positioning in relation to other cells. In order to better understand the cellular and tissue function of multicellular organisms, we need to map the cells within their physiological, morphological, and anatomical context and space. In this review, we will summarize and compare the different methods of in situ RNA analysis and the most recent developments leading to more comprehensive and highly multiplexed spatially resolved transcriptomic approaches. We will discuss their highlights and advantages as well as their limitations and challenges and give an outlook on promising future applications and directions both within basic research as well as clinical integration.
Collapse
|
Review |
7 |
62 |
6
|
Dai M, Pei X, Wang XJ. Accurate and fast cell marker gene identification with COSG. Brief Bioinform 2022; 23:6511197. [PMID: 35048116 DOI: 10.1093/bib/bbab579] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Accurate cell classification is the groundwork for downstream analysis of single-cell sequencing data, yet how to identify true marker genes for different cell types still remains a big challenge. Here, we report COSine similarity-based marker Gene identification (COSG) as a cosine similarity-based method for more accurate and scalable marker gene identification. COSG is applicable to single-cell RNA sequencing data, single-cell ATAC sequencing data and spatially resolved transcriptome data. COSG is fast and scalable for ultra-large datasets of million-scale cells. Application on both simulated and real experimental datasets showed that the marker genes or genomic regions identified by COSG have greater cell-type specificity, demonstrating the superior performance of COSG in terms of both accuracy and efficiency as compared with other available methods.
Collapse
|
|
3 |
58 |
7
|
Shi X, Zhu J, Long Y, Liang C. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks. Brief Bioinform 2023; 24:bbad278. [PMID: 37544658 DOI: 10.1093/bib/bbad278] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
MOTIVATION Recent advances in spatially resolved transcriptomics (ST) technologies enable the measurement of gene expression profiles while preserving cellular spatial context. Linking gene expression of cells with their spatial distribution is essential for better understanding of tissue microenvironment and biological progress. However, effectively combining gene expression data with spatial information to identify spatial domains remains challenging. RESULTS To deal with the above issue, in this paper, we propose a novel unsupervised learning framework named STMGCN for identifying spatial domains using multi-view graph convolution networks (MGCNs). Specifically, to fully exploit spatial information, we first construct multiple neighbor graphs (views) with different similarity measures based on the spatial coordinates. Then, STMGCN learns multiple view-specific embeddings by combining gene expressions with each neighbor graph through graph convolution networks. Finally, to capture the importance of different graphs, we further introduce an attention mechanism to adaptively fuse view-specific embeddings and thus derive the final spot embedding. STMGCN allows for the effective utilization of spatial context to enhance the expressive power of the latent embeddings with multiple graph convolutions. We apply STMGCN on two simulation datasets and five real spatial transcriptomics datasets with different resolutions across distinct platforms. The experimental results demonstrate that STMGCN obtains competitive results in spatial domain identification compared with five state-of-the-art methods, including spatial and non-spatial alternatives. Besides, STMGCN can detect spatially variable genes with enriched expression patterns in the identified domains. Overall, STMGCN is a powerful and efficient computational framework for identifying spatial domains in spatial transcriptomics data.
Collapse
|
|
2 |
12 |
8
|
Ma C, Chitra U, Zhang S, Raphael BJ. Belayer: Modeling discrete and continuous spatial variation in gene expression from spatially resolved transcriptomics. Cell Syst 2022; 13:786-797.e13. [PMID: 36265465 PMCID: PMC9814896 DOI: 10.1016/j.cels.2022.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
Spatially resolved transcriptomics (SRT) technologies measure gene expression at known locations in a tissue slice, enabling the identification of spatially varying genes or cell types. Current approaches for these tasks assume either that gene expression varies continuously across a tissue or that a tissue contains a small number of regions with distinct cellular composition. We propose a model for SRT data from layered tissues that includes both continuous and discrete spatial variation in expression and an algorithm, Belayer, to learn the parameters of this model. Belayer models gene expression as a piecewise linear function of the relative depth of a tissue layer with possible discontinuities at layer boundaries. We use conformal maps to model relative depth and derive a dynamic programming algorithm to infer layer boundaries and gene expression functions. Belayer accurately identifies tissue layers and biologically meaningful spatially varying genes in SRT data from the brain and skin.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
12 |
9
|
Tippani M, Divecha HR, Catallini JL, Kwon SH, Weber LM, Spangler A, Jaffe AE, Hyde TM, Kleinman JE, Hicks SC, Martinowich K, Collado-Torres L, Page SC, Maynard KR. VistoSeg: Processing utilities for high-resolution images for spatially resolved transcriptomics data. BIOLOGICAL IMAGING 2023; 3:e23. [PMID: 38510173 PMCID: PMC10951916 DOI: 10.1017/s2633903x23000235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 03/22/2024]
Abstract
Spatially resolved transcriptomics (SRT) is a growing field that links gene expression to anatomical context. SRT approaches that use next-generation sequencing (NGS) combine RNA sequencing with histological or fluorescent imaging to generate spatial maps of gene expression in intact tissue sections. These technologies directly couple gene expression measurements with high-resolution histological or immunofluorescent images that contain rich morphological information about the tissue under study. While broad access to NGS-based spatial transcriptomic technology is now commercially available through the Visium platform from the vendor 10× Genomics, computational tools for extracting image-derived metrics for integration with gene expression data remain limited. We developed VistoSeg as a MATLAB pipeline to process, analyze and interactively visualize the high-resolution images generated in the Visium platform. VistoSeg outputs can be easily integrated with accompanying transcriptomic data to facilitate downstream analyses in common programing languages including R and Python. VistoSeg provides user-friendly tools for integrating image-derived metrics from histological and immunofluorescent images with spatially resolved gene expression data. Integration of this data enhances the ability to understand the transcriptional landscape within tissue architecture. VistoSeg is freely available at http://research.libd.org/VistoSeg/.
Collapse
|
brief-report |
2 |
9 |
10
|
Kalliara E, Belfrage E, Gullberg U, Drott K, Ek S. Spatially Guided and Single Cell Tools to Map the Microenvironment in Cutaneous T-Cell Lymphoma. Cancers (Basel) 2023; 15:cancers15082362. [PMID: 37190290 DOI: 10.3390/cancers15082362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are two closely related clinical variants of cutaneous T-cell lymphomas (CTCL). Previously demonstrated large patient-to-patient and intra-patient disease heterogeneity underpins the importance of personalized medicine in CTCL. Advanced stages of CTCL are characterized by dismal prognosis, and the early identification of patients who will progress remains a clinical unmet need. While the exact molecular events underlying disease progression are poorly resolved, the tumor microenvironment (TME) has emerged as an important driver. In particular, the Th1-to-Th2 shift in the immune response is now commonly identified across advanced-stage CTCL patients. Herein, we summarize the role of the TME in CTCL evolution and the latest studies in deciphering inter- and intra-patient heterogeneity. We introduce spatially resolved omics as a promising technology to advance immune-oncology efforts in CTCL. We propose the combined implementation of spatially guided and single-cell omics technologies in paired skin and blood samples. Such an approach will mediate in-depth profiling of phenotypic and molecular changes in reactive immune subpopulations and malignant T cells preceding the Th1-to-Th2 shift and reveal mechanisms underlying disease progression from skin-limited to systemic disease that collectively will lead to the discovery of novel biomarkers to improve patient prognostication and the design of personalized treatment strategies.
Collapse
|
Review |
2 |
7 |
11
|
Hu Y, Xiao K, Yang H, Liu X, Zhang C, Shi Q. Spatially contrastive variational autoencoder for deciphering tissue heterogeneity from spatially resolved transcriptomics. Brief Bioinform 2024; 25:bbae016. [PMID: 38324623 PMCID: PMC10849194 DOI: 10.1093/bib/bbae016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/29/2023] [Indexed: 02/09/2024] Open
Abstract
Recent advances in spatially resolved transcriptomics (SRT) have brought ever-increasing opportunities to characterize expression landscape in the context of tissue spatiality. Nevertheless, there still exist multiple challenges to accurately detect spatial functional regions in tissue. Here, we present a novel contrastive learning framework, SPAtially Contrastive variational AutoEncoder (SpaCAE), which contrasts transcriptomic signals of each spot and its spatial neighbors to achieve fine-grained tissue structures detection. By employing a graph embedding variational autoencoder and incorporating a deep contrastive strategy, SpaCAE achieves a balance between spatial local information and global information of expression, enabling effective learning of representations with spatial constraints. Particularly, SpaCAE provides a graph deconvolutional decoder to address the smoothing effect of local spatial structure on expression's self-supervised learning, an aspect often overlooked by current graph neural networks. We demonstrated that SpaCAE could achieve effective performance on SRT data generated from multiple technologies for spatial domains identification and data denoising, making it a remarkable tool to obtain novel insights from SRT studies.
Collapse
|
research-article |
1 |
7 |
12
|
Zhang C, Li X, Huang W, Wang L, Shi Q. Spatially aware self-representation learning for tissue structure characterization and spatial functional genes identification. Brief Bioinform 2023; 24:bbad197. [PMID: 37253698 DOI: 10.1093/bib/bbad197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Spatially resolved transcriptomics (SRT) enable the comprehensive characterization of transcriptomic profiles in the context of tissue microenvironments. Unveiling spatial transcriptional heterogeneity needs to effectively incorporate spatial information accounting for the substantial spatial correlation of expression measurements. Here, we develop a computational method, SpaSRL (spatially aware self-representation learning), which flexibly enhances and decodes spatial transcriptional signals to simultaneously achieve spatial domain detection and spatial functional genes identification. This novel tunable spatially aware strategy of SpaSRL not only balances spatial and transcriptional coherence for the two tasks, but also can transfer spatial correlation constraint between them based on a unified model. In addition, this joint analysis by SpaSRL deciphers accurate and fine-grained tissue structures and ensures the effective extraction of biologically informative genes underlying spatial architecture. We verified the superiority of SpaSRL on spatial domain detection, spatial functional genes identification and data denoising using multiple SRT datasets obtained by different platforms and tissue sections. Our results illustrate SpaSRL's utility in flexible integration of spatial information and novel discovery of biological insights from spatial transcriptomic datasets.
Collapse
|
|
2 |
6 |
13
|
Li X, Huang W, Xu X, Zhang HY, Shi Q. Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network. Front Genet 2023; 14:1202409. [PMID: 37303949 PMCID: PMC10248005 DOI: 10.3389/fgene.2023.1202409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Spatially resolved transcriptomics (SRT) provides an unprecedented opportunity to investigate the complex and heterogeneous tissue organization. However, it is challenging for a single model to learn an effective representation within and across spatial contexts. To solve the issue, we develop a novel ensemble model, AE-GCN (autoencoder-assisted graph convolutional neural network), which combines the autoencoder (AE) and graph convolutional neural network (GCN), to identify accurate and fine-grained spatial domains. AE-GCN transfers the AE-specific representations to the corresponding GCN-specific layers and unifies these two types of deep neural networks for spatial clustering via the clustering-aware contrastive mechanism. In this way, AE-GCN accommodates the strengths of both AE and GCN for learning an effective representation. We validate the effectiveness of AE-GCN on spatial domain identification and data denoising using multiple SRT datasets generated from ST, 10x Visium, and Slide-seqV2 platforms. Particularly, in cancer datasets, AE-GCN identifies disease-related spatial domains, which reveal more heterogeneity than histological annotations, and facilitates the discovery of novel differentially expressed genes of high prognostic relevance. These results demonstrate the capacity of AE-GCN to unveil complex spatial patterns from SRT data.
Collapse
|
research-article |
2 |
6 |
14
|
Sriworarat C, Nguyen A, Eagles NJ, Collado-Torres L, Martinowich K, Maynard KR, Hicks SC. Performant web-based interactive visualization tool for spatially-resolved transcriptomics experiments. BIOLOGICAL IMAGING 2023; 3:e15. [PMID: 38487694 PMCID: PMC10936372 DOI: 10.1017/s2633903x2300017x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 03/17/2024]
Abstract
High-resolution and multiplexed imaging techniques are giving us an increasingly detailed observation of a biological system. However, sharing, exploring, and customizing the visualization of large multidimensional images can be a challenge. Here, we introduce Samui, a performant and interactive image visualization tool that runs completely in the web browser. Samui is specifically designed for fast image visualization and annotation and enables users to browse through large images and their selected features within seconds of receiving a link. We demonstrate the broad utility of Samui with images generated with two platforms: Vizgen MERFISH and 10x Genomics Visium Spatial Gene Expression. Samui along with example datasets is available at https://samuibrowser.com.
Collapse
|
brief-report |
2 |
5 |
15
|
Wang L, Hu Y, Xiao K, Zhang C, Shi Q, Chen L. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics. Brief Bioinform 2024; 25:bbae257. [PMID: 38819253 PMCID: PMC11141295 DOI: 10.1093/bib/bbae257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/13/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Spatially resolved transcriptomics (SRT) has emerged as a powerful tool for investigating gene expression in spatial contexts, providing insights into the molecular mechanisms underlying organ development and disease pathology. However, the expression sparsity poses a computational challenge to integrate other modalities (e.g. histological images and spatial locations) that are simultaneously captured in SRT datasets for spatial clustering and variation analyses. In this study, to meet such a challenge, we propose multi-modal domain adaption for spatial transcriptomics (stMDA), a novel multi-modal unsupervised domain adaptation method, which integrates gene expression and other modalities to reveal the spatial functional landscape. Specifically, stMDA first learns the modality-specific representations from spatial multi-modal data using multiple neural network architectures and then aligns the spatial distributions across modal representations to integrate these multi-modal representations, thus facilitating the integration of global and spatially local information and improving the consistency of clustering assignments. Our results demonstrate that stMDA outperforms existing methods in identifying spatial domains across diverse platforms and species. Furthermore, stMDA excels in identifying spatially variable genes with high prognostic potential in cancer tissues. In conclusion, stMDA as a new tool of multi-modal data integration provides a powerful and flexible framework for analyzing SRT datasets, thereby advancing our understanding of intricate biological systems.
Collapse
|
research-article |
1 |
4 |
16
|
Guo X, Ning J, Chen Y, Liu G, Zhao L, Fan Y, Sun S. Recent advances in differential expression analysis for single-cell RNA-seq and spatially resolved transcriptomic studies. Brief Funct Genomics 2024; 23:95-109. [PMID: 37022699 DOI: 10.1093/bfgp/elad011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Differential expression (DE) analysis is a necessary step in the analysis of single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) data. Unlike traditional bulk RNA-seq, DE analysis for scRNA-seq or SRT data has unique characteristics that may contribute to the difficulty of detecting DE genes. However, the plethora of DE tools that work with various assumptions makes it difficult to choose an appropriate one. Furthermore, a comprehensive review on detecting DE genes for scRNA-seq data or SRT data from multi-condition, multi-sample experimental designs is lacking. To bridge such a gap, here, we first focus on the challenges of DE detection, then highlight potential opportunities that facilitate further progress in scRNA-seq or SRT analysis, and finally provide insights and guidance in selecting appropriate DE tools or developing new computational DE methods.
Collapse
|
Review |
1 |
3 |
17
|
Tiesmeyer S, Sahay S, Müller-Bötticher N, Eils R, Mackowiak SD, Ishaque N. SSAM-lite: A Light-Weight Web App for Rapid Analysis of Spatially Resolved Transcriptomics Data. Front Genet 2022; 13:785877. [PMID: 35295943 PMCID: PMC8918671 DOI: 10.3389/fgene.2022.785877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
The combination of a cell's transcriptional profile and location defines its function in a spatial context. Spatially resolved transcriptomics (SRT) has emerged as the assay of choice for characterizing cells in situ. SRT methods can resolve gene expression up to single-molecule resolution. A particular computational problem with single-molecule SRT methods is the correct aggregation of mRNA molecules into cells. Traditionally, aggregating mRNA molecules into cell-based features begins with the identification of cells via segmentation of the nucleus or the cell membrane. However, recently a number of cell-segmentation-free approaches have emerged. While these methods have been demonstrated to be more performant than segmentation-based approaches, they are still not easily accessible since they require specialized knowledge of programming languages and access to large computational resources. Here we present SSAM-lite, a tool that provides an easy-to-use graphical interface to perform rapid and segmentation-free cell-typing of SRT data in a web browser. SSAM-lite runs locally and does not require computational experts or specialized hardware. Analysis of a tissue slice of the mouse somatosensory cortex took less than a minute on a laptop with modest hardware. Parameters can interactively be optimized on small portions of the data before the entire tissue image is analyzed. A server version of SSAM-lite can be run completely offline using local infrastructure. Overall, SSAM-lite is portable, lightweight, and easy to use, thus enabling a broad audience to investigate and analyze single-molecule SRT data.
Collapse
|
brief-report |
3 |
2 |
18
|
Magoulopoulou A, Salas SM, Tiklová K, Samuelsson ER, Hilscher MM, Nilsson M. Padlock Probe-Based Targeted In Situ Sequencing: Overview of Methods and Applications. Annu Rev Genomics Hum Genet 2023; 24:133-150. [PMID: 37018847 DOI: 10.1146/annurev-genom-102722-092013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Elucidating spatiotemporal changes in gene expression has been an essential goal in studies of health, development, and disease. In the emerging field of spatially resolved transcriptomics, gene expression profiles are acquired with the tissue architecture maintained, sometimes at cellular resolution. This has allowed for the development of spatial cell atlases, studies of cell-cell interactions, and in situ cell typing. In this review, we focus on padlock probe-based in situ sequencing, which is a targeted spatially resolved transcriptomic method. We summarize recent methodological and computational tool developments and discuss key applications. We also discuss compatibility with other methods and integration with multiomic platforms for future applications.
Collapse
|
Review |
2 |
1 |
19
|
Huang W, Hu Y, Wang L, Wu G, Zhang C, Shi Q. Spatially aligned graph transfer learning for characterizing spatial regulatory heterogeneity. Brief Bioinform 2024; 26:bbaf021. [PMID: 39841593 PMCID: PMC11752617 DOI: 10.1093/bib/bbaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Spatially resolved transcriptomics (SRT) technologies facilitate the exploration of cell fates or states within tissue microenvironments. Despite these advances, the field has not adequately addressed the regulatory heterogeneity influenced by microenvironmental factors. Here, we propose a novel Spatially Aligned Graph Transfer Learning (SpaGTL), pretrained on a large-scale multi-modal SRT data of about 100 million cells/spots to enable inference of context-specific spatial gene regulatory networks across multiple scales in data-limited settings. As a novel cross-dimensional transfer learning architecture, SpaGTL aligns spatial graph representations across gene-level graph transformers and cell/spot-level manifold-dominated variational autoencoder. This alignment facilitates the exploration of microenvironmental variations in cell types and functional domains from a molecular regulatory perspective, all within a self-supervised framework. We verified SpaGTL's precision, robustness, and speed over existing state-of-the-art algorithms and show SpaGTL's potential that facilitates the discovery of novel regulatory programs that exhibit strong associations with tissue functional regions and cell types. Importantly, SpaGTL could be extended to process multi-slice SRT data and map molecular regulatory landscape associated with three-dimensional spatial-temporal changes during development.
Collapse
|
research-article |
1 |
|
20
|
Shen R, Cheng M, Wang W, Fan Q, Yan H, Wen J, Yuan Z, Yao J, Li Y, Yuan J. Graph domain adaptation-based framework for gene expression enhancement and cell type identification in large-scale spatially resolved transcriptomics. Brief Bioinform 2024; 25:bbae576. [PMID: 39508445 PMCID: PMC11541786 DOI: 10.1093/bib/bbae576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Spatially resolved transcriptomics (SRT) technologies facilitate gene expression profiling with spatial resolution in a naïve state. Nevertheless, current SRT technologies exhibit limitations, manifesting as either low transcript detection sensitivity or restricted gene throughput. These constraints result in diminished precision and coverage in gene measurement. In response, we introduce SpaGDA, a sophisticated deep learning-based graph domain adaptation framework for both scenarios of gene expression imputation and cell type identification in spatially resolved transcriptomics data by impartially transferring knowledge from reference scRNA-seq data. Systematic benchmarking analyses across several SRT datasets generated from different technologies have demonstrated SpaGDA's superior effectiveness compared to state-of-the-art methods in both scenarios. Further applied to three SRT datasets of different biological contexts, SpaGDA not only better recovers the well-established knowledge sourced from public atlases and existing scientific literature but also yields a more informative spatial expression pattern of genes. Together, these results demonstrate that SpaGDA can be used to overcome the challenges of current SRT data and provide more accurate insights into biological processes or disease development. The SpaGDA is available in https://github.com/shenrb/SpaGDA.
Collapse
|
research-article |
1 |
|
21
|
Overbey EG, Das S, Cope H, Madrigal P, Andrusivova Z, Frapard S, Klotz R, Bezdan D, Gupta A, Scott RT, Park J, Chirko D, Galazka JM, Costes SV, Mason CE, Herranz R, Szewczyk NJ, Borg J, Giacomello S. Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight. CELL REPORTS METHODS 2022; 2:100325. [PMID: 36452864 PMCID: PMC9701605 DOI: 10.1016/j.crmeth.2022.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have experienced rapid development in recent years. The findings of spaceflight-based scRNA-seq and SRT investigations are likely to improve our understanding of life in space and our comprehension of gene expression in various cell systems and tissue dynamics. However, compared to their Earth-based counterparts, gene expression experiments conducted in spaceflight have not experienced the same pace of development. Out of the hundreds of spaceflight gene expression datasets available, only a few used scRNA-seq and SRT. In this perspective piece, we explore the growing importance of scRNA-seq and SRT in space biology and discuss the challenges and considerations relevant to robust experimental design to enable growth of these methods in the field.
Collapse
|
Review |
3 |
|
22
|
Lee J, Yoo M, Choi J. Recent advances in spatially resolved transcriptomics: challenges and opportunities. BMB Rep 2022; 55:113-124. [PMID: 35168703 PMCID: PMC8972138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 03/09/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has greatly advanced our understanding of cellular heterogeneity by profiling individual cell transcriptomes. However, cell dissociation from the tissue structure causes a loss of spatial information, which hinders the identification of intercellular communication networks and global transcriptional patterns present in the tissue architecture. To overcome this limitation, novel transcriptomic platforms that preserve spatial information have been actively developed. Significant achievements in imaging technologies have enabled in situ targeted transcriptomic profiling in single cells at singlemolecule resolution. In addition, technologies based on mRNA capture followed by sequencing have made possible profiling of the genome-wide transcriptome at the 55-100 μm resolution. Unfortunately, neither imaging-based technology nor capturebased method elucidates a complete picture of the spatial transcriptome in a tissue. Therefore, addressing specific biological questions requires balancing experimental throughput and spatial resolution, mandating the efforts to develop computational algorithms that are pivotal to circumvent technology-specific limitations. In this review, we focus on the current state-of-the-art spatially resolved transcriptomic technologies, describe their applications in a variety of biological domains, and explore recent discoveries demonstrating their enormous potential in biomedical research. We further highlight novel integrative computational methodologies with other data modalities that provide a framework to derive biological insight into heterogeneous and complex tissue organization. [BMB Reports 2022; 55(3): 113-124].
Collapse
|
Review |
3 |
|
23
|
Johansson A, Kalliara E, Belfrage E, Alling T, Pyl PT, Gerdtsson AS, Gullberg U, Porwit A, Drott K, Ek S. The Progression of Mycosis Fungoides During Treatment with Mogamulizumab: A BIO-MUSE Case Study of the Tumor and Immune Response in Peripheral Blood and Tissue. Biomedicines 2025; 13:186. [PMID: 39857770 PMCID: PMC11761615 DOI: 10.3390/biomedicines13010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Background/objectives: Mycosis fungoides (MF) is a rare malignancy, with an indolent course in the early stages of the disease. However, due to major molecular and clinical heterogeneity, patients at an advanced stage of the disease have variable responses to treatment and considerably reduced life expectancy. Today, there is a lack of specific markers for the progression from early to advanced stages of the disease. To address these challenges, the non-interventional BIO-MUSE trial was initiated. Here, we report on a case study involving one patient, where combined omics analysis of tissue and blood was used to reveal the unique molecular features associated with the progression of the disease. Methods: We applied 10× genomics-based single-cell RNA sequencing to CD3+ peripheral T-cells, combined with T-cell receptor sequencing, to samples collected at multiple timepoints during the progression of the disease. In addition, GeoMx-based digital spatial profiling of T-helper (CD3+/CD8-), T-cytotoxic (CD3+/CD8+), and CD163+ cells was performed on skin biopsies. Results. The results pinpoint targets, such as transforming growth factor β1, as some of the mechanisms underlying disease progression, which may have the potential to improve patient prognostication and the development of precision medicine efforts. Conclusions: We propose that in patients with MF, the evolution of the malignant clone and the associated immune response need to be studied jointly to define relevant strategies for intervention.
Collapse
|
research-article |
1 |
|
24
|
Zheng Y, Hu W. Editorial: Spatiotemporal regulation of central nervous system disorders: molecular mechanisms and emerging techniques. Front Cell Dev Biol 2023; 11:1301013. [PMID: 37868910 PMCID: PMC10588469 DOI: 10.3389/fcell.2023.1301013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
|
Editorial |
2 |
|
25
|
Lin S, Cui Y, Zhao F, Yang Z, Song J, Yao J, Zhao Y, Qian BZ, Zhao Y, Yuan Z. Complete spatially resolved gene expression is not necessary for identifying spatial domains. CELL GENOMICS 2024; 4:100565. [PMID: 38781966 PMCID: PMC11228956 DOI: 10.1016/j.xgen.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Spatially resolved transcriptomics (SRT) technologies have revolutionized the study of tissue organization. We introduce a graph convolutional network with an attention and positive emphasis mechanism, termed BINARY, relying exclusively on binarized SRT data to accurately delineate spatial domains. BINARY outperforms existing methods across various SRT data types while using significantly less input information. Our study suggests that precise gene expression quantification may not always be essential, inspiring further exploration of the broader applications of spatially resolved binarized gene expression data.
Collapse
|
|
1 |
|