Dong S, Xiang H, Dagotto E. Magnetoelectricity in multiferroics: a theoretical perspective.
Natl Sci Rev 2019;
6:629-641. [PMID:
34691919 PMCID:
PMC8291640 DOI:
10.1093/nsr/nwz023]
[Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/24/2022] Open
Abstract
The key physical property of multiferroic materials is the existence of coupling between magnetism and polarization, i.e. magnetoelectricity. The origin and manifestations of magnetoelectricity can be very different in the available plethora of multiferroic systems, with multiple possible mechanisms hidden behind the phenomena. In this review, we describe the fundamental physics that causes magnetoelectricity from a theoretical viewpoint. The present review will focus on mainstream physical mechanisms in both single-phase multiferroics and magnetoelectric heterostructures. The most recent tendencies addressing possible new magnetoelectric mechanisms will also be briefly outlined.
Collapse