1
|
Ma W, Gong H, Irving T. Myosin Head Configurations in Resting and Contracting Murine Skeletal Muscle. Int J Mol Sci 2018; 19:E2643. [PMID: 30200618 PMCID: PMC6165214 DOI: 10.3390/ijms19092643] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022] Open
Abstract
Transgenic mouse models have been important tools for studying the relationship of genotype to phenotype for human diseases, including those of skeletal muscle. We show that mouse skeletal muscle can produce high quality X-ray diffraction patterns establishing the mouse intact skeletal muscle X-ray preparation as a potentially powerful tool to test structural hypotheses in health and disease. A notable feature of the mouse model system is the presence of residual myosin layer line intensities in contracting mouse muscle patterns. This provides an additional tool, along with the I1,1/I1,0 intensity ratio, for estimating the proportions of active versus relaxed myosin heads under a given set of conditions that can be used to characterize a given physiological condition or mutant muscle type. We also show that analysis of the myosin layer line intensity distribution, including derivation of the myosin head radius, Rm, may be used to study the role of the super-relaxed state in myosin regulation. When the myosin inhibitor blebbistatin is used to inhibit force production, there is a shift towards a highly quasi-helically ordered configuration that is distinct from the normal resting state, indicating there are more than one helically ordered configuration for resting crossbridges.
Collapse
|
research-article |
7 |
52 |
2
|
Piperine's mitigation of obesity and diabetes can be explained by its up-regulation of the metabolic rate of resting muscle. Proc Natl Acad Sci U S A 2016; 113:13009-13014. [PMID: 27799519 DOI: 10.1073/pnas.1607536113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identify a target for treating obesity and type 2 diabetes, the consumption of calories by an increase in the metabolic rate of resting skeletal muscle. The metabolic rate of skeletal muscle can be increased by shifting myosin heads from the super-relaxed state (SRX), with a low ATPase activity, to a disordered relaxed state (DRX), with a higher ATPase activity. The shift of myosin heads was detected by a change in fluorescent intensity of a probe attached to the myosin regulatory light chain in skinned skeletal fibers, allowing us to perform a high-throughput screen of 2,128 compounds. The screen identified one compound, which destabilized the super-relaxed state, piperine (the main alkaloid component of black pepper). Destabilization of the SRX by piperine was confirmed by single-nucleotide turnover measurements. The effect was only observed in fast twitch skeletal fibers and not in slow twitch fibers or cardiac tissues. Piperine increased ATPase activity of skinned relaxed fibers by 66 ± 15%. The Kd was ∼2 µM. Piperine had little effect on the mechanics of either fully active or resting muscle fibers. Previous work has shown that piperine can mitigate both obesity and type 2 diabetes in rodent models of these conditions. We propose that the increase in resting muscle metabolism contributes to these positive effects. The results described here show that up-regulation of resting muscle metabolism could treat obesity and type 2 diabetes and that piperine would provide a useful lead compound for the development of these therapies.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
30 |
3
|
Yadav S, Kazmierczak K, Liang J, Sitbon YH, Szczesna-Cordary D. Phosphomimetic-mediated in vitro rescue of hypertrophic cardiomyopathy linked to R58Q mutation in myosin regulatory light chain. FEBS J 2018; 286:151-168. [PMID: 30430732 DOI: 10.1111/febs.14702] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/03/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022]
Abstract
Myosin regulatory light chain (RLC) phosphorylation is important for cardiac muscle mechanics/function as well as for the Ca2+ -troponin/tropomyosin regulation of muscle contraction. This study focuses on the arginine to glutamine (R58Q) substitution in the human ventricular RLC (MYL2 gene), linked to malignant hypertrophic cardiomyopathy in humans and causing severe functional abnormalities in transgenic (Tg) R58Q mice, including inhibition of cardiac RLC phosphorylation. Using a phosphomimic recombinant RLC variant where Ser-15 at the phosphorylation site was substituted with aspartic acid (S15D) and placed in the background of R58Q, we aimed to assess whether we could rescue/mitigate R58Q-induced structural/functional abnormalities in vitro. We show rescue of several R58Q-exerted adverse phenotypes in S15D-R58Q-reconstituted porcine cardiac muscle preparations. A low level of maximal isometric force observed for R58Q- versus WT-reconstituted fibers was restored by S15D-R58Q. Significant beneficial effects were also observed on the Vmax of actin-activated myosin ATPase activity in S15D-R58Q versus R58Q-reconstituted myosin, along with its binding to fluorescently labeled actin. We also report that R58Q promotes the OFF state of myosin, both in reconstituted porcine fibers and in Tg mouse papillary muscles, thereby stabilizing the super-relaxed state (SRX) of myosin, characterized by a very low ATP turnover rate. Experiments in S15D-R58Q-reconstituted porcine fibers showed a mild destabilization of the SRX state, suggesting an S15D-mediated shift in disordered-relaxed (DRX)↔SRX equilibrium toward the DRX state of myosin. Our study shows that S15D-phosphomimic can be used as a potential rescue strategy to abrogate/alleviate the RLC mutation-induced phenotypes and is a likely candidate for therapeutic intervention in HCM patients.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
25 |
4
|
Marcucci L, Reggiani C. Mechanosensing in Myosin Filament Solves a 60 Years Old Conflict in Skeletal Muscle Modeling between High Power Output and Slow Rise in Tension. Front Physiol 2016; 7:427. [PMID: 27721796 PMCID: PMC5034546 DOI: 10.3389/fphys.2016.00427] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/09/2016] [Indexed: 11/13/2022] Open
Abstract
Almost 60 years ago Andrew Huxley with his seminal paper (Huxley, 1957) laid the foundation of modern muscle modeling, linking chemical to mechanical events. He described mechanics and energetics of muscle contraction through the cyclical attachment and detachment of myosin motors to the actin filament with ad-hoc assumptions on the dependence of the rate constants on the strain of the myosin motors. That relatively simple hypothesis is still present in recent models, even though with several modifications to adapt the model to the different experimental constraints which became subsequently available. However, already in that paper, one controversial aspect of the model became clear. Relatively high attachment and detachment rates of myosin to the actin filament were needed to simulate the high power output at intermediate velocity of shortening. However, these rates were incompatible with the relatively slow rise in tension upon activation, despite the rise should be generated by the same rate functions. This discrepancy has not been fully solved till today, despite several hypotheses have been forwarded to reconcile the two aspects. Here, using a conventional muscle model, we show that the recently revealed mechanosensing mechanism of recruitment of myosin motors (Linari et al., 2015) can solve this long standing problem without any further ad-hoc hypotheses.
Collapse
|
Journal Article |
9 |
17 |
5
|
Sitbon YH, Kazmierczak K, Liang J, Yadav S, Veerasammy M, Kanashiro-Takeuchi RM, Szczesna-Cordary D. Ablation of the N terminus of cardiac essential light chain promotes the super-relaxed state of myosin and counteracts hypercontractility in hypertrophic cardiomyopathy mutant mice. FEBS J 2020; 287:3989-4004. [PMID: 32034976 DOI: 10.1111/febs.15243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/27/2019] [Accepted: 02/06/2020] [Indexed: 12/25/2022]
Abstract
In this study, we focus on the molecular mechanisms associated with the A57G (Ala57-to-Gly57) mutation in myosin essential light chains (ELCs), found to cause hypertrophic cardiomyopathy (HCM) in humans and in mice. Specifically, we studied the effects of A57G on the super-relaxed (SRX) state of myosin that may contribute to the hypercontractile cross-bridge behavior and ultimately lead to pathological cardiac remodeling in transgenic Tg-A57G mice. The disease model was compared to Tg-WT mice, expressing the wild-type human ventricular ELC, and analyzed against Tg-Δ43 mice, expressing the N-terminally truncated ELC, whose hearts hypertrophy with time but do not show any abnormalities in cardiac morphology or function. Our data suggest a new role for the N terminus of cardiac ELC (N-ELC) in modulation of myosin cross-bridge function in the healthy as well as in HCM myocardium. The lack of N-ELC in Tg-Δ43 mice was found to significantly stabilize the SRX state of myosin and increase the number of myosin heads occupying a low-energy state. In agreement, Δ43 hearts showed significantly decreased ATP utilization and low actin-activated myosin ATPase compared with A57G and WT hearts. The hypercontractile activity of A57G-ELC cross-bridges was manifested by the inhibition of the SRX state, increased number of myosin heads available for interaction with actin, and higher ATPase activity. Fiber mechanics studies, echocardiography examination, and assessment of fibrosis confirmed the development of two distinct forms of cardiac remodeling in these two ELC mouse models, with pathological cardiac hypertrophy in Tg-A57G, and near physiologic cardiac growth in Tg-Δ43 animals.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
15 |
6
|
Lee LA, Barrick SK, Meller A, Walklate J, Lotthammer JM, Tay JW, Stump WT, Bowman G, Geeves MA, Greenberg MJ, Leinwand LA. Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles. J Biol Chem 2022; 299:102657. [PMID: 36334627 PMCID: PMC9800208 DOI: 10.1016/j.jbc.2022.102657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac β-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac β-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.
Collapse
|
research-article |
3 |
13 |
7
|
Mohran S, Kooiker K, Mahoney-Schaefer M, Mandrycky C, Kao K, Tu AY, Freeman J, Moussavi-Harami F, Geeves M, Regnier M. The biochemically defined super relaxed state of myosin-A paradox. J Biol Chem 2024; 300:105565. [PMID: 38103642 PMCID: PMC10819765 DOI: 10.1016/j.jbc.2023.105565] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
The biochemical SRX (super-relaxed) state of myosin has been defined as a low ATPase activity state. This state can conserve energy when the myosin is not recruited for muscle contraction. The SRX state has been correlated with a structurally defined ordered (versus disordered) state of muscle thick filaments. The two states may be linked via a common interacting head motif (IHM) where the two heads of heavy meromyosin (HMM), or myosin, fold back onto each other and form additional contacts with S2 and the thick filament. Experimental observations of the SRX, IHM, and the ordered form of thick filaments, however, do not always agree, and result in a series of unresolved paradoxes. To address these paradoxes, we have reexamined the biochemical measurements of the SRX state for porcine cardiac HMM. In our hands, the commonly employed mantATP displacement assay was unable to quantify the population of the SRX state with all data fitting very well by a single exponential. We further show that mavacamten inhibits the basal ATPases of both porcine ventricle HMM and S1 (Ki, 0.32 and 1.76 μM respectively) while dATP activates HMM cooperatively without any evidence of an SRX state. A combination of our experimental observations and theories suggests that the displacement of mantATP in purified proteins is not a reliable assay to quantify the SRX population. This means that while the structurally defined IHM and ordered thick filaments clearly exist, great care must be employed when using the mantATP displacement assay.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
7 |
8
|
Rasicci DV, Tiwari P, Bodt SML, Desetty R, Sadler FR, Sivaramakrishnan S, Craig R, Yengo CM. Dilated cardiomyopathy mutation E525K in human beta-cardiac myosin stabilizes the interacting-heads motif and super-relaxed state of myosin. eLife 2022; 11:e77415. [PMID: 36422472 PMCID: PMC9691020 DOI: 10.7554/elife.77415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The auto-inhibited, super-relaxed (SRX) state of cardiac myosin is thought to be crucial for regulating contraction, relaxation, and energy conservation in the heart. We used single ATP turnover experiments to demonstrate that a dilated cardiomyopathy (DCM) mutation (E525K) in human beta-cardiac myosin increases the fraction of myosin heads in the SRX state (with slow ATP turnover), especially in physiological ionic strength conditions. We also utilized FRET between a C-terminal GFP tag on the myosin tail and Cy3ATP bound to the active site of the motor domain to estimate the fraction of heads in the closed, interacting-heads motif (IHM); we found a strong correlation between the IHM and SRX state. Negative stain electron microscopy and 2D class averaging of the construct demonstrated that the E525K mutation increased the fraction of molecules adopting the IHM. Overall, our results demonstrate that the E525K DCM mutation may reduce muscle force and power by stabilizing the auto-inhibited SRX state. Our studies also provide direct evidence for a correlation between the SRX biochemical state and the IHM structural state in cardiac muscle myosin. Furthermore, the E525 residue may be implicated in crucial electrostatic interactions that modulate this conserved, auto-inhibited conformation of myosin.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
5 |
9
|
Kanashiro-Takeuchi RM, Kazmierczak K, Liang J, Takeuchi LM, Sitbon YH, Szczesna-Cordary D. Hydroxychloroquine Mitigates Dilated Cardiomyopathy Phenotype in Transgenic D94A Mice. Int J Mol Sci 2022; 23:ijms232415589. [PMID: 36555229 PMCID: PMC9779604 DOI: 10.3390/ijms232415589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to investigate whether short-term and low-dose treatment with hydroxychloroquine (HCQ), an antimalarial drug, can modulate heart function in a preclinical model of dilated cardiomyopathy (DCM) expressing the D94A mutation in cardiac myosin regulatory light chain (RLC) compared with healthy non-transgenic (NTg) littermates. Increased interest in HCQ came with the COVID-19 pandemic, but the risk of cardiotoxic side effects of HCQ raised concerns, especially in patients with an underlying heart condition, e.g., cardiomyopathy. Effects of HCQ treatment vs. placebo (H2O), administered in Tg-D94A vs. NTg mice over one month, were studied by echocardiography and muscle contractile mechanics. Global longitudinal strain analysis showed the HCQ-mediated improvement in heart performance in DCM mice. At the molecular level, HCQ promoted the switch from myosin's super-relaxed (SRX) to disordered relaxed (DRX) state in DCM-D94A hearts. This result indicated more myosin cross-bridges exiting a hypocontractile SRX-OFF state and assuming the DRX-ON state, thus potentially enhancing myosin motor function in DCM mice. This bottom-up investigation of the pharmacological use of HCQ at the level of myosin molecules, muscle fibers, and whole hearts provides novel insights into mechanisms by which HCQ therapy mitigates some abnormal phenotypes in DCM-D94A mice and causes no harm in healthy NTg hearts.
Collapse
|
research-article |
3 |
3 |