Guo Z, Wang D, Zhang L, Fu Q, Wei Y. Titanium-Substituted Tavorite LiFeSO
4 F as Cathode Material for Lithium Ion Batteries: First-Principles Calculations and Experimental Study.
Chempluschem 2020;
85:900-905. [PMID:
32391632 DOI:
10.1002/cplu.202000301]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/01/2020] [Indexed: 11/06/2022]
Abstract
Titanium-substituted LiTix Fe1-2x SO4 F (x=0, 0.01, 0.02, 0.03) cathode materials were synthesized by a solvothermal method. X-ray diffraction, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy were used to investigate the effects of Ti substitution on the structure of LiFeSO4 F, and it was shown that Ti substitutes the Fe(2) site. First-principles calculations and UV-visible spectroscopy demonstrate that Ti substitution reduces the bandgap of LiFeSO4 F which improves the electronic conductivity from 8.3×10-12 S cm-1 to 3.9×10-11 S cm-1 . CI-NEB and BV calculations show that the Li diffusion energy barriers along the (100), (010) and (101) directions are decreased after Ti substitution, and the Li diffusion coefficient is increased from 4.99×10-11 cm2 S-1 to 1.59×10-10 cm2 S-1 . The improved electronic conductivity and ionic diffusivity mean that the Ti-substituted material shows improved electrochemical properties compared to the pristine LiFeSO4 F.
Collapse