1
|
Lloyd VK, Hawkins RG. Under-Detection of Lyme Disease in Canada. Healthcare (Basel) 2018; 6:E125. [PMID: 30326576 PMCID: PMC6315539 DOI: 10.3390/healthcare6040125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022] Open
Abstract
Lyme disease arises from infection with pathogenic Borrelia species. In Canada, current case definition for confirmed Lyme disease requires serological confirmation by both a positive first tier ELISA and confirmatory second tier immunoblot (western blot). For surveillance and research initiatives, this requirement is intentionally conservative to exclude false positive results. Consequently, this approach is prone to false negative results that lead to underestimation of the number of people with Lyme disease. The province of New Brunswick (NB), Canada, can be used to quantify under-detection of the disease as three independent data sets are available to generate an estimate of the true human disease prevalence and incidence. First, detailed human disease incidence is available for the US states and counties bordering Canada, which can be compared with Canadian disease incidence. Second, published national serology results and well-described sensitivity and specificity values for these tests are available and deductive reasoning can be used to query for discrepancies. Third, high-density tick and canine surveillance data are available for the province, which can be used to predict expected human Lyme prevalence. Comparison of cross-border disease incidence suggests a minimum of 10.2 to 28-fold under-detection of Lyme disease (3.6% to 9.8% cases detected). Analysis of serological testing predicts the surveillance criteria generate 10.4-fold under-diagnosis (9.6% cases detected) in New Brunswick for 2014 due to serology alone. Calculation of expected human Lyme disease cases based on tick and canine infections in New Brunswick indicates a minimum of 12.1 to 58.2-fold underestimation (1.7% to 8.3% cases detected). All of these considerations apply generally across the country and strongly suggest that public health information is significantly under-detecting and under-reporting human Lyme cases across Canada. Causes of the discrepancies between reported cases and predicted actual cases may include undetected genetic diversity of Borrelia in Canada leading to failed serological detection of infection, failure to consider and initiate serological testing of patients, and failure to report clinically diagnosed acute cases. As these surveillance criteria are used to inform clinical and public health decisions, this under-detection will impact diagnosis and treatment of Canadian Lyme disease patients.
Collapse
|
research-article |
7 |
25 |
2
|
Fleshman AC, Foster E, Maes SE, Eisen RJ. Reported County-Level Distribution of Seven Human Pathogens Detected in Host-Seeking Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the Contiguous United States. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1328-1335. [PMID: 35583265 DOI: 10.1093/jme/tjac049] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 06/15/2023]
Abstract
Tickborne disease cases account for over 75% of reported vector-borne disease cases in the United States each year. In addition to transmitting the agents of Lyme disease (Borrelia burgdorferi sensu strict [Spirochaetales: Spirochaetaceae] and Borrelia mayonii [Spirochaetales: Spirochaetaceae]), the blacklegged tick, Ixodes scapularis, and the western blacklegged tick, Ixodes pacificus collectively transmit five additional human pathogens. By mapping the distributions of tickborne pathogens in host-seeking ticks, we can understand where humans are at risk of contracting tickborne diseases and devise targeted strategies to prevent them. Using publicly available tickborne pathogen surveillance databases, internal CDC pathogen testing databases, and SCOPUS search records published since 2000, we mapped the county-level distribution of Borrelia miyamotoi (Spirochaetales: Spirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), Ehrlichia muris eauclairensis (Rickettsiales: Ehrlichiaceae), Babesia microti (Piroplasmida: Babesiidae), and Powassan virus (Flaviviridae) reported in host-seeking I. scapularis or I. pacificus in the contiguous United States. We also updated recently published maps of the distributions of Borrelia burgdorferi sensu stricto and Borrelia mayonii. All seven pathogen distributions were more limited than the distributions of vector ticks, with at least one of the seven pathogens detected in 30 states out of 41 total states (73.2% of states) where vector ticks are considered to be established. Prevention and diagnosis of tickborne diseases rely on an accurate understanding by the public and health care providers of where people are at risk for exposure to infected ticks. Our county-level pathogen distribution maps expand on previous efforts showing the distribution of Lyme disease spirochetes and highlight counties where further investigation may be warranted.
Collapse
|
|
3 |
23 |
3
|
Lehane A, Parise C, Evans C, Beati L, Nicholson WL, Eisen RJ. Reported County-Level Distribution of the American Dog Tick (Acari: Ixodidae) in the Contiguous United States. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:131-155. [PMID: 31368492 PMCID: PMC8911316 DOI: 10.1093/jme/tjz119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 05/03/2023]
Abstract
In the United States, tick-borne diseases are increasing in incidence and cases are reported over an expanding geographical area. Avoiding tick bites is a key strategy in tick-borne disease prevention, and this requires current and accurate information on where humans are at risk for exposure to ticks. Based on a review of published literature and records in the U.S. National Tick Collection and National Ecological Observatory Network databases, we compiled an updated county-level map showing the reported distribution of the American dog tick, Dermacentor variabilis (Say). We show that this vector of the bacterial agents causing Rocky Mountain spotted fever and tularemia is widely distributed, with records derived from 45 states across the contiguous United States. However, within these states, county-level records of established tick populations are limited. Relative to the range of suitable habitat for this tick, our data imply that D. variabilis is currently underreported in the peer-reviewed literature, highlighting a need for improved surveillance and documentation of existing tick records.
Collapse
|
research-article |
5 |
23 |
4
|
Lewis J, Boudreau CR, Patterson JW, Bradet-Legris J, Lloyd VK. Citizen Science and Community Engagement in Tick Surveillance-A Canadian Case Study. Healthcare (Basel) 2018; 6:E22. [PMID: 29498648 PMCID: PMC5872229 DOI: 10.3390/healthcare6010022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
Lyme disease is the most common tick-borne disease in North America and Europe, and on-going surveillance is required to monitor the spread of the tick vectors as their populations expand under the influence of climate change. Active surveillance involves teams of researchers collecting ticks from field locations with the potential to be sites of establishing tick populations. This process is labor- and time-intensive, limiting the number of sites monitored and the frequency of monitoring. Citizen science initiatives are ideally suited to address this logistical problem and generate high-density and complex data from sites of community importance. In 2014, the same region was monitored by academic researchers, public health workers, and citizen scientists, allowing a comparison of the strengths and weaknesses of each type of surveillance effort. Four community members persisted with tick collections over several years, collectively recovering several hundred ticks. Although deviations from standard surveillance protocols and the choice of tick surveillance sites makes the incorporation of community-generated data into conventional surveillance analyses more complex, this citizen science data remains useful in providing high-density longitudinal tick surveillance of a small area in which detailed ecological observations can be made. Most importantly, partnership between community members and researchers has proven a powerful tool in educating communities about of the risk of tick-vectored diseases and in encouraging tick bite prevention.
Collapse
|
research-article |
7 |
22 |
5
|
Eisen L, Eisen RJ. Benefits and Drawbacks of Citizen Science to Complement Traditional Data Gathering Approaches for Medically Important Hard Ticks (Acari: Ixodidae) in the United States. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1-9. [PMID: 32772108 PMCID: PMC8056287 DOI: 10.1093/jme/tjaa165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 05/16/2023]
Abstract
Tick-borne diseases are increasing in North America. Knowledge of which tick species and associated human pathogens are present locally can inform the public and medical community about the acarological risk for tick bites and tick-borne infections. Citizen science (also called community-based monitoring, volunteer monitoring, or participatory science) is emerging as a potential approach to complement traditional tick record data gathering where all aspects of the work is done by researchers or public health professionals. One key question is how citizen science can best be used to generate high-quality data to fill knowledge gaps that are difficult to address using traditional data gathering approaches. Citizen science is particularly useful to generate information on human-tick encounters and may also contribute to geographical tick records to help define species distributions across large areas. Previous citizen science projects have utilized three distinct tick record data gathering methods including submission of: 1) physical tick specimens for identification by professional entomologists, 2) digital images of ticks for identification by professional entomologists, and 3) data where the tick species and life stage were identified by the citizen scientist. We explore the benefits and drawbacks of citizen science, relative to the traditional scientific approach, to generate data on tick records, with special emphasis on data quality for species identification and tick encounter locations. We recognize the value of citizen science to tick research but caution that the generated information must be interpreted cautiously with data quality limitations firmly in mind to avoid misleading conclusions.
Collapse
|
Review |
4 |
19 |
6
|
Takhampunya R, Kim HC, Chong ST, Korkusol A, Tippayachai B, Davidson SA, Petersen JM, Klein TA. Francisella-Like Endosymbiont Detected in Haemaphysalis Ticks (Acari: Ixodidae) From the Republic of Korea. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1735-1742. [PMID: 28981682 DOI: 10.1093/jme/tjx123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Indexed: 06/07/2023]
Abstract
A total of 6,255 ticks belonging to three genera and six species (Haemaphysalis flava Neumann, Haemaphysalis longicornis Neumann, Haemaphysalis phasiana Saito, Ixodes nipponensis Kitaoka & Saito, Ixodes persulcatus Schulze, and Amblyomma testudinarium Koch) collected from May-August, 2013, at four southwestern provinces in the Republic of Korea (ROK) were submitted to the Armed Forces Research Institute of Medical Sciences and assayed for selected tick-borne pathogens. One pool each of H. flava and H. phasiana was positive by PCR and sequencing for a Francisella-like endosymbiont, while all pools were negative for Francisella tularensis, the causative agent of tularemia.
Collapse
|
|
8 |
8 |
7
|
Jones AM, Van de Wyngaerde MT, Machtinger ET, Rajotte EG, Baker TC. Choice of Laboratory Tissue Homogenizers Matters When Recovering Nucleic Acid From Medically Important Ticks. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1221-1227. [PMID: 31971588 DOI: 10.1093/jme/tjaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Ticks can vector and transmit many pathogens and pose a serious human health threat throughout the world. After collection, many diagnostic laboratories must mechanically disrupt tick specimens for diagnostic testing and research purposes, but few studies have evaluated how well-commercial tissue homogenizers perform this task. We evaluated four commercially available tissue homogenizers: The Bead Ruptor 24 Elite, the Bullet Blender Storm, the gentleMACS Dissociator, and the Precellys 24. We quantitatively compared maceration level, nucleic acid quality, quantity, amplification, and DNA shearing to determine which machines performed the best. The Bead Ruptor 24 Elite had the highest overall score when disrupting a single, uninfected adult Amblyomma americanum (Linnaeus) (Ixodida: Ixodidae) and performed well in follow-on tests including disrupting individual juvenile samples and detecting pathogens from infected samples.
Collapse
|
|
5 |
1 |
8
|
Espada C, Cummins H, Gonzales JA, Notto L, Gaff HD. A Comparison of Tick Collection Materials and Methods in Southeastern Virginia. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:692-698. [PMID: 33017464 PMCID: PMC7954099 DOI: 10.1093/jme/tjaa207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 06/11/2023]
Abstract
In field studies of tick ecology, observed patterns may be biased by sampling methods. Results can vary by species, life stage, and habitat, and understanding these biases will improve comparisons of data across studies as well as assessment of human disease risk. A direct comparison of flagging versus dragging was conducted in southeastern Virginia. Transects were surveyed over a 6-wk period to identify differences in species and life stage collected, as well as differences between corduroy and denim material and inspection method for drags. Flagging collected more Ixodes affinis Neumann (Acari: Ixodidae) adults and Amblyomma americanum L. (Acari: Ixodidae) adults than dragging. Ground inspection was more efficient than tree inspection for collection of I. affinis adults, with no significant difference in inspection method for any other species or life stage. Corduroy was found to be more effective than denim in collecting nymphal A. americanum, although this may be an artifact of three large samples for corduroy collection of these ticks. There was no significant difference in Ixodes scapularis Say (Acari: Ixodidae) collection in any comparison. Dragging, tree inspection, and denim were not found to be more efficient in any scenario. This is the first comparison of flagging and dragging conducted in the southeastern United States. The community composition of ticks in this region greatly differs from regions where studies of these commonly used sampling techniques have been conducted. As the distributions of ticks continue to change over time, it will be important to evaluate best practices annually.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
1 |
9
|
Liao JR, Liao YH, Liao KM, Wu HH, Tu WC, Lin YH. Nationwide survey of ticks on domesticated animals in Taiwan: Revealing the hidden threat to animal and public health. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:99-107. [PMID: 37715613 DOI: 10.1111/mve.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023]
Abstract
Ticks are not only bloodsucking ectoparasites but also important vectors of tick-borne diseases (TBDs), posing significant threats to public and animal health. Domesticated animals serve as critical hosts for numerous ticks, highlighting the importance of understanding tick infestations in Taiwan. To address this knowledge gap, we conducted a nationwide survey to identify ticks on domesticated animals and associated environments in 2018 and 2019. A total of 6,205 ticks were collected from 1,337 host animals, revealing the presence of seven tick species, with Rhipicephalus microplus, and Rhipicephalus sanguineus being the dominant species. High infestation rates and widespread distribution of ticks were observed on domesticated animals, especially on dogs and cattle (yellow cattle and angus cattle), and the neighbouring grassland of yellow cattle. While this study has certain limitations, it provides valuable insights into the distribution and prevalence of ticks on domesticated animals in Taiwan and their implications for controlling TBDs. Further research is needed to comprehensively understand the complex interactions among ticks, hosts and pathogens.
Collapse
|
|
1 |
|
10
|
Noh BE, Kim GH, Lee HS, Kim H, Lee HI. The Diel Activity Pattern of Haemaphysalis longicornis and Its Relationship with Climatic Factors. INSECTS 2024; 15:568. [PMID: 39194773 DOI: 10.3390/insects15080568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Haemaphysalis longicornis is one of the most medically important carriers of various pathogens. Although H. longicornis is an important vector, only basic ecological and biological information has been obtained, primarily focusing on its abundance and distribution. This study determined the most active time and meteorological conditions for the diel activity of H. longicornis. The diel activity pattern of H. longicornis was the highest between 10:00 and 14:00, and the lowest between 22:00 and 02:00. The major activity temperature of H. longicornis was between 25 °C and 40 °C, with the highest activity at 35 °C. The relative humidity was between 30% and 70% during the active period. Temperature had the highest correlation with diel activity (R = 0.679), followed by humidity (R = -0.649) and light intensity (R = 0.572). Our results provide basic information for the development of tick-borne disease vector control programs and tick surveillance.
Collapse
|
|
1 |
|
11
|
Chakraborty S, Lyons LA, Winata F, Mateus-Pinilla N, Smith RL. Methods of active surveillance for hard ticks and associated tick-borne pathogens of public health importance in the contiguous United States: a comprehensive systematic review. JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf031. [PMID: 40111123 DOI: 10.1093/jme/tjaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/26/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Tick-borne diseases in humans and animals have increased prevalence across the United States. To understand risk factors underlying tick-borne diseases it is useful to conduct regular surveillance and monitoring of ticks and the pathogens they carry, in a sustained and effective manner. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, this study aims to summarize the previously used methods for active surveillance of ticks and tick-borne pathogens, identify the existing knowledge gaps in ongoing surveillance, and highlight and guide the mechanisms required to inform those gaps for more effective and sustainable future surveillance efforts. After screening 2,500 unique studies between 1944 and 2018, we found 646 articles that performed active surveillance of hard ticks and/or their associated tick-borne pathogens of public health importance within the United States. An additional 103 articles were included for the 2019 to 2023 period. Active surveillance has been performed in ~42% of the counties (1944 to 2018) and ~23% of the counties (2019 to 2023) within the contiguous US, and states with the most coverage are in the Northeast, Upper Midwest, and along the West coast. The most reported tick was Ixodes scapularis (195 studies) and most commonly reported pathogen was Borrelia burgdorferi (143 studies). Overall, surveillance efforts have increased and become more diversified, and methods of tick and tick-borne pathogens testing have undergone changes, but those efforts are mainly concentrated in focal regions of a county. Future surveillance efforts should follow Centers for Disease Control and Prevention guidelines and target areas of United States with scarce reports of active surveillance and build collaborations and resources to increase surveillance.
Collapse
|
|
1 |
|