1
|
Kumar ATN, Raymond SB, Dunn AK, Bacskai BJ, Boas DA. A time domain fluorescence tomography system for small animal imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2008; 27:1152-63. [PMID: 18672432 PMCID: PMC2920137 DOI: 10.1109/tmi.2008.918341] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We describe the application of a time domain diffuse fluorescence tomography system for whole body small animal imaging. The key features of the system are the use of point excitation in free space using ultrashort laser pulses and noncontact detection using a gated, intensified charge-coupled device (CCD) camera. Mouse shaped epoxy phantoms, with embedded fluorescent inclusions, were used to verify the performance of a recently developed asymptotic lifetime-based tomography algorithm. The asymptotic algorithm is based on a multiexponential analysis of the decay portion of the data. The multiexponential model is shown to enable the use of a global analysis approach for a robust recovery of the lifetime components present within the imaging medium. The surface boundaries of the imaging volume were acquired using a photogrammetric camera integrated with the imaging system, and implemented in a Monte-Carlo model of photon propagation in tissue. The tomography results show that the asymptotic approach is able to separate axially located fluorescent inclusions centered at depths of 4 and 10 mm from the surface of the mouse phantom. The fluorescent inclusions had distinct lifetimes of 0.5 and 0.95 ns. The inclusions were nearly overlapping along the measurement axis and shown to be not resolvable using continuous wave (CW) methods. These results suggest the practical feasibility and advantages of a time domain approach for whole body small animal fluorescence molecular imaging, particularly with the use of lifetime as a contrast mechanism.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
53 |
2
|
Chen B, Frank J. Two promising future developments of cryo-EM: capturing short-lived states and mapping a continuum of states of a macromolecule. Microscopy (Oxf) 2015; 65:69-79. [PMID: 26520784 DOI: 10.1093/jmicro/dfv344] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/05/2015] [Indexed: 01/04/2023] Open
Abstract
The capabilities and application range of cryogenic electron microscopy (cryo-EM) method have expanded vastly in the last two years, thanks to the advances provided by direct detection devices and computational classification tools. We take this review as an opportunity to sketch out promising developments of cryo-EM in two important directions: (i) imaging of short-lived states (10-1000 ms) of biological molecules by using time-resolved cryo-EM, particularly the mixing-spraying method and (ii) recovering an entire continuum of coexisting states from the same sample by employing a computational technique called manifold embedding. It is tempting to think of combining these two methods, to elucidate the way the states of a molecular machine such as the ribosome branch and unfold. This idea awaits further developments of both methods, particularly by increasing the data yield of the time-resolved cryo-EM method and by developing the manifold embedding technique into a user-friendly workbench.
Collapse
|
Review |
10 |
34 |
3
|
Chen SJ, Sinsuebphon N, Intes X. Assessment of Gate Width Size on Lifetime-Based Förster Resonance Energy Transfer Parameter Estimation. PHOTONICS 2015; 2:1027-1042. [PMID: 26557647 PMCID: PMC4636205 DOI: 10.3390/photonics2041027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Förster Resonance Energy Transfer (FRET) enables the observation of interactions at the nanoscale level through the use of fluorescence optical imaging techniques. In FRET, fluorescence lifetime imaging can be used to quantify the fluorescence lifetime changes of the donor molecule, which are associated with proximity between acceptor and donor molecules. Among the FRET parameters derived from fluorescence lifetime imaging, the percentage of donor that interacts with the acceptor (in proximity) can be estimated via model-based fitting. However, estimation of the lifetime parameters can be affected by the acquisition parameters such as the temporal characteristics of the imaging system. Herein, we investigate the effect of various gate widths on the accuracy of estimation of FRET parameters with focus on the near-infrared spectral window. Experiments were performed in silico, in vitro, and in vivo with gate width sizes ranging from 300 ps to 1000 ps in intervals of 100 ps. For all cases, the FRET parameters were retrieved accurately and the imaging acquisition time was decreased three-fold. These results indicate that increasing the gate width up to 1000 ps still allows for accurate quantification of FRET interactions even in the case of short lifetimes such as those encountered with near-infrared FRET pairs.
Collapse
|
Journal Article |
10 |
14 |
4
|
Perenzoni M, Pancheri L, Stoppa D. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors. SENSORS 2016; 16:s16050745. [PMID: 27223284 PMCID: PMC4883436 DOI: 10.3390/s16050745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/25/2016] [Accepted: 05/16/2016] [Indexed: 11/16/2022]
Abstract
This paper reviews the state of the art of single-photon avalanche diode (SPAD) image sensors for time-resolved imaging. The focus of the paper is on pixel architectures featuring small pixel size (<25 μm) and high fill factor (>20%) as a key enabling technology for the successful implementation of high spatial resolution SPAD-based image sensors. A summary of the main CMOS SPAD implementations, their characteristics and integration challenges, is provided from the perspective of targeting large pixel arrays, where one of the key drivers is the spatial uniformity. The main analog techniques aimed at time-gated photon counting and photon timestamping suitable for compact and low-power pixels are critically discussed. The main features of these solutions are the adoption of analog counting techniques and time-to-analog conversion, in NMOS-only pixels. Reliable quantum-limited single-photon counting, self-referenced analog-to-digital conversion, time gating down to 0.75 ns and timestamping with 368 ps jitter are achieved.
Collapse
|
Review |
9 |
13 |
5
|
Najafiaghdam H, Papageorgiou E, Torquato NA, Tian B, Cohen BE, Anwar M. A 25 micron-thin microscope for imaging upconverting nanoparticles with NIR-I and NIR-II illumination. Theranostics 2019; 9:8239-8252. [PMID: 31754393 PMCID: PMC6857055 DOI: 10.7150/thno.37672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
Rationale: Intraoperative visualization in small surgical cavities and hard-to-access areas are essential requirements for modern, minimally invasive surgeries and demand significant miniaturization. However, current optical imagers require multiple hard-to-miniaturize components including lenses, filters and optical fibers. These components restrict both the form-factor and maneuverability of these imagers, and imagers largely remain stand-alone devices with centimeter-scale dimensions. Methods: We have engineered INSITE (Immunotargeted Nanoparticle Single-Chip Imaging Technology), which integrates the unique optical properties of lanthanide-based alloyed upconverting nanoparticles (aUCNPs) with the time-resolved imaging of a 25-micron thin CMOS-based (complementary metal oxide semiconductor) imager. We have synthesized core/shell aUCNPs of different compositions and imaged their visible emission with INSITE under either NIR-I and NIR-II photoexcitation. We characterized aUCNP imaging with INSITE across both varying aUCNP composition and 980 nm and 1550 nm excitation wavelengths. To demonstrate clinical experimental validity, we also conducted an intratumoral injection into LNCaP prostate tumors in a male nude mouse that was subsequently excised and imaged with INSITE. Results: Under the low illumination fluences compatible with live animal imaging, we measure aUCNP radiative lifetimes of 600 μs - 1.3 ms, which provides strong signal for time-resolved INSITE imaging. Core/shell NaEr0.6Yb0.4F4 aUCNPs show the highest INSITE signal when illuminated at either 980 nm or 1550 nm, with signal from NIR-I excitation about an order of magnitude brighter than from NIR-II excitation. The 55 μm spatial resolution achievable with this approach is demonstrated through imaging of aUCNPs in PDMS (polydimethylsiloxane) micro-wells, showing resolution of micrometer-scale targets with single-pixel precision. INSITE imaging of intratumoral NaEr0.8Yb0.2F4 aUCNPs shows a signal-to-background ratio of 9, limited only by photodiode dark current and electronic noise. Conclusion: This work demonstrates INSITE imaging of aUCNPs in tumors, achieving an imaging platform that is thinned to just a 25 μm-thin, planar form-factor, with both NIR-I and NIR-II excitation. Based on a highly paralleled array structure INSITE is scalable, enabling direct coupling with a wide array of surgical and robotic tools for seamless integration with tissue actuation, resection or ablation.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
13 |
6
|
Kumar ATN, Carp SA, Yang J, Ross A, Medarova Z, Ran C. Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumors. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:40501. [PMID: 28397959 PMCID: PMC5387867 DOI: 10.1117/1.jbo.22.4.040501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/21/2017] [Indexed: 05/11/2023]
Abstract
Although the development of tumor-targeted fluorescent probes is a major area of investigation, it will be several years before these probes are realized for clinical use. Here, we report an approach that employs indocyanine-green (ICG), a clinically approved, nontargeted dye, in conjunction with fluorescence lifetime (FLT) detection to provide high accuracy for tumor-tissue identification in mouse models of subcutaneous human breast and brain tmors. The improved performance relies on the distinct FLTs of ICG within tumors versus tissue autofluorescence and is further aided by the well-known enhanced permeability and retention of ICG in tumors and the clearance of ICG from normal tissue several hours after intravenous injection. We demonstrate that FLT detection can provide more than 98% sensitivity and specificity, and a 10-fold reduction in error rates compared to intensity-based detection. Our studies suggest the significant potential of FLT-contrast for accurate tumor-tissue identification using ICG and other targeted probes under development, both for intraoperative imaging and for ex-vivo margin assessment of surgical specimens.
Collapse
|
research-article |
8 |
12 |
7
|
Venugopal V, Intes X. Adaptive wide-field optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:036006. [PMID: 23475290 PMCID: PMC3591745 DOI: 10.1117/1.jbo.18.3.036006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/02/2013] [Accepted: 02/05/2013] [Indexed: 05/20/2023]
Abstract
We describe a wide-field optical tomography technique, which allows the measurement-guided optimization of illumination patterns for enhanced reconstruction performances. The iterative optimization of the excitation pattern aims at reducing the dynamic range in photons transmitted through biological tissue. It increases the number of measurements collected with high photon counts resulting in a dataset with improved tomographic information. Herein, this imaging technique is applied to time-resolved fluorescence molecular tomography for preclinical studies. First, the merit of this approach is tested by in silico studies in a synthetic small animal model for typical illumination patterns. Second, the applicability of this approach in tomographic imaging is validated in vitro using a small animal phantom with two fluorescent capillaries occluded by a highly absorbing inclusion. The simulation study demonstrates an improvement of signal transmitted (∼2 orders of magnitude) through the central portion of the small animal model for all patterns considered. A corresponding improvement in the signal at the emission wavelength by 1.6 orders of magnitude demonstrates the applicability of this technique for fluorescence molecular tomography. The successful discrimination and localization (∼1 mm error) of the two objects with higher resolution using the optimized patterns compared with nonoptimized illumination establishes the improvement in reconstruction performance when using this technique.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
9 |
8
|
Ksenzov D, Maznev AA, Unikandanunni V, Bencivenga F, Capotondi F, Caretta A, Foglia L, Malvestuto M, Masciovecchio C, Mincigrucci R, Nelson KA, Pancaldi M, Pedersoli E, Randolph L, Rahmann H, Urazhdin S, Bonetti S, Gutt C. Nanoscale Transient Magnetization Gratings Created and Probed by Femtosecond Extreme Ultraviolet Pulses. NANO LETTERS 2021; 21:2905-2911. [PMID: 33724854 DOI: 10.1021/acs.nanolett.0c05083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We utilize coherent femtosecond extreme ultraviolet (EUV) pulses from a free electron laser (FEL) to generate transient periodic magnetization patterns with periods as short as 44 nm. Combining spatially periodic excitation with resonant probing at the M-edge of cobalt allows us to create and probe transient gratings of electronic and magnetic excitations in a CoGd alloy. In a demagnetized sample, we observe an electronic excitation with a rise time close to the FEL pulse duration and ∼0.5 ps decay time indicative of electron-phonon relaxation. When the sample is magnetized to saturation in an external field, we observe a magnetization grating, which appears on a subpicosecond time scale as the sample is demagnetized at the maxima of the EUV intensity and then decays on the time scale of tens of picoseconds via thermal diffusion. The described approach opens multiple avenues for studying dynamics of ultrafast magnetic phenomena on nanometer length scales.
Collapse
|
|
4 |
8 |
9
|
Finizio S, Mayr S, Raabe J. Time-of-arrival detection for time-resolved scanning transmission X-ray microscopy imaging. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1320-1325. [PMID: 32876607 PMCID: PMC7467344 DOI: 10.1107/s1600577520007262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
A setup for time-resolved scanning transmission X-ray microscopy imaging is presented, which allows for an increase in the temporal resolution without the requirement of operating the synchrotron light source with low-α optics through the measurement of the time-of-arrival of the X-ray photons. Measurements of two filling patterns in hybrid mode of the Swiss Light Source are presented as a first proof-of-principle and benchmark for the performances of this new setup. From these measurements, a temporal resolution on the order of 20-30 ps could be determined.
Collapse
|
research-article |
5 |
7 |
10
|
Omer T, Zhao L, Intes X, Hahn J. Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:086023. [PMID: 25166472 PMCID: PMC4147194 DOI: 10.1117/1.jbo.19.8.086023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/30/2014] [Indexed: 05/04/2023]
Abstract
Fluorescence lifetime imaging (FLIM) aims at quantifying the exponential decay rate of fluorophores to yield lifetime maps over the imaged sample. When combined with Förster resonance energy transfer (FRET), the technique can be used to indirectly sense interactions at the nanoscale such as protein–protein interactions, protein–DNA interactions, and protein conformational changes. In the case of FLIM-FRET, the fluorescence intensity decays are fitted to a biexponential model in order to estimate the lifetime and fractional amplitude coefficients of each component of the population of the donor fluorophore (quenched and nonquenched). Numerous time data points, also called temporal or time gates, are typically employed for accurately estimating the model parameters, leading to lengthy acquisition times and significant computational demands. This work investigates the effect of the number and location of time gates on model parameter estimation accuracy. A detailed model of a FLIM-FRET imaging system is used for the investigation, and the simulation outcomes are validated with in vitro and in vivo experimental data. In all cases investigated, it is found that 10 equally spaced time gates allow robust estimation of model-based parameters with accuracy similar to that of full temporal datasets (90 gates).
Collapse
|
Research Support, N.I.H., Extramural |
11 |
6 |
11
|
Colombo L, Pagliazzi M, Sekar SKV, Contini D, Mora AD, Spinelli L, Torricelli A, Durduran T, Pifferi A. Effects of the instrument response function and the gate width in time-domain diffuse correlation spectroscopy: model and validations. NEUROPHOTONICS 2019; 6:035001. [PMID: 31312668 PMCID: PMC6624407 DOI: 10.1117/1.nph.6.3.035001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/18/2019] [Indexed: 05/12/2023]
Abstract
Time-domain diffuse correlation spectroscopy (TD-DCS) is an emerging noninvasive optical technique with the potential to resolve blood flow (BF) and optical coefficients (reduced scattering and absorption) in depth. Here, we study the effects of finite temporal resolution and gate width in a realistic TD-DCS experiment. We provide a model for retrieving the BF from gated intensity autocorrelations based on the instrument response function, which allows for the use of broad time gates. This, in turn, enables a higher signal-to-noise ratio that is critical for in vivo applications. In numerical simulations, the use of the proposed model reduces the error in the estimated late gate BF from 34% to 3%. Simulations are also performed for a wide set of optical properties and source–detector separations. In a homogeneous phantom experiment, the discrepancy between later gates BF index and ungated BF index is reduced from 37% to 2%. This work not only provides a tool for data analysis but also physical insights, which can be useful for studying and optimizing the system performance.
Collapse
|
research-article |
6 |
6 |
12
|
Li Y, Garrett JW, Li K, Strother C, Chen GH. An Enhanced SMART-RECON Algorithm for Time-Resolved C-Arm Cone-Beam CT Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1894-1905. [PMID: 31870980 PMCID: PMC7307269 DOI: 10.1109/tmi.2019.2960720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Temporal resolution in time-resolved cone-beam CT (TR-CBCT) imaging is often limited by the time needed to acquire a complete data set for image reconstruction. With the recent developments of performing nearly limited-view artifact-free reconstruction from data in a limited-view angle range and a prior image, temporal resolution of TR-CBCT imaging can be improved. One such an example is the use of Simultaneous Multiple Artifacts Reduction in Tomographic RECONstruction (SMART-RECON) [1] technique. However, with SMART-RECON, one can only improve temporal resolution up to 1 frame per second (fps) which is an improvement of 4.5 times over that of the conventional FBP reconstruction. In this paper, a new technique referred to as enhanced SMART-RECON (eSMART-RECON) was introduced to enhance the temporal performance of SMART-RECON in a multi-sweep CBCT data acquisition protocol. Both numerical simulation studies with ground truth and in vivo human subject studies using C-arm CBCT acquisition systems were conducted to demonstrate the following key results: for a multi-sweep CBCT acquisition protocol, eSMART-RECON enables 4-7.5 fps temporal resolution for TR-CBCT which is 4-7.5 times better than that offered by the original SMART-RECON, and 18-34 times better than that offered by the conventional FBP reconstruction.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
5 |
13
|
Song F, Ou X, Chou TY, Liu J, Gao H, Zhang R, Huang X, Zhao Z, Sun J, Chen S, Lam JWY, Tang BZ. Oxygen Quenching-Resistant Nanoaggregates with Aggregation-Induced Delayed Fluorescence for Time-Resolved Mapping of Intracellular Microviscosity. ACS NANO 2022; 16:6176-6184. [PMID: 35318852 DOI: 10.1021/acsnano.1c11661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microviscosity is a fundamental parameter in the biophysics of life science and governs numerous cellular processes. Thus, the development of real-time quantitative monitoring of microviscosity inside cells is important. The traditional probes for detecting microviscosity via time-resolved luminescence imaging (TRLI) are generally disturbed by autofluorescence or surrounding oxygen in cells. Herein, we developed loose packing nanoaggregates with aggregation-induced delayed fluorescence (FKP-POA and FKP-PTA) and free from the effect of oxygen and autofluorescence for viscosity mapping via TRLI. The feasibility of FKP-PTA nanoparticles (NPs) for microviscosity mapping through TRLI was demonstrated by monitoring the variation of microviscosity inside HepG2 cancer cells, which demonstrated a value change from 14.9 cP to 216.9 cP during the apoptosis. This indicates that FKP-PTA NP can be used as a probe for cellular microviscosity mapping to help people to understand the physiologically dynamic microenvironment. The present results are expected to promote the advancement of diagnostic and therapeutic methods to cope with related diseases.
Collapse
|
|
3 |
5 |
14
|
Philipp HT, Tate MW, Purohit P, Shanks KS, Weiss JT, Gruner SM. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:395-403. [PMID: 26917125 PMCID: PMC4768764 DOI: 10.1107/s1600577515022754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/28/2015] [Indexed: 05/18/2023]
Abstract
A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
4 |
15
|
Influence of Oxidative Stress on Time-Resolved Oxygen Detection by [Ru(Phen) 3] 2+ In Vivo and In Vitro. Molecules 2021; 26:molecules26020485. [PMID: 33477558 PMCID: PMC7831141 DOI: 10.3390/molecules26020485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
Detection of tissue and cell oxygenation is of high importance in fundamental biological and in many medical applications, particularly for monitoring dysfunction in the early stages of cancer. Measurements of the luminescence lifetimes of molecular probes offer a very promising and non-invasive approach to estimate tissue and cell oxygenation in vivo and in vitro. We optimized the evaluation of oxygen detection in vivo by [Ru(Phen)3]2+ in the chicken embryo chorioallantoic membrane model. Its luminescence lifetimes measured in the CAM were analyzed through hierarchical clustering. The detection of the tissue oxygenation at the oxidative stress conditions is still challenging. We applied simultaneous time-resolved recording of the mitochondrial probe MitoTrackerTM OrangeCMTMRos fluorescence and [Ru(Phen)3]2+ phosphorescence imaging in the intact cell without affecting the sensitivities of these molecular probes. [Ru(Phen)3]2+ was demonstrated to be suitable for in vitro detection of oxygen under various stress factors that mimic oxidative stress: other molecular sensors, H2O2, and curcumin-mediated photodynamic therapy in glioma cancer cells. Low phototoxicities of the molecular probes were finally observed. Our study offers a high potential for the application and generalization of tissue oxygenation as an innovative approach based on the similarities between interdependent biological influences. It is particularly suitable for therapeutic approaches targeting metabolic alterations as well as oxygen, glucose, or lipid deprivation.
Collapse
|
Journal Article |
4 |
4 |
16
|
Kryou C, Theodorakos I, Karakaidos P, Klinakis A, Hatziapostolou A, Zergioti I. Parametric Study of Jet/Droplet Formation Process during LIFT Printing of Living Cell-Laden Bioink. MICROMACHINES 2021; 12:mi12111408. [PMID: 34832817 PMCID: PMC8617988 DOI: 10.3390/mi12111408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 01/17/2023]
Abstract
Bioprinting offers great potential for the fabrication of three-dimensional living tissues by the precise layer-by-layer printing of biological materials, including living cells and cell-laden hydrogels. The laser-induced forward transfer (LIFT) of cell-laden bioinks is one of the most promising laser-printing technologies enabling biofabrication. However, for it to be a viable bioprinting technology, bioink printability must be carefully examined. In this study, we used a time-resolved imaging system to study the cell-laden bioink droplet formation process in terms of the droplet size, velocity, and traveling distance. For this purpose, the bioinks were prepared using breast cancer cells with different cell concentrations to evaluate the effect of the cell concentration on the droplet formation process and the survival of the cells after printing. These bioinks were compared with cell-free bioinks under the same printing conditions to understand the effect of the particle physical properties on the droplet formation procedure. The morphology of the printed droplets indicated that it is possible to print uniform droplets for a wide range of cell concentrations. Overall, it is concluded that the laser fluence and the distance of the donor–receiver substrates play an important role in the printing impingement type; consequently, a careful adjustment of these parameters can lead to high-quality printing.
Collapse
|
|
4 |
2 |
17
|
Zhang Y, Xue X, Fang M, Pang G, Xing Y, Zhang X, Li L, Chen Q, Wang Y, Chang J, Zhao P, Wang H. Upconversion Optogenetic Engineered Bacteria System for Time-Resolved Imaging Diagnosis and Light-Controlled Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46351-46361. [PMID: 36201723 DOI: 10.1021/acsami.2c14633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Engineering bacteria can achieve targeted and controllable cancer therapy using synthetic biology technology and the characteristics of tumor microenvironment. Besides, the accurate tumor diagnosis and visualization of the treatment process are also vital for bacterial therapy. In this paper, a light control engineered bacteria system based on upconversion nanoparticles (UCNP)-mediated time-resolved imaging (TRI) was constructed for colorectal cancer theranostic and therapy. UCNP with different luminous lifetimes were separately modified with the tumor targeting molecule (folic acid) or anaerobic bacteria (Nissle 1917, EcN) to realize the co-localization of tumor tissues, thus improving the diagnostic accuracy based on TRI. In addition, blue light was used to induce engineered bacteria (EcN-pDawn-φx174E/TRAIL) lysis and the release of tumor apoptosis-related inducing ligand (TRAIL), thus triggering tumor cell death. In vitro and in vivo results indicated that this system could achieve accurate tumor diagnosis and light-controlled cancer therapy. EcN-pDawn-φx174E/TRAIL with blue light irradiation could inhibit 53% of tumor growth in comparison to that without blue light irradiation (11.8%). We expect that this engineered bacteria system provides a new technology for intelligent bacterial therapy and the construction of cancer theranostics.
Collapse
|
|
3 |
2 |
18
|
The Effect of Confinement Angle on Self-Colliding Aluminium Laser Plasmas Using Spectrally Resolved Fast Imaging. MATERIALS 2020; 13:ma13235489. [PMID: 33276486 PMCID: PMC7729914 DOI: 10.3390/ma13235489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
In this work we investigate the effect of the confinement angle on self-colliding aluminium laser produced plasmas. More specifically, we apply V-shaped channel targets of different angles (90°, 60° and 30°) and report both broadband and filtered time-resolved fast imaging measurements on the formation of such plasmas in ambient air. Based on the broadband measurements we suggest that the plasmas formed on the two inner walls of the V-shaped channel expand normally to the surface, interact with each other and possibly stagnate. The spectrally filtered fast imaging reveals the presence of a spatial distribution of different species within the plasmas and signatures of forced recombination.
Collapse
|
|
5 |
1 |
19
|
Abstract
Lanthanide complexes are employed in photoluminescence detection of fingerprints because their long luminescence lifetimes allow use of time-resolved imaging techniques to suppress problematic background fluorescence. To date, however, these complexes have been unsuccessful when used in developing old fingerprints on porous substrates. SYPRO Rose Plus Protein Blot Stain remedies this shortcoming; it lends itself to smooth surfaces as well, thus having potential as a universal fingerprint reagent.
Collapse
|
discussion |
23 |
1 |
20
|
Romano A, Consoli A, Tari Capone F, Biraschi F, Suma G, Mangiafico S, Bozzao A. An epidural arteriovenous fistula studied with time-resolved imaging of contrast kinetics (TRICKS) sequence. Neuroradiol J 2016; 29:455-457. [PMID: 27566705 DOI: 10.1177/1971400916666557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We describe the use of time-resolved MR angiography in the diagnosis of cervical epidural arteriovenous fistula before final diagnosis and embolization was achieved by digital subtraction angiography. A 42-year-old woman was referred to us because of headache and dizziness, in addition to radiculopathy of the right superior limb. Angiographic examinations documented a direct high-flow arteriovenous fistula between the right vertebral artery and the cervical epidural venous plexus. The point of fistula was located in the upper third of the cervical segment below the C2 arch. Time-resolved MR angiography might add important information in case of suspected arteriovenous fistula, helpful both for therapeutic decisions and follow-up.
Collapse
|
Case Reports |
9 |
1 |
21
|
Sato N, Katayama K. Analysis of Molecular Disordering Processes in the Phase Transition of Liquid Crystals Observed by Patterned-Illumination Time-Resolved Phase Microscopy. MATERIALS 2021; 14:ma14195491. [PMID: 34639889 PMCID: PMC8509586 DOI: 10.3390/ma14195491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/22/2022]
Abstract
The initial processes of the phase transition dynamics of liquid crystals (LCs) subject to UV pulse irradiation were clarified using a nanosecond time-resolved imaging technique called pattern-illumination time-resolved phase microscopy (PI-PM). Two types of LCs were studied: a photo-responsive LC and dye-doped LCs. We found two steps of molecular disordering processes in the phase transition, namely local disordering proceeding anisotropically, followed by the spreading of the isotropic phase. These two processes were separated for a photo-responsive LC while being simultaneously observed for the dye-doped LCs. It was found that the photomechanical dyes induced the phase transition process faster than the photothermal dyes.
Collapse
|
|
4 |
|
22
|
Li Y, Wu Z, Huang Z, Yin C, Tian H, Ma X. Activatable red/near-infrared aqueous organic phosphorescence probes for improved time-resolved bioimaging. Natl Sci Rev 2025; 12:nwae383. [PMID: 39830396 PMCID: PMC11737404 DOI: 10.1093/nsr/nwae383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 01/22/2025] Open
Abstract
Organic red/near-infrared (NIR) room-temperature phosphorescence (RTP) holds significant potential for autofluorescence-free bioimaging and biosensing due to its prolonged persistent luminescence and exceptional penetrability. However, achieving activatable red/NIR organic RTP probes with tunable emission in aqueous solution remains a formidable challenge. Here we report on aqueous organic RTP probes with red/NIR phosphorescence intensity and lifetime amplification. These probes consist of supramolecular assemblies comprising macrocyclic cucurbit[8]uril and amine-containing alkyl-bridged pyridiniums, exhibiting viscosity-activatable phosphorescence with enhanced quantum yield (≤20%) and lifetime. Notably, by utilizing this activatable organic RTP probe, we successfully achieve two-photon imaging of lysosomal viscosity and millisecond-scale time-resolved cell imaging. Moreover, intravital phosphorescence imaging by using an RTP probe enables the monitoring of viscosity variations in inflammatory mice, demonstrating a significantly improved signal-to-background ratio compared with fluorescence imaging. This activatable red/NIR supramolecular platform facilitates versatile high-resolution phosphorescence imaging for in vivo tracking of specific biomarkers and physiological events.
Collapse
|
research-article |
1 |
|
23
|
Cardillo-Zallo I, Biskupek J, Bloodworth S, Marsden ES, Fay MW, Ramasse QM, Rance GA, Stoppiello CT, Cull WJ, Weare BL, Whitby RJ, Kaiser U, Brown PD, Khlobystov AN. Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas. ACS NANO 2024; 18:2958-2971. [PMID: 38251654 PMCID: PMC10832048 DOI: 10.1021/acsnano.3c07853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the nanoscale. We report on a nanoscale system consisting of endohedral fullerenes encapsulated within single-walled carbon nanotubes ((Kr@C60)@SWCNT), capable of the delivery and release of krypton atoms on-demand, via coalescence of host fullerene cages under the action of the electron beam (in situ) or heat (ex situ). The state and dynamics of Kr atoms were investigated by energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). Kr atom positions were measured precisely using aberration-corrected high-resolution TEM (AC-HRTEM), aberration-corrected scanning TEM (AC-STEM), and single-atom spectroscopic imaging (STEM-EELS). The electron beam drove the formation of 2Kr@C120 capsules, in which van der Waals Kr2 and transient covalent [Kr2]+ bonding states were identified. Thermal coalescence led to the formation of longer coalesced nested nanotubes containing more loosely bound Krn chains (n = 3-6). In some instances, delocalization of Kr atomic positions was confirmed by STEM analysis as the transition to a one-dimensional (1D) gas, as Kr atoms were constrained to only one degree of translational freedom within long, well-annealed, nested nanotubes. Such nested nanotube structures were investigated by Raman spectroscopy. This material represents a highly compressed and dimensionally constrained 1D gas stable under ambient conditions. Direct atomic-scale imaging has revealed elusive bonding states and a previously unseen 1D gaseous state of matter of this noble gas element, demonstrating TEM to be a powerful tool in the discovery of chemistry at the single-atom level.
Collapse
|
research-article |
1 |
|
24
|
Finizio S, Bailey JB, Olsthoorn B, Raabe J. Periodogram-Based Detection of Unknown Frequencies in Time-Resolved Scanning Transmission X-ray Microscopy. ACS NANO 2022; 16:21071-21078. [PMID: 36512505 DOI: 10.1021/acsnano.2c08874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pump-probe time-resolved imaging is a powerful technique that enables the investigation of dynamical processes. Signal-to-noise and sampling rate restrictions normally require that cycles of an excitation are repeated many times with the final signal reconstructed using a reference. However, this approach imposes restrictions on the types of dynamical processes that can be measured, namely, that they are phase locked to a known external signal (e.g., a driven oscillation or impulse). This rules out many interesting processes such as auto-oscillations and spontaneously forming populations, e.g., condensates. In this work we present a method for time-resolved imaging, based on the Schuster periodogram, that allows for the reconstruction of dynamical processes where the intrinsic frequency is not known. In our case we use time of arrival detection of X-ray photons to reconstruct magnetic dynamics without using a priori information on the dynamical frequency. This proof-of-principle demonstration will allow for the extension of pump-probe time-resolved imaging to the important class of processes where the dynamics are not locked to a known external signal and in its presented formulation can be readily adopted for X-ray imaging and also adapted for wider use.
Collapse
|
|
3 |
|
25
|
Shi B, Zhang L, Yan K, Ming J, Chen ZH, Chen Y, He H, Zhang H, Wang L, Wang S, Zhang F. Efficient and Stable NIR-II Phosphorescence of Metallophilic Molecular Oligomers for In Vivo Single-Cell Tracking and Time-Resolved Imaging. Angew Chem Int Ed Engl 2024; 63:e202410118. [PMID: 38997791 DOI: 10.1002/anie.202410118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Molecular phosphorescence in the second near-infrared window (NIR-II, 1000-1700 nm) holds promise for deep-tissue optical imaging with high contrast by overcoming background fluorescence interference. However, achieving bright and stable NIR-II molecular phosphorescence suitable for biological applications remains a formidable challenge. Herein, we report a new series of symmetric isocyanorhodium(I) complexes that could form oligomers and exhibit bright, long-lived (7-8 μs) phosphorescence in aqueous solution via metallophilic interaction. Ligand substituents with enhanced dispersion attraction and electron-donating properties were explored to extend excitation/emission wavelengths and enhanced stability. Further binding the oligomers with fetal bovine serum (FBS) resulted in NIR-II molecular phosphorescence with high quantum yields (up to 3.93 %) and long-term stability in biological environments, enabling in vivo tracking of single-macrophage dynamics and high-contrast time-resolved imaging. These results pave the way for the development of highly-efficient NIR-II molecular phosphorescence for biomedical applications.
Collapse
|
|
1 |
|