1
|
Kim HH, Yang B, Patel T, Sfigakis F, Li C, Tian S, Lei H, Tsen AW. One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. NANO LETTERS 2018; 18:4885-4890. [PMID: 30001134 DOI: 10.1021/acs.nanolett.8b01552] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the observation of a very large negative magnetoresistance effect in a van der Waals tunnel junction incorporating a thin magnetic semiconductor, CrI3, as the active layer. At constant voltage bias, current increases by nearly one million percent upon application of a 2 T field. The effect arises from a change between antiparallel to parallel alignment of spins across the different CrI3 layers. Our results elucidate the nature of the magnetic state in ultrathin CrI3 and present new opportunities for spintronics based on two-dimensional materials.
Collapse
|
|
7 |
106 |
2
|
Tavassolizadeh A, Rott K, Meier T, Quandt E, Hölscher H, Reiss G, Meyners D. Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors. SENSORS 2016; 16:s16111902. [PMID: 27845708 PMCID: PMC5134561 DOI: 10.3390/s16111902] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022]
Abstract
Magnetostrictive tunnel magnetoresistance (TMR) sensors pose a bright perspective in micro- and nano-scale strain sensing technology. The behavior of TMR sensors under mechanical stress as well as their sensitivity to the applied stress depends on the magnetization configuration of magnetic tunnel junctions (MTJ)s with respect to the stress axis. Here, we propose a configuration resulting in an inverse effect on the tunnel resistance by tensile and compressive stresses. Numerical simulations, based on a modified Stoner–Wohlfarth (SW) model, are performed in order to understand the magnetization reversal of the sense layer and to find out the optimum bias magnetic field required for high strain sensitivity. At a bias field of −3.2 kA/m under a 0.2×10-3 strain, gauge factors of 2294 and −311 are calculated under tensile and compressive stresses, respectively. Modeling results are investigated experimentally on a round junction with a diameter of 30±0.2μm using a four-point bending apparatus. The measured field and strain loops exhibit nearly the same trends as the calculated ones. Also, the gauge factors are in the same range. The junction exhibits gauge factors of 2150±30 and −260 for tensile and compressive stresses, respectively, under a −3.2 kA/m bias magnetic field. The agreement of the experimental and modeling results approves the proposed configuration for high sensitivity and ability to detect both tensile and compressive stresses by a single TMR sensor.
Collapse
|
Journal Article |
9 |
25 |
3
|
Vidal EG, Muñoz DR, Arias SIR, Moreno JS, Cardoso S, Ferreira R, Freitas P. Electronic Energy Meter Based on a Tunnel Magnetoresistive Effect (TMR) Current Sensor. MATERIALS 2017; 10:ma10101134. [PMID: 28954425 PMCID: PMC5666940 DOI: 10.3390/ma10101134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/10/2017] [Accepted: 09/15/2017] [Indexed: 11/21/2022]
Abstract
In the present work, the design and microfabrication of a tunneling magnetoresistance (TMR) electrical current sensor is presented. After its physical and electrical characterization, a wattmeter is developed to determine the active power delivered to a load from the AC 50/60 Hz mains line. Experimental results are shown up to 1000 W of power load. A relative uncertainty of less than 1.5% with resistive load and less than 1% with capacitive load was obtained. The described application is an example of how TMR sensing technology can play a relevant role in the management and control of electrical energy.
Collapse
|
Journal Article |
8 |
15 |
4
|
Feng Y, Cheng Z, Wang X. Extremely Large Non-equilibrium Tunnel Magnetoresistance Ratio in CoRhMnGe Based Magnetic Tunnel Junction by Interface Modification. Front Chem 2019; 7:550. [PMID: 31508406 PMCID: PMC6718457 DOI: 10.3389/fchem.2019.00550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/19/2019] [Indexed: 11/29/2022] Open
Abstract
Equiatomic quaternary Heusler compounds (EQHCs) generally have the advantages of high Curie temperature, large spin polarization and long spin diffusion length, and they are regarded as one of the most promising candidates for spintronics devices. Herein, we report a theoretical investigation on an EQHC CoRhMnGe based magnetic tunnel junction (MTJ) with (i) MnGe-terminated interface and (ii) modified pure Mn terminated interface, i.e., MnMn-terminated interface. By employing first principle calculations combined with non-equilibrium Green's function, the local density of states (LDOS), transmission coefficient, spin-polarized current, tunnel magnetoresistance (TMR) ratio and spin injection efficiency (SIE) as a function of bias voltage are studied. It reveals that when the MTJ under equilibrium state, TMR ratio of MnGe-terminated structure is as high as 3,438%. When the MTJ is modified to MnMn-terminated interface, TMR ratio at equilibrium is enhanced to 2 × 105%, and spin filtering effects are also strengthened. When bias voltage is applied to the MTJ, the TMR ratio of the MnGe-terminated structure suffers a dramatic loss. While the modified MnMn-terminated structure could preserve a large TMR value of 1 × 105%, even bias voltage rises up to 0.1 V, showing a robust bias endurance. These excellent spin transport properties make the CoRhMnGe a promising candidate material for spintronics devices.
Collapse
|
|
6 |
12 |
5
|
Wen Z, Sukegawa H, Furubayashi T, Koo J, Inomata K, Mitani S, Hadorn JP, Ohkubo T, Hono K. A 4-fold-symmetry hexagonal ruthenium for magnetic heterostructures exhibiting enhanced perpendicular magnetic anisotropy and tunnel magnetoresistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6483-6490. [PMID: 25123705 DOI: 10.1002/adma.201401959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/26/2014] [Indexed: 06/03/2023]
Abstract
A 4-fold-symmetry hexagonal Ru emerging in epitaxial MgO/Ru/Co2 FeAl/MgO heterostructures is reported, in which an approximately Ru(022¯3) growth attributes to the lattice matching between MgO, Ru, and Co2 FeAl. Perpendicular magnetic anisotropy of the Co2 FeAl/MgO interface is substantially enhanced. The magnetic tunnel junctions (MTJs) incorporating this structure give rise to the largest tunnel magnetoresistance for perpendicular MTJs using low damping Heusler alloys.
Collapse
|
|
11 |
12 |
6
|
Dankert A, Pashaei P, Kamalakar MV, Gaur APS, Sahoo S, Rungger I, Narayan A, Dolui K, Hoque MA, Patel RS, de Jong MP, Katiyar RS, Sanvito S, Dash SP. Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide. ACS NANO 2017; 11:6389-6395. [PMID: 28557439 DOI: 10.1021/acsnano.7b02819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The two-dimensional (2D) semiconductor molybdenum disulfide (MoS2) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5-2% has been observed, corresponding to spin polarization of 5-10% in the measured temperature range of 300-75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.
Collapse
|
|
8 |
10 |
7
|
Kim HH, Yang B, Tian S, Li C, Miao GX, Lei H, Tsen AW. Tailored Tunnel Magnetoresistance Response in Three Ultrathin Chromium Trihalides. NANO LETTERS 2019; 19:5739-5745. [PMID: 31305077 DOI: 10.1021/acs.nanolett.9b02357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Materials that demonstrate large magnetoresistance have attracted significant interest for many decades. Extremely large tunnel magnetoresistance (TMR) has been reported by several groups across ultrathin CrI3 by exploiting the weak antiferromagnetic coupling between adjacent layers. Here, we report a comparative study of TMR in all three chromium trihalides (CrX3, X = Cl, Br, or I) in the two-dimensional limit. As the materials exhibit different transition temperatures and interlayer magnetic ordering in the ground state, tunneling measurements allow for an easy determination of the field-temperature phase diagram for the three systems. By changing sample thickness and biasing conditions, we then demonstrate how to maximize and further tailor the TMR response at different temperatures for each material. In particular, near the magnetic transition temperature, TMR is nonsaturating up to the highest fields measured for all three compounds owing to the large, field-induced exchange coupling.
Collapse
|
|
6 |
9 |
8
|
Lu H, Guo Y, Robertson J. Ab Initio Study of Hexagonal Boron Nitride as the Tunnel Barrier in Magnetic Tunnel Junctions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47226-47235. [PMID: 34559966 DOI: 10.1021/acsami.1c13583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional hexagonal boron nitride (h-BN) is studied as a tunnel barrier in magnetic tunnel junctions (MTJs) as a possible alternative to MgO. The tunnel magnetoresistance (TMR) of such MTJs is calculated as a function of whether the interface involves the chemi- or physisorptive site of h-BN atoms on the metal electrodes, Fe, Co, or Ni. It is found that the physisorptive site on average produces higher TMR values, whereas the chemisorptive site has the greater binding energy but lower TMR. It is found that alloying the electrodes with an inert metal-like Pt can induce the preferred absorption site on Co to become a physisorptive site, enabling a higher TMR value. It is found that the choice of physisorptive sites of each element gives more Schottky-like dependence of their Schottky barrier heights on the metal work function.
Collapse
|
|
4 |
7 |
9
|
Willing S, Schlage K, Bocklage L, Ramin Moayed MM, Gurieva T, Meier G, Röhlsberger R. Novel Tunnel Magnetoresistive Sensor Functionalities via Oblique-Incidence Deposition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32343-32351. [PMID: 34214392 DOI: 10.1021/acsami.1c03084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling the magnetic properties of ultrathin films remains one of the main challenges to the further development of tunnel magnetoresistive (TMR) device applications. The magnetic response in such devices is mainly governed by extending the primary TMR trilayer with the use of suitable contact materials. The transfer of magnetic anisotropy to ferromagnetic electrodes consisting of CoFeB layers results in a field-dependent TMR response, which is determined by the magnetic properties of the CoFeB as well as the contact materials. We flexibly apply oblique-incidence deposition (OID) to introduce arbitrary intrinsic in-plane anisotropy profiles into the magnetic layers. The OID-induced anisotropy shapes the magnetic response and eliminates the requirement of additional magnetic contact materials. Functional control is achieved via an adjustable shape anisotropy that is selectively tailored for the ultrathin CoFeB layers. This approach circumvents previous limitations on TMR devices and allows for the design of new sensing functionalities, which can be precisely customized to a specific application, even in the high field regime. The resulting sensors maintain the typical TMR signal strength as well as a superb thermal stability of the tunnel junction, revealing a striking advantage in functional TMR design using anisotropic interfacial roughness.
Collapse
|
|
4 |
5 |
10
|
Tong J, Wu Y, Zhang R, Zhou L, Qin G, Tian F, Zhang X. Full-Electrical Writing and Reading of Magnetization States in a Magnetic Junction with Symmetrical Structure and Antiparallel Magnetic Configuration. ACS NANO 2021; 15:12213-12221. [PMID: 34228429 DOI: 10.1021/acsnano.1c03821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Full-electrical writing and reading of magnetization states are vital for the development of next-generation spintronic devices with high density and ultralow-power consumption. Here, we proposed a method to realize the full-electrical writing and reading of magnetization states via a structural design, which only requires a symmetrical device structure and an antiparallel magnetic configuration. CrBr3, h-BN, and 1T-MnSe2 were selected to construct the device of CrBr3/h-BN/1T-MnSe2/h-BN/CrBr3, where the magnetization of two CrBr3 layers was fixed to the antiparallel state. By changing the direction and magnitude of the applied electric field, it is proved that the magnetization of 1T-MnSe2 could be reversed. Moreover, the device energies before and after the magnetization reversal are the same when the applied electric field is removed due to the structural symmetry. Meanwhile, the magnetic anisotropy energy of 1T-MnSe2 could induce an energy barrier, to guarantee the nonvolatile magnetization reversal in the present device. In addition, the tunnel magnetoresistance ratio was found up to 421%, showing a promising application to full-electrically write and read magnetization in spintronics. The present study likely promotes the development of full-electrical and ultralow-power spintronics devices.
Collapse
|
|
4 |
5 |
11
|
Jin Z, Wang Y, Fujiwara K, Oogane M, Ando Y. Detection of Small Magnetic Fields Using Serial Magnetic Tunnel Junctions with Various Geometrical Characteristics. SENSORS 2020; 20:s20195704. [PMID: 33036470 PMCID: PMC7583831 DOI: 10.3390/s20195704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022]
Abstract
Thanks to their high magnetoresistance and integration capability, magnetic tunnel junction-based magnetoresistive sensors are widely utilized to detect weak, low-frequency magnetic fields in a variety of applications. The low detectivity of MTJs is necessary to obtain a high signal-to-noise ratio when detecting small variations in magnetic fields. We fabricated serial MTJ-based sensors with various junction area and free-layer electrode aspect ratios. Our investigation showed that their sensitivity and noise power are affected by the MTJ geometry due to the variation in the magnetic shape anisotropy. Their MR curves demonstrated a decrease in sensitivity with an increase in the aspect ratio of the free-layer electrode, and their noise properties showed that MTJs with larger junction areas exhibit lower noise spectral density in the low-frequency region. All of the sensors were able detect a small AC magnetic field (Hrms = 0.3 Oe at 23 Hz). Among the MTJ sensors we examined, the sensor with a square-free layer and large junction area exhibited a high signal-to-noise ratio (4792 ± 646). These results suggest that MTJ geometrical characteristics play a critical role in enhancing the detectivity of MTJ-based sensors.
Collapse
|
Letter |
5 |
4 |
12
|
Prasad B, Zhang W, Jian J, Wang H, Blamire MG. Strongly bias-dependent tunnel magnetoresistance in manganite spin filter tunnel junctions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3079-3084. [PMID: 25845706 DOI: 10.1002/adma.201405147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/12/2015] [Indexed: 06/04/2023]
Abstract
A highly unconventional bias-dependent tunnel magnetoresistance (TMR) response is observed in Sm0.75 Sr0.25 MnO3 -based nanopillar spin filter tunnel junctions (SFTJs) with two different behaviors in two different thickness regimes of the barrier layer. Thinner barrier devices exhibit conventional SFTJ behaviors; however, for larger barrier thicknesses, the TMR-bias dependence is more complex and reverses sign at higher bias.
Collapse
|
|
10 |
1 |
13
|
Suzuki KZ, Kimura S, Kubota H, Mizukami S. Magnetic Tunnel Junctions with a Nearly Zero Moment Manganese Nanolayer with Perpendicular Magnetic Anisotropy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43305-43310. [PMID: 30520620 DOI: 10.1021/acsami.8b15606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A magnetic nanolayer with a perpendicular magnetic easy axis and negligible magnetization is demonstrated. Even though a manganese metal is antiferromagnetic in bulk form, a few manganese monolayers grown on a paramagnetic ordered alloy template and capped by an oxide layer exhibit a strong perpendicular magnetic anisotropy field exceeding 19 T as well as a negligible magnetization of 25 kA/m. The nanolayer shows tunnel magnetoresistance. Moreover, the perpendicular magnetic anisotropy for the nanolayer can be reduced by applying an electric voltage. These findings will provide new insight into a creation of new nanolayer magnets.
Collapse
|
|
7 |
1 |
14
|
Kohiki S, Nara K, Mitome M, Tsuya D. Magnetoresistance of drop-cast film of cobalt-substituted magnetite nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17410-17415. [PMID: 25259873 DOI: 10.1021/am500713k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An oleic acid-coated Fe2.7Co0.3O4 nanocrystal (NC) self-assembled film was fabricated via drop casting of colloidal particles onto a three-terminal electrode/MgO substrate. The film exhibited a large coercivity (1620 Oe) and bifurcation of the zero-field-cooled and field-cooled magnetizations at 300 K. At 10 K, the film exhibited both a Coulomb blockade due to single electron charging as well as a magnetoresistance of ∼-80% due to spin-dependent electron tunneling. At 300 K, the film also showed a magnetoresistance of ∼-80% due to hopping of spin-polarized electrons. Enhanced magnetic coupling between adjacent NCs and the large coercivity resulted in a large spin-polarized current flow even at 300 K.
Collapse
|
|
11 |
1 |
15
|
Tanaka K, Nomoto T, Arita R. Approaches to tunnel magnetoresistance effect with antiferromagnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37. [PMID: 40081010 DOI: 10.1088/1361-648x/adc05e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
The tunnel magnetoresistance (TMR) effect is one of the representative phenomena in spintronics. Ferromagnets, which have a net spin polarization, have been utilized for the TMR effect. Recently, by contrast, the TMR effect with antiferromagnets, which do not possess a macroscopic spin polarization, has been proposed, and also been observed in experiments. In this topical review, we discuss recent developments in the TMR effect, particularly focusing on the TMR effect with antiferromagnets. First, we review how the TMR effect can occur in antiferromagnetic tunnel junctions. The Julliere model, which has been conventionally utilized to grasp the TMR effect with ferromagnets, breaks down for the antiferromagnetic TMR effect. Instead, we see that the momentum dependent spin splitting explains the antiferromagnetic TMR effect. After that, we revisit the TMR effect from viewpoint of the local density of states (LDOS). We particularly focus on the LDOS inside the barrier, and show that the product of the LDOS will qualitatively capture the TMR effect not only in the ferromagnetic tunnel junctions but also in the ferrimagnetic and antiferromagnetic tunnel junctions. This method is expected to work usefully for designing magnetic tunnel junctions.
Collapse
|
Review |
1 |
|
16
|
Chakraborti S, Sharma A. Non-uniform superlattice magnetic tunnel junctions. NANOTECHNOLOGY 2023; 34:185206. [PMID: 36706446 DOI: 10.1088/1361-6528/acb69b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
We propose a new class of non-uniform superlattice magnetic tunnel junctions (Nu-SLTJs) with the linear, Gaussian, Lorentzian, and Pöschl-Teller width and height based profiles manifesting a sizable enhancement in the TMR (≈104- 106%) with a significant suppression in the switching bias (≈9 folds) owing to the physics of broad-band spin filtering. By exploring the negative differential resistance region in the current-voltage characteristics of the various Nu-SLTJs, we predict the Nu-SLTJs offer fastest spin transfer torque switching in the order of a few hundred picoseconds. We self-consistently employ the atomistic non-equilibrium Green's function formalism coupled with the Landau-Lifshitz-Gilbert-Slonczewski equation to evaluate the device performance of the various Nu-SLTJs. We also present the design of minimal three-barrier Nu-SLTJs having significant TMR (≈104%) and large spin current for the ease of device fabrication. We hope that the class of Nu-SLTJs proposed in this work may lay the bedrock to embark on the exhilarating voyage of exploring various non-uniform superlattices for the next generation of spintronic devices.
Collapse
|
|
2 |
|
17
|
Wang K, Li B, Wang L, Wang J, Li C, Ding Z, Shao H. A Wide-Bandwidth Inexpensive Current Sensor Based on the Signal Fusion of Tunneling Magnetoresistance and a Current Transformer. SENSORS (BASEL, SWITZERLAND) 2024; 24:6071. [PMID: 39338816 PMCID: PMC11435727 DOI: 10.3390/s24186071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
In technology and industrial production, many applications require wide-bandwidth current measurements. In this paper, a signal fusion scheme for a current sensor comprising tunneling magnetoresistance and a current transformer is proposed, achieving a flat frequency response in the DC to MHz range. The measurement principles in different cases of the scheme are introduced, and the total transfer function of the entire scheme is derived by analyzing each section separately. Furthermore, the feasibility and selected parameters of the scheme are verified through a systematic simulation utilizing the MATLAB software. Based on the proposed scheme, a group of principal prototypes are built to experimentally evaluate the bandwidth, amplitude and phase flatness, accuracy, sensitivity, and impulse response. The relative amplitude variation in the passband of the fusion sensor is less than 4%, and the estimated bandwidth of the fusion sensor is close to 17 MHz. The accuracy is better than 0.6%, even when measuring the current at 1 MHz, and the relative standard deviation is 5% when measuring the impulse signal. The sensors developed using this scheme, with a low financial cost, have advantages in many wide-bandwidth current measuring scenarios.
Collapse
|
|
1 |
|
18
|
Ghemes C, Tibu M, Dragos-Pinzaru OG, Ababei G, Stoian G, Lupu N, Chiriac H. Optimization of Magnetic Tunnel Junction Structure through Component Analysis and Deposition Parameters Adjustment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2554. [PMID: 38893818 PMCID: PMC11173893 DOI: 10.3390/ma17112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
In this work, we focus on a detailed study of the role of each component layer in the multilayer structure of a magnetic tunnel junction (MTJ) as well as the analysis of the effects that the deposition parameters of the thin films have on the performance of the structure. Various techniques including atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to investigate the effects of deposition parameters on the surface roughness and thickness of individual layers within the MTJ structure. Furthermore, this study investigates the influence of thin films thickness on the magnetoresistive properties of the MTJ structure, focusing on the free ferromagnetic layer and the barrier layer (MgO). Through systematic analysis and optimization of the deposition parameters, this study demonstrates a significant improvement in the tunnel magnetoresistance (TMR) of the MTJ structure of 10% on average, highlighting the importance of precise control over thin films properties for enhancing device performance.
Collapse
|
research-article |
1 |
|
19
|
Ghahremani Arekhloo N, Parvizi H, Zuo S, Wang H, Nazarpour K, Marquetand J, Heidari H. Alignment of magnetic sensing and clinical magnetomyography. Front Neurosci 2023; 17:1154572. [PMID: 37274205 PMCID: PMC10232862 DOI: 10.3389/fnins.2023.1154572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Neuromuscular diseases are a prevalent cause of prolonged and severe suffering for patients, and with the global population aging, it is increasingly becoming a pressing concern. To assess muscle activity in NMDs, clinicians and researchers typically use electromyography (EMG), which can be either non-invasive using surface EMG, or invasive through needle EMG. Surface EMG signals have a low spatial resolution, and while the needle EMG provides a higher resolution, it can be painful for the patients, with an additional risk of infection. The pain associated with the needle EMG can pose a risk for certain patient groups, such as children. For example, children with spinal muscular atrophy (type of NMD) require regular monitoring of treatment efficacy through needle EMG; however, due to the pain caused by the procedure, clinicians often rely on a clinical assessment rather than needle EMG. Magnetomyography (MMG), the magnetic counterpart of the EMG, measures muscle activity non-invasively using magnetic signals. With super-resolution capabilities, MMG has the potential to improve spatial resolution and, in the meantime, address the limitations of EMG. This article discusses the challenges in developing magnetic sensors for MMG, including sensor design and technology advancements that allow for more specific recordings, targeting of individual motor units, and reduction of magnetic noise. In addition, we cover the motor unit behavior and activation pattern, an overview of magnetic sensing technologies, and evaluations of wearable, non-invasive magnetic sensors for MMG.
Collapse
|
Review |
2 |
|
20
|
Yang Z, Huang X, Liu Y, Wang Z, Zhang Z, Ma B, Shang H, Wang L, Zhu T, Duan X, Hu H, Yue J. Unraveling the Interplay Between Memristive and Magnetoresistive Behaviors in LaCoO 3/SrTiO 3 Superlattice-Based Neural Synaptic Devices. SMALL METHODS 2024:e2401259. [PMID: 39718236 DOI: 10.1002/smtd.202401259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/07/2024] [Indexed: 12/25/2024]
Abstract
Memristors and magnetic tunnel junctions are showing great potential in data storage and computing applications. A magnetoelectrically coupled memristor utilizing electron spin and electric field-induced ion migration can facilitate their operation, uncover new phenomena, and expand applications. In this study, devices consisting of Pt/(LaCoO3/SrTiO3)n/LaCoO3/Nb:SrTiO3 (Pt/(LCO/STO)n/LCO/NSTO) are engineered using pulsed laser deposition to form the LCO/STO superlattice layer, with Pt and NSTO serving as the top and bottom electrodes, respectively. The results show that both memristive and magnetoresistive properties can coexist without any compromise in performance, and the values of ROFF/RON and tunnel magnetoresistance (TMR) ratio are both improved by ≈1000% compared to a single-period heterostructure. Notably, the Pt/(LCO/STO)5/LCO/NSTO device demonstrates superior multilevel storage performance, characterized by extended endurance, reliable retention, high ROFF/RON ratio, significant TMR ratio, and fundamental synaptic behaviors. Furthermore, density functional theory (DFT) is employed to calculate the changes in oxygen vacancies, affecting the overall energy bands and magnetic moments in the monolayer and multi-periodic structures. Simulations using the handwritten digit recognition classification achieve the highest accuracy of 94.38%. These attributes suggest that the devices hold considerable promise for application in data storage and neuromorphic computing, offering a platform for high-density neural circuits in intelligent electronic devices.
Collapse
|
|
1 |
|
21
|
Larionov KV, Pais Pereda JJ, Li S, Sakai S, Sorokin PB. Half-Metallic Heusler Alloy/MoS 2 Based Magnetic Tunnel Junction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55167-55173. [PMID: 36459613 DOI: 10.1021/acsami.2c09655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Integration of half-metallic materials and 2D spacers into vertical magnetoresistive spin valves may pave the way for effective low-power consumption storage and memory technologies. Driven by the recent successful growth of graphene/half-metallic Co2Fe(Ge1/2Ga1/2) (CFGG) heterostructure, here we report a theoretical investigation of magnetic tunnel junction (MTJ) based on the ferromagnetic CFGG Heusler alloy and the MoS2 spacer of different thicknesses. Using ab initio approach, we demonstrate that the inherent ferromagnetism of CFGG is preserved at the interface, while its half-metallicity is recovering within few atomic layers. Ballistic transport in CFGG/MoS2/CFGG MTJ is studied within the nonequilibrium Green's function formalism, and a large magnetoresistance value up to ∼105% is observed. These findings support the idea of effective spintronics devices based on half-metallic Heusler alloys and highly diversified transition metal dichalcogenide family.
Collapse
|
|
3 |
|
22
|
Bi R, Chen R, Wu S, Ma H, Zhang H, Liu X, He J, Hu J. A High-Sensitivity, Low-Noise, and Low-Hysteresis Tunneling Magnetoresistance Sensor Based on Structural Optimization of Magnetic Tunnel Junctions. SENSORS (BASEL, SWITZERLAND) 2025; 25:1730. [PMID: 40292801 PMCID: PMC11945726 DOI: 10.3390/s25061730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 04/30/2025]
Abstract
Accurate measurement of magnetic fields holds immense significance across various disciplines, such as IC circuit measurement, geological exploration, and aerospace. The sensitivity and noise parameters of magnetic field sensors play a vital role in detecting minute fluctuations in magnetic fields. However, the current detection capability of tunneling magnetoresistance (TMR) is insufficient to meet the requirements for weak magnetic field measurement. This study investigates the impact of structural and fabrication parameters on the performance of TMR sensors. We fabricated series-connected TMR sensors with varying long-axis lengths of the elliptical cross-section and adjusted their performance by modifying annealing magnetic fields and magnetic field bias along the easy axis. The results demonstrate that TMR sensitivity decreases with increasing long-axis length, increases initially and then decreases with an annealing magnetic field, and decreases with a higher bias magnetic field along the easy axis. The voltage noise level of TMR sensors decreases as the long-axis length increases. Notably, the detection capability of TMR sensors exhibits a non-monotonic dependence on long-axis length. Moreover, we optimized the hysteresis of TMR sensors by applying a magnetic field bias along the easy axis. When the bias along the easy axis reached 16 Oe or -40 Oe, the hysteresis level was reduced to below 0.5 Oe. After encapsulating the TMR devices into a full Wheatstone bridge structure, we achieved a detection capability of 17 nT/Hz@1Hz. This study highlights that the detection capability of TMR devices is jointly influenced by fabrication parameters. By optimizing parameter configuration, this work provides theoretical guidance for further enhancing the performance of TMR devices in magnetic field measurements.
Collapse
|
research-article |
1 |
|
23
|
Emoto S, Kusunose H, Lin YC, Sun H, Masuda S, Fukamachi S, Suenaga K, Kimura T, Ago H. Synthesis of Few-Layer Hexagonal Boron Nitride for Magnetic Tunnel Junction Application. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31457-31463. [PMID: 38847453 DOI: 10.1021/acsami.4c05289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hexagonal boron nitride (hBN), a wide-gap two-dimensional (2D) insulator, is an ideal tunneling barrier for many applications because of the atomically flat surface, high crystalline quality, and high stability. Few-layer hBN with a thickness of 1-2 nm is an effective barrier for electron tunneling, but the preparation of few-layer hBN relies on mechanical exfoliation from bulk hBN crystals. Here, we report the large-area growth of few-layer hBN by chemical vapor deposition on ferromagnetic Ni-Fe thin films and its application to tunnel barriers of magnetic tunnel junction (MTJ) devices. Few-layer hBN sheets mainly consisting of two to three layers have been successfully synthesized on a Ni-Fe catalyst at a high growth temperature of 1200 °C. The MTJ devices were fabricated on as-grown hBN by using the Ni-Fe film as the bottom ferromagnetic electrode to avoid contamination and surface oxidation. We found that trilayer hBN gives a higher tunneling magnetoresistance (TMR) ratio than bilayer hBN, resulting in a high TMR ratio up to 10% at ∼10 K.
Collapse
|
|
1 |
|
24
|
Yu X, Zhang X, Wang J. Fully Electrically Controlled van der Waals Multiferroic Tunnel Junctions. ACS NANO 2023; 17:25348-25356. [PMID: 38078697 DOI: 10.1021/acsnano.3c08747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The fully electrical control of the magnetic states in magnetic tunnel junctions is highly pursued for the development of the next generation of low-power and high-density information technology. However, achieving this functionality remains a formidable challenge at present. Here we propose an effective strategy by constructing a trilayer van der Waals multiferroic structure, consisting of CrI3-AgBiPSe6 and Cr2Ge2Te6-In2Se3, to achieve full-electrical control of multiferroic tunnel junctions. Within this structure, two different magnetic states of the magnetic bilayers (CrI3/Cr2Ge2Te6) can be modulated and switched in response to the polarization direction of the adjacent ferroelectric materials (AgBiPSe6/In2Se3). The intriguing magnetization reversal is mainly attributed to the polarization-field-induced band structure shift and interfacial charge transfer. On this basis, we further design two multiferroic tunnel junction devices, namely, graphene/CrI3-AgBiPSe6/graphene and graphene/Cr2Ge2Te6-In2Se3/graphene. In these devices, good interfacial Ohmic contacts are successfully obtained between the graphene electrode and the heterojunction, leading to an ultimate tunneling magnetoresistance of 9.3 × 106%. This study not only proposes a feasible strategy and identifies a promising candidate for achieving fully electrically controlled multiferroic tunnel junctions but also provides insights for designing other advanced spintronic devices.
Collapse
|
|
2 |
|
25
|
Joly L, Scheurer F, Ohresser P, Kengni-Zanguim B, Dayen JF, Seneor P, Dlubak B, Godel F, Halley D. X-ray magnetic dichroism and tunnel magneto-resistance study of the magnetic phase in epitaxial CrVO xnanoclusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:175801. [PMID: 35084366 DOI: 10.1088/1361-648x/ac4f5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Epitaxial clusters of chromium and chromium-vanadium oxides are studied by tunnel magneto-resistivity measurements, x-ray absorption spectrometry and circular magnetic circular dichroism. They turn out to carry a small magnetic moment that follows a super-paramagnetic behavior. The chromium ion contribution to this magnetization is mainly due to an original magnetic Cr2O3-like phase, whereas usual Cr2O3is known to be anti-ferromagnetic in the bulk. For mixed clusters, vanadium ions also contribute to the total magnetization and they are coupled to the chromium ion spins. By measuring the dichroic signal at different temperatures, we get insight into the possible spin configurations of vanadium and chromium ions: we propose that the magnetic dipoles observed in the clusters assembly could be related to ionic spins that couple at a very short range, as for instance in short one-dimensional spins chains.
Collapse
|
|
3 |
|