1
|
Camacho-Villegas TA, Mata-González MT, García-Ubbelohd W, Núñez-García L, Elosua C, Paniagua-Solis JF, Licea-Navarro AF. Intraocular Penetration of a vNAR: In Vivo and In Vitro VEGF 165 Neutralization. Mar Drugs 2018; 16:md16040113. [PMID: 29614715 PMCID: PMC5923400 DOI: 10.3390/md16040113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/22/2018] [Accepted: 03/26/2018] [Indexed: 01/09/2023] Open
Abstract
Variable new antigen receptor domain (vNAR) antibodies are novel, naturally occurring antibodies that can be isolated from naïve, immune or synthetic shark libraries. These molecules are very interesting to the biotechnology and pharmaceutical industries because of their unique characteristics related to size and tissue penetrability. There have been some approved anti-angiogenic therapies for ophthalmic conditions, not related to vNAR. This includes biologics and chimeric proteins that neutralize vascular endothelial growth factor (VEGF)165, which are injected intravitreal, causing discomfort and increasing the possibility of infection. In this paper, we present a vNAR antibody against human recombinant VEGF165 (rhVEGF165) that was isolated from an immunized Heterodontus francisci shark. A vNAR called V13, neutralizes VEGF165 cytokine starting at 75 μg/mL in an in vitro assay based on co-culture of normal human dermal fibroblasts (NHDFs) and green fluorescence protein (GFP)-labeled human umbilical vein endothelial cells (HUVECs) cells. In the oxygen-induced retinopathy model in C57BL/6:Hsd mice, we demonstrate an endothelial cell count decrease. Further, we demonstrate the intraocular penetration after topical administration of 0.1 μg/mL of vNAR V13 by its detection in aqueous humor in New Zealand rabbits with healthy eyes after 3 h of application. These findings demonstrate the potential of topical application of vNAR V13 as a possible new drug candidate for vascular eye diseases.
Collapse
|
Journal Article |
7 |
26 |
2
|
Könning D, Zielonka S, Sellmann C, Schröter C, Grzeschik J, Becker S, Kolmar H. Isolation of a pH-Sensitive IgNAR Variable Domain from a Yeast-Displayed, Histidine-Doped Master Library. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:161-167. [PMID: 26838965 DOI: 10.1007/s10126-016-9690-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
In recent years, engineering of pH-sensitivity into antibodies as well as antibody-derived fragments has become more and more attractive for biomedical and biotechnological applications. Herein, we report the isolation of the first pH-sensitive IgNAR variable domain (vNAR), which was isolated from a yeast-displayed, semi-synthetic master library. This strategy enables the direct identification of pH-dependent binders from a histidine-enriched CDR3 library. Displayed vNAR variants contained two histidine substitutions on average at random positions in their 12-residue CDR3 loop. Upon screening of seven rounds against the proof-of-concept target EpCAM (selection for binding at pH 7.4 and decreased binding at pH 6.0), a single clone was obtained that showed specific and pH-dependent binding as characterized by yeast surface display and biolayer interferometry. Potential applications for such pH-dependent vNAR domains include their employment in tailored affinity chromatography, enabling mild elution protocols. Moreover, utilizing a master library for the isolation of pH-sensitive vNAR variants may be a generic strategy to obtain binding entities with prescribed characteristics for applications in biotechnology, diagnostics, and therapy.
Collapse
|
|
9 |
19 |
3
|
Wei L, Wang M, Xiang H, Jiang Y, Gong J, Su D, Al Azad MAR, Dong H, Feng L, Wu J, Chan LL, Yang N, Shi J. Bamboo Shark as a Small Animal Model for Single Domain Antibody Production. Front Bioeng Biotechnol 2021; 9:792111. [PMID: 34957081 PMCID: PMC8692893 DOI: 10.3389/fbioe.2021.792111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
The development of shark single domain antibodies (sdAbs) is hindered by the high cost and tediousness of large-sized shark farming. Here, we demonstrated white-spotted bamboo sharks (Chiloscyllium plagiosum) being cultivated commercially as a promising small animal model to produce sdAbs. We found that immunoglobulin new antigen receptor (IgNAR) presented in bamboo shark genome, transcriptome, and plasma. Four complete IgNAR clusters including variable domains (vNARs) were discovered in the germline, and the Variable–Joining pair from IgNAR1 cluster was dominant from immune repertoires in blood. Bamboo sharks developed effective immune responses upon green fluorescent protein (GFP), near-infrared fluorescent protein iRFP713, and Freund’s adjuvant immunization revealed by elevated lymphocyte counts and antigen specific IgNAR. Before and after immunization, the complementarity determining region 3 (CDR3) of IgNAR were the major determinant of IgNAR diversity revealed by 400-bp deep sequencing. To prove that bamboo sharks could produce high-affinity IgNAR, we isolated anti-GFP and anti-iRFP713 vNARs with up to 0.3 and 3.8 nM affinities, respectively, from immunized sharks. Moreover, we constructed biparatopic vNARs with the highest known affinities (20.7 pM) to GFP and validated the functions of anti-GFP vNARs as intrabodies in mammalian cells. Taken together, our study will accelerate the discovery and development of bamboo shark sdAbs for biomedical industry at low cost and easy operation.
Collapse
|
|
4 |
16 |
4
|
Grzeschik J, Könning D, Hinz SC, Krah S, Schröter C, Empting M, Kolmar H, Zielonka S. Generation of Semi-Synthetic Shark IgNAR Single-Domain Antibody Libraries. Methods Mol Biol 2018; 1701:147-167. [PMID: 29116504 DOI: 10.1007/978-1-4939-7447-4_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Besides classical antibodies with the composition of heavy and light chains, sharks produce a unique heavy chain only isotype, termed Immunoglobulin New Antigen Receptor (IgNAR), in which antigen binding is solely mediated by a single domain, referred to as vNAR. Owing to their high affinity and specificity combined with their small size and high stability, vNAR domains emerged as promising target-binding scaffolds that can be tailor-made for biotechnological and biomedical applications. Herein, we describe protocols for the construction of semi-synthetic, CDR3-randomized vNAR libraries for the isolation of target-specific antibodies using yeast surface display or phage display as platform technology. Additionally, we provide information for affinity maturation of target-specific molecules through CDR1 diversification and sublibrary establishment.
Collapse
|
|
7 |
11 |
5
|
Solemani Zadeh A, Grässer A, Dinter H, Hermes M, Schindowski K. Efficient Construction and Effective Screening of Synthetic Domain Antibody Libraries. Methods Protoc 2019; 2:mps2010017. [PMID: 31164599 PMCID: PMC6481084 DOI: 10.3390/mps2010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 01/02/2023] Open
Abstract
Phage display is a powerful technique for drug discovery in biomedical research in particular for antibody libraries. But, several technical challenges are associated with the selection process. For instance, during the panning step, the successful elution of the phages bound to the antigen is critical in order to avoid losing the most promising binders. Here, we present an efficient protocol to establish, screen and select synthetic libraries of domain antibodies using phage display. We do not only present suitable solutions to the above-mentioned challenges to improve elution by 50-fold, but we also present a step by step in-depth protocol with miniaturized volumes and optimized procedures to save material, costs and time for a successful phage display with domain antibodies. Hence, this protocol improves the selection process for an efficient handling process. The here presented library is based on the variable domain (vNAR) of the naturally occurring novel antibody receptor (IgNAR) from cartilage fishes. Diversity was introduced in the Complementarity-Determining Region 3 (CDR3) of the antigen-binding site with different composition and length.
Collapse
|
Journal Article |
6 |
10 |
6
|
Könning D, Hinz S, Grzeschik J, Schröter C, Krah S, Zielonka S, Kolmar H. Construction of Histidine-Enriched Shark IgNAR Variable Domain Antibody Libraries for the Isolation of pH-Sensitive vNAR Fragments. Methods Mol Biol 2018; 1827:109-127. [PMID: 30196494 DOI: 10.1007/978-1-4939-8648-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The adaptive immune system of sharks comprises a heavy chain-only antibody isotype, referred to as immunoglobulin new antigen receptor (IgNAR). Antigen binding in case of IgNAR antibodies is mediated by a single variable domain (vNAR). Due to their inherent beneficial biophysical properties, such as small size and high thermal stability combined with a high specificity and affinity to their target antigens, vNAR domains emerged as promising tools for biotechnological and biomedical applications. Herein, we present detailed protocols for the engineering of pH-sensitivity into IgNAR V domains by constructing histidine-enriched and CDR3-diversified semisynthetic antibody libraries which can then be screened upon using yeast surface display. Protonation or deprotonation of incorporated histidine residues at different pH values results in structural transitions caused by altered electrostatic interactions. These interactions account for an altered binding behavior toward the target antigen. In the following protocol, we describe the generation of a semisynthetic vNAR master library that comprises two histidine residues on average in the 12-residue CDR3 loop. Moreover, once a pH-dependent vNAR population toward the target antigen is identified, this population can further be optimized in terms of affinity and pH sensitivity upon conducting a CDR1-mediated affinity maturation.
Collapse
|
|
7 |
2 |
7
|
Macarrón Palacios A, Grzeschik J, Deweid L, Krah S, Zielonka S, Rösner T, Peipp M, Valerius T, Kolmar H. Specific Targeting of Lymphoma Cells Using Semisynthetic Anti-Idiotype Shark Antibodies. Front Immunol 2020; 11:560244. [PMID: 33324393 PMCID: PMC7726437 DOI: 10.3389/fimmu.2020.560244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
The B-cell receptor (BCR) is a key player of the adaptive immune system. It is a unique part of immunoglobulin (Ig) molecules expressed on the surface of B cells. In case of many B-cell lymphomas, the tumor cells express a tumor-specific and functionally active BCR, also known as idiotype. Utilizing the idiotype as target for lymphoma therapy has emerged to be demanding since the idiotype differs from patient to patient. Previous studies have shown that shark-derived antibody domains (vNARs) isolated from a semi-synthetic CDR3-randomized library allow for the rapid generation of anti-idiotype binders. In this study, we evaluated the potential of generating patient-specific binders against the idiotype of lymphomas. To this end, the BCRs of three different lymphoma cell lines SUP-B8, Daudi, and IM-9 were identified, the variable domains were reformatted and the resulting monoclonal antibodies produced. The SUP-B8 BCR served as antigen in fluorescence-activated cell sorting (FACS)-based screening of the yeast-displayed vNAR libraries which resulted after three rounds of screening in the enrichment of antigen-binding vNARs. Five vNARs were expressed as Fc fusion proteins and consequently analyzed for their binding to soluble antigen using biolayer interferometry (BLI) revealing binding constants in the lower single-digit nanomolar range. These variants showed specific binding to the parental SUP-B8 cell line confirming a similar folding of the recombinantly expressed proteins compared with the native cell surface-presented BCR. First initial experiments to utilize the generated vNAR-Fc variants for BCR-clustering to induce apoptosis or ADCC/ADCP did not result in a significant decrease of cell viability. Here, we report an alternative approach for a personalized B-cell lymphoma therapy based on the construction of vNAR-Fc antibody-drug conjugates to enable specific killing of malignant B cells, which may widen the therapeutic window for B-cell lymphoma therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
2 |
8
|
Smyth P, Ferguson L, Burrows JF, Burden RE, Tracey SR, Herron ÚM, Kovaleva M, Williams R, Porter AJ, Longley DB, Barelle CJ, Scott CJ. Evaluation of variable new antigen receptors ( vNARs) as a novel cathepsin S (CTSS) targeting strategy. Front Pharmacol 2023; 14:1296567. [PMID: 38116078 PMCID: PMC10728302 DOI: 10.3389/fphar.2023.1296567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Aberrant activity of the cysteine protease Cathepsin S (CTSS) has been implicated across a wide range of pathologies. Notably in cancer, CTSS has been shown to promote tumour progression, primarily through facilitating invasion and migration of tumour cells and augmenting angiogenesis. Whilst an attractive therapeutic target, more efficacious CTSS inhibitors are required. Here, we investigated the potential application of Variable New Antigen Receptors (vNARs) as a novel inhibitory strategy. A panel of potential vNAR binders were identified following a phage display panning process against human recombinant proCTSS. These were subsequently expressed, purified and binding affinity confirmed by ELISA and SPR based approaches. Selected lead clones were taken forward and were shown to inhibit CTSS activity in recombinant enzyme activity assays. Further assessment demonstrated that our lead clones functioned by a novel inhibitory mechanism, by preventing the activation of proCTSS to the mature enzyme. Moreover, using an intrabody approach, we exhibited the ability to express these clones intracellularly and inhibit CTSS activity whilst lead clones were also noted to impede cell invasion in a tumour cell invasion assay. Collectively, these findings illustrate a novel mechanistic approach for inhibiting CTSS activity, with anti-CTSS vNAR clones possessing therapeutic potential in combating deleterious CTSS activity. Furthermore, this study exemplifies the potential of vNARs in targeting intracellular proteins, opening a range of previously "undruggable" targets for biologic-based therapy.
Collapse
|
research-article |
2 |
2 |
9
|
Könning D, Zielonka S, Kaempffe A, Jäger S, Kolmar H, Schröter C. Selection and Characterization of Anti-idiotypic Shark Antibody Domains. Methods Mol Biol 2020; 2070:191-209. [PMID: 31625097 DOI: 10.1007/978-1-4939-9853-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The antibody repertoire of cartilaginous fish comprises an additional heavy-chain-only antibody isotype that is referred to as IgNAR (immunoglobulin novel antigen receptor). Its antigen-binding site consists of one single domain (vNAR) that is reportedly able to engage a respective antigen with affinities similar to those achieved by conventional antibodies. While vNAR domains offer a reduced size, which is often favorable for applications in a therapeutic as well as a biotechnological setup, they also exhibit a high physicochemical stability. Together with their ability to target difficult-to-address antigens such as virus particles or toxins, these shark-derived antibody domains seem to be predestined as tools for biotechnological and diagnostic applications. In the following chapter, we will describe the isolation of anti-idiotypic vNAR domains targeting monoclonal antibody paratopes from semi-synthetic, yeast-displayed libraries. Anti-idiotypic vNAR variants could be employed for the characterization of antibody-based therapeutics (such as antibody-drug conjugates) or as positive controls in immunogenicity assays. Peculiarly, when using semi-synthetic vNAR libraries, we found that it is not necessary to deplete the libraries using unrelated antibody targets, which enables a fast and facile screening procedure that exclusively delivers anti-idiotypic binders.
Collapse
|
|
5 |
1 |
10
|
Kolmar H, Grzeschik J, Könning D, Krah S, Zielonka S. Construction of Semisynthetic Shark vNAR Yeast Surface Display Antibody Libraries. Methods Mol Biol 2023; 2702:227-243. [PMID: 37679622 DOI: 10.1007/978-1-0716-3381-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The adaptive immune system of sharks comprises a unique heavy chain-only antibody isotype, termed immunoglobulin new antigen receptor (IgNAR), in which antigen binding is mediated by a single variable domain, referred to as vNAR. In recent years, efforts were made to harness these domains for biomedical and biotechnological applications particularly due to their high affinity and specificity combined with a small size and high stability. Herein, we describe protocols for the construction of semisynthetic, CDR3-randomized vNAR libraries for the isolation of target-specific paratopes by yeast surface display. Additionally, we provide guidance for affinity maturation of a panel of antigen-enriched vNAR domains through CDR1 diversification of the FACS-selected, antigen-enriched population and sublibrary establishment.
Collapse
|
|
2 |
|