1
|
Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M, Cogdill AP, Brown RD, Della Pelle P, Dias-Santagata D, Hung KE, Flaherty KT, Piris A, Wargo JA, Settleman J, Mino-Kenudson M, Engelman JA. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2012; 2:227-35. [PMID: 22448344 DOI: 10.1158/2159-8290.cd-11-0341] [Citation(s) in RCA: 797] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED BRAF mutations occur in 10-15% of colorectal cancers (CRCs) and confer adverse outcome. While RAF inhibitors such as vemurafenib (PLX4032) have proven effective in BRAF mutant melanoma, they are surprisingly ineffective in BRAF mutant CRCs, and the reason for this disparity remains unclear. Compared to BRAF mutant melanoma cells, BRAF mutant CRC cells were less sensitive to vemurafenib, and P-ERK suppression was not sustained in response to treatment. Although transient inhibition of phospho-ERK by vemurafenib was observed in CRC, rapid ERK re-activation occurred through EGFR-mediated activation of RAS and CRAF. BRAF mutant CRCs expressed higher levels of phospho-EGFR than BRAF mutant melanomas, suggesting that CRCs are specifically poised for EGFR-mediated resistance. Combined RAF and EGFR inhibition blocked reactivation of MAPK signaling in BRAF mutant CRC cells and markedly improved efficacy in vitro and in vivo. These findings support evaluation of combined RAF and EGFR inhibition in BRAF mutant CRC patients. SIGNIFICANCE BRAF valine 600 (V600) mutations occur in 10% to 15% of colorectal cancers, yet these tumors show a surprisingly low clinical response rate (~5%) to selective RAF inhibitors such as vemurafenib, which have produced dramatic response rates (60%–80%) in melanomas harboring the identical BRAF V600 mutation. We found that EGFR-mediated MAPK pathway reactivation leads to resistance to vemurafenib in BRAF-mutant colorectal cancers and that combined RAF and EGFR inhibition can lead to sustained MAPK pathway suppression and improved efficacy in vitro and in tumor xenografts.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
797 |
2
|
Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, Frederick DT, Hurley AD, Nellore A, Kung AL, Wargo JA, Song JS, Fisher DE, Arany Z, Widlund HR. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 2013; 23:302-15. [PMID: 23477830 PMCID: PMC3635826 DOI: 10.1016/j.ccr.2013.02.003] [Citation(s) in RCA: 671] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 11/27/2012] [Accepted: 02/05/2013] [Indexed: 02/08/2023]
Abstract
Activating mutations in BRAF are the most common genetic alterations in melanoma. Inhibition of BRAF by small molecules leads to cell-cycle arrest and apoptosis. We show here that BRAF inhibition also induces an oxidative phosphorylation gene program, mitochondrial biogenesis, and the increased expression of the mitochondrial master regulator, PGC1α. We further show that a target of BRAF, the melanocyte lineage factor MITF, directly regulates the expression of PGC1α. Melanomas with activation of the BRAF/MAPK pathway have suppressed levels of MITF and PGC1α and decreased oxidative metabolism. Conversely, treatment of BRAF-mutated melanomas with BRAF inhibitors renders them addicted to oxidative phosphorylation. Our data thus identify an adaptive metabolic program that limits the efficacy of BRAF inhibitors.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
671 |
3
|
Ascierto PA, Kirkwood JM, Grob JJ, Simeone E, Grimaldi AM, Maio M, Palmieri G, Testori A, Marincola FM, Mozzillo N. The role of BRAF V600 mutation in melanoma. J Transl Med 2012; 10:85. [PMID: 22554099 PMCID: PMC3391993 DOI: 10.1186/1479-5876-10-85] [Citation(s) in RCA: 521] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/03/2012] [Indexed: 12/19/2022] Open
Abstract
BRAF is a serine/threonine protein kinase activating the MAP kinase/ERK-signaling pathway. About 50 % of melanomas harbors activating BRAF mutations (over 90 % V600E). BRAFV600E has been implicated in different mechanisms underlying melanomagenesis, most of which due to the deregulated activation of the downstream MEK/ERK effectors. The first selective inhibitor of mutant BRAF, vemurafenib, after highly encouraging results of the phase I and II trial, was compared to dacarbazine in a phase III trial in treatment-naïve patients (BRIM-3). The study results showed a relative reduction of 63 % in risk of death and 74 % in risk of tumor progression. Considering all trials so far completed, median overall survival reached approximately 16 months for vemurafenib compared to less than 10 months for dacarbazine treatment. Vemurafenib has been extensively tested on melanoma patients expressing the BRAFV600E mutated form; it has been demonstrated to be also effective in inhibiting melanomas carrying the V600K mutation. In 2011, both FDA and EMA therefore approved vemurafenib for metastatic melanoma carrying BRAFV600 mutations. Some findings suggest that continuation of vemurafenib treatment is potentially beneficial after local therapy in a subset of patients with disease progression (PD). Among who continued vemurafenib >30 days after local therapy of PD lesion(s), a median overall survival was not reached, with a median follow-up of 15.5 months from initiation of BRAF inhibitor therapy. For patients who did not continue treatment, median overall survival from the time of disease progression was 1.4 months. A clinical phase I/II trial is evaluating the safety, tolerability and efficacy of vemurafenib in combination with the CTLA-4 inhibitor mAb ipilimumab. In the BRIM-7 trial vemurafenib is tested in association with GDC-0973, a potent and highly selective inhibitor of MEK1/2. Preliminary data seem to indicate that an additional inhibitor of mutated BRAF, GSK2118436, might be also active on a wider range of BRAF mutations (V600E-K-D-R); actually, treatment with such a compound is under evaluation in a phase III study among stage III-IV melanoma patients positive for BRAF mutations. Overall, BRAF inhibitors were well tolerated; common adverse events are arthralgia, rash, fatigue, alopecia, keratoacanthoma or cutaneous squamous-cell carcinoma, photosensitivity, nausea, and diarrhea, with some variants between different inhibitors.
Collapse
|
Editorial |
13 |
521 |
4
|
Tiacci E, Park JH, De Carolis L, Chung SS, Broccoli A, Scott S, Zaja F, Devlin S, Pulsoni A, Chung YR, Cimminiello M, Kim E, Rossi D, Stone RM, Motta G, Saven A, Varettoni M, Altman JK, Anastasia A, Grever MR, Ambrosetti A, Rai KR, Fraticelli V, Lacouture ME, Carella AM, Levine RL, Leoni P, Rambaldi A, Falzetti F, Ascani S, Capponi M, Martelli MP, Park CY, Pileri SA, Rosen N, Foà R, Berger MF, Zinzani PL, Abdel-Wahab O, Falini B, Tallman MS. Targeting Mutant BRAF in Relapsed or Refractory Hairy-Cell Leukemia. N Engl J Med 2015; 373:1733-47. [PMID: 26352686 PMCID: PMC4811324 DOI: 10.1056/nejmoa1506583] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND BRAF V600E is the genetic lesion underlying hairy-cell leukemia. We assessed the safety and activity of the oral BRAF inhibitor vemurafenib in patients with hairy-cell leukemia that had relapsed after treatment with a purine analogue or who had disease that was refractory to purine analogues. METHODS We conducted two phase 2, single-group, multicenter studies of vemurafenib (at a dose of 960 mg twice daily)--one in Italy and one in the United States. The therapy was administered for a median of 16 weeks in the Italian study and 18 weeks in the U.S. study. Primary end points were the complete response rate (in the Italian trial) and the overall response rate (in the U.S. trial). Enrollment was completed (28 patients) in the Italian trial in April 2013 and is still open (26 of 36 planned patients) in the U.S. trial. RESULTS The overall response rates were 96% (25 of 26 patients who could be evaluated) after a median of 8 weeks in the Italian study and 100% (24 of 24) after a median of 12 weeks in the U.S. study. The rates of complete response were 35% (9 of 26 patients) and 42% (10 of 24) in the two trials, respectively. In the Italian trial, after a median follow-up of 23 months, the median relapse-free survival was 19 months among patients with a complete response and 6 months among those with a partial response; the median treatment-free survival was 25 months and 18 months, respectively. In the U.S. trial, at 1 year, the progression-free survival rate was 73% and the overall survival rate was 91%. Drug-related adverse events were usually of grade 1 or 2, and the events most frequently leading to dose reductions were rash and arthralgia or arthritis. Secondary cutaneous tumors (treated with simple excision) developed in 7 of 50 patients. The frequent persistence of phosphorylated ERK-positive leukemic cells in bone marrow at the end of treatment suggests bypass reactivation of MEK and ERK as a resistance mechanism. CONCLUSIONS A short oral course of vemurafenib was highly effective in patients with relapsed or refractory hairy-cell leukemia. (Funded by the Associazione Italiana per la Ricerca sul Cancro and others; EudraCT number, 2011-005487-13; ClinicalTrials.gov number NCT01711632.).
Collapse
|
Clinical Trial, Phase II |
10 |
241 |
5
|
Welsh SJ, Corrie PG. Management of BRAF and MEK inhibitor toxicities in patients with metastatic melanoma. Ther Adv Med Oncol 2015; 7:122-36. [PMID: 25755684 PMCID: PMC4346212 DOI: 10.1177/1758834014566428] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Following the discovery that nearly half of all cutaneous melanomas harbour a mutation in the BRAF gene, molecular targeted kinase inhibitors have been developed for the treatment of metastatic melanoma and have dramatically improved outcomes for those patients with BRAF mutant disease, achieving high levels of objective response and prolonging survival. Since 2011, the specific BRAF targeted agents, vemurafenib and dabrafenib, and the MEK inhibitor, trametinib, have been licensed for the treatment of patients with unresectable or metastatic BRAF mutant melanoma. As with other biological targeted agents, these drugs are associated with predictable patterns of adverse events. Proactive toxicity management is important to ensure maximum treatment benefit and avoid unnecessary treatment discontinuation. We review the most common and serious adverse events associated with BRAF targeted agents and suggest management algorithms to guide practitioners in using these drugs effectively in the clinic.
Collapse
|
Review |
10 |
234 |
6
|
Nissan MH, Pratilas CA, Jones AM, Ramirez R, Won H, Liu C, Tiwari S, Kong L, Hanrahan AJ, Yao Z, Merghoub T, Ribas A, Chapman PB, Yaeger R, Taylor BS, Schultz N, Berger MF, Rosen N, Solit DB. Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res 2014; 74:2340-50. [PMID: 24576830 PMCID: PMC4005042 DOI: 10.1158/0008-5472.can-13-2625] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Melanoma is a disease characterized by lesions that activate ERK. Although 70% of cutaneous melanomas harbor activating mutations in the BRAF and NRAS genes, the alterations that drive tumor progression in the remaining 30% are largely undefined. Vemurafenib, a selective inhibitor of RAF kinases, has clinical utility restricted to BRAF-mutant tumors. MEK inhibitors, which have shown clinical activity in NRAS-mutant melanoma, may be effective in other ERK pathway-dependent settings. Here, we investigated a panel of melanoma cell lines wild type for BRAF and NRAS to determine the genetic alteration driving their transformation and their dependence on ERK signaling in order to elucidate a candidate set for MEK inhibitor treatment. A cohort of the BRAF/RAS wild type cell lines with high levels of RAS-GTP had loss of NF1, a RAS GTPase activating protein. In these cell lines, the MEK inhibitor PD0325901 inhibited ERK phosphorylation, but also relieved feedback inhibition of RAS, resulting in induction of pMEK and a rapid rebound in ERK signaling. In contrast, the MEK inhibitor trametinib impaired the adaptive response of cells to ERK inhibition, leading to sustained suppression of ERK signaling and significant antitumor effects. Notably, alterations in NF1 frequently co-occurred with RAS and BRAF alterations in melanoma. In the setting of BRAF(V600E), NF1 loss abrogated negative feedback on RAS activation, resulting in elevated activation of RAS-GTP and resistance to RAF, but not MEK, inhibitors. We conclude that loss of NF1 is common in cutaneous melanoma and is associated with RAS activation, MEK-dependence, and resistance to RAF inhibition.
Collapse
|
research-article |
11 |
227 |
7
|
Chapman PB, Robert C, Larkin J, Haanen JB, Ribas A, Hogg D, Hamid O, Ascierto PA, Testori A, Lorigan PC, Dummer R, Sosman JA, Flaherty KT, Chang I, Coleman S, Caro I, Hauschild A, McArthur GA. Vemurafenib in patients with BRAFV600 mutation-positive metastatic melanoma: final overall survival results of the randomized BRIM-3 study. Ann Oncol 2018; 28:2581-2587. [PMID: 28961848 PMCID: PMC5834156 DOI: 10.1093/annonc/mdx339] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The BRIM-3 trial showed improved progression-free survival (PFS) and overall survival (OS) for vemurafenib compared with dacarbazine in treatment-naive patients with BRAFV600 mutation-positive metastatic melanoma. We present final OS data from BRIM-3. Patients and methods Patients were randomly assigned in a 1 : 1 ratio to receive vemurafenib (960 mg twice daily) or dacarbazine (1000 mg/m2 every 3 weeks). OS and PFS were co-primary end points. OS was assessed in the intention-to-treat population, with and without censoring of data for dacarbazine patients who crossed over to vemurafenib. Results Between 4 January 2010 and 16 December 2010, a total of 675 patients were randomized to vemurafenib (n = 337) or dacarbazine (n = 338, of whom 84 crossed over to vemurafenib). At the time of database lock (14 August 2015), median OS, censored at crossover, was significantly longer for vemurafenib than for dacarbazine {13.6 months [95% confidence interval (CI) 12.0-15.4] versus 9.7 months [95% CI 7.9-12.8; hazard ratio (HR) 0.81 [95% CI 0.67-0.98]; P = 0.03}, as was median OS without censoring at crossover [13.6 months (95% CI 12.0-15.4) versus 10.3 months (95% CI 9.1-12.8); HR 0.81 (95% CI 0.68-0.96); P = 0.01]. Kaplan-Meier estimates of OS rates for vemurafenib versus dacarbazine were 56% versus 46%, 30% versus 24%, 21% versus 19% and 17% versus 16% at 1, 2, 3 and 4 years, respectively. Overall, 173 of the 338 patients (51%) in the dacarbazine arm and 175 of the 337 (52%) of those in the vemurafenib arm received subsequent anticancer therapies, most commonly ipilimumab. Safety data were consistent with the primary analysis. Conclusions Vemurafenib continues to be associated with improved median OS in the BRIM-3 trial after extended follow-up. OS curves converged after ≈3 years, likely as a result of crossover from dacarbazine to vemurafenib and receipt of subsequent anticancer therapies. ClinicalTrials.gov NCT01006980.
Collapse
|
Randomized Controlled Trial |
7 |
171 |
8
|
McArthur GA, Maio M, Arance A, Nathan P, Blank C, Avril MF, Garbe C, Hauschild A, Schadendorf D, Hamid O, Fluck M, Thebeau M, Schachter J, Kefford R, Chamberlain M, Makrutzki M, Robson S, Gonzalez R, Margolin K. Vemurafenib in metastatic melanoma patients with brain metastases: an open-label, single-arm, phase 2, multicentre study. Ann Oncol 2017; 28:634-641. [PMID: 27993793 DOI: 10.1093/annonc/mdw641] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Vemurafenib has shown activity in patients with BRAFV600 mutated melanoma with brain metastases (BM). This phase 2 study evaluated vemurafenib in patients with/without prior treatment for BM. Methods Patients with BRAFV600 mutated melanoma with BM were enrolled into cohort 1 (previously untreated BM) and cohort 2 (previously treated BM) and received vemurafenib (960 mg BID) until disease progression (PD) or intolerance. Primary endpoint was best overall response rate (BORR) in the brain in cohort 1 that was evaluated using modified RECIST 1.1 criteria using lesions ≥0.5 cm to assess response. Results 146 patients were treated (cohort 1 n = 90; cohort 2 n = 56), 62% of whom were male. Median (range) time since diagnosis of BM: 1.0 (0-9) month in cohort 1 and 4.2 (1-68) months in cohort 2. Median duration of treatment was 4.1 months (range 0.3-34.5) in cohort 1 and 4.1 months (range 0.2-27.6) in cohort 2. Intracranial BORR in cohort 1 by an independent review committee (IRC) was 18% (2 CRs, 14 PRs). Extracranial BORR by IRC was 33% in cohort 1 and 23% in cohort 2. Median PFS (brain only, investigator-assessed) was 3.7 months (range 0.03-33.4; IQR 1.9-5.6) in cohort 1 and 4.0 months (range 0.3-27.4; IQR 2.2-7.4) in cohort 2. Median OS was 8.9 months (range 0.6-34.5; IQR 4.9-17.0) in cohort 1 and 9.6 months (range 0.7-34.3; IQR 4.5-18.4) in cohort 2. Adverse events (AEs) were similar in type, grade and frequency to other studies of single-agent vemurafenib. Grade 3/4 AEs occurred in 59 (66%) patients in cohort 1 and 36 (64%) in cohort 2. Overall, 84% of patients died during the study (86% in cohort 1 and 80% in cohort 2), mainly due to disease progression. Conclusions The study demonstrates clinically meaningful response rates of melanoma BM to vemurafenib, which was well tolerated and without significant CNS toxicity.
Collapse
|
Multicenter Study |
8 |
153 |
9
|
Finn L, Markovic SN, Joseph RW. Therapy for metastatic melanoma: the past, present, and future. BMC Med 2012; 10:23. [PMID: 22385436 PMCID: PMC3308914 DOI: 10.1186/1741-7015-10-23] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/02/2012] [Indexed: 02/07/2023] Open
Abstract
Metastatic melanoma is the most aggressive form of skin cancer with a median overall survival of less than one year. Advancements in our understanding of how melanoma evades the immune system as well as the recognition that melanoma is a molecularly heterogeneous disease have led to major improvements in the treatment of patients with metastatic melanoma. In 2011, the US Food and Drug Administration (FDA) approved two novel therapies for advanced melanoma: a BRAF inhibitor, vemurafenib, and an immune stimulatory agent, ipilimumab. The success of these agents has injected excitement and hope into patients and clinicians and, while these therapies have their limitations, they will likely provide excellent building blocks for the next generation of therapies. In this review we will discuss the advantages and limitations of the two new approved agents, current clinical trials designed to overcome these limitations, and future clinical trials that we feel hold the most promise.
Collapse
|
Review |
13 |
150 |
10
|
Luebker SA, Koepsell SA. Diverse Mechanisms of BRAF Inhibitor Resistance in Melanoma Identified in Clinical and Preclinical Studies. Front Oncol 2019; 9:268. [PMID: 31058079 PMCID: PMC6478763 DOI: 10.3389/fonc.2019.00268] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
BRAF inhibitor therapy may provide profound initial tumor regression in metastatic melanoma with BRAF V600 mutations, but treatment resistance often leads to disease progression. A multi-center analysis of BRAF inhibitor resistant patient tissue samples detected genomic changes after disease progression including multiple secondary mutations in the MAPK/Erk signaling pathway, mutant BRAF copy number gains, and BRAF alternative splicing as the predominant putative mechanisms of resistance, but 41.7% of samples had no known resistance drivers. In vitro models of BRAF inhibitor resistance have been developed under a wide variety of experimental conditions to investigate unknown drivers of resistance. Several in vitro models developed genetic alterations observed in patient tissue, but others modulate the response to BRAF inhibitors through increased expression of receptor tyrosine kinases. Both secondary genetic alterations and expression changes in receptor tyrosine kinases may increase activation of MAPK/Erk signaling in the presence of BRAF inhibitors as well as activate PI3K/Akt signaling to support continued growth. Melanoma cells that develop resistance in vitro may have increased dependence on serine or glutamine metabolism and have increased cell motility and metastatic capacity. Future studies of BRAF inhibitor resistance in vitro would benefit from adhering to experimental parameters that reflect development of BRAF inhibitor resistance in patients through using multiple cell lines, fully characterizing the dosing strategy, and reporting the fold change in drug sensitivity.
Collapse
|
Review |
6 |
135 |
11
|
Macdonald JB, Macdonald B, Golitz LE, LoRusso P, Sekulic A. Cutaneous adverse effects of targeted therapies: Part II: Inhibitors of intracellular molecular signaling pathways. J Am Acad Dermatol 2015; 72:221-36; quiz 237-8. [PMID: 25592339 DOI: 10.1016/j.jaad.2014.07.033] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023]
Abstract
The last decade has spawned an exciting new era of oncotherapy in dermatology, including the development of targeted therapies for metastatic melanoma and basal cell carcinoma. Along with skin cancer, deregulation of the PI3K-AKT-mTOR and RAS-RAF-MEK-ERK intracellular signaling pathways contributes to tumorigenesis of a multitude of other cancers, and inhibitors of these pathways are being actively studied. Similar to other classes of targeted therapies, cutaneous adverse effects are among the most frequent toxicities observed with mitogen-activated protein kinase pathway inhibitors, PI3K-AKT-mTOR inhibitors, hedgehog signaling pathway inhibitors, and immunotherapies. Given the rapid expansion of these families of targeted treatments, dermatologists will be essential in offering dermatologic supportive care measures to cancer patients being treated with these agents. Part II of this continuing medical education article reviews skin-related adverse sequelae, including the frequency of occurrence and the implications associated with on- and off-target cutaneous toxicities of inhibitors of the RAS-RAF-MEK-ERK pathway, PI3K-AKT-mTOR pathway, hedgehog signaling pathway, and immunotherapies.
Collapse
|
Review |
10 |
123 |
12
|
p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc Natl Acad Sci U S A 2014; 111:E1600-9. [PMID: 24711431 DOI: 10.1073/pnas.1404357111] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) has among the worst prognoses of any solid malignancy. The low incidence of the disease has in part precluded systematic clinical trials and tissue collection, and there has been little progress in developing effective therapies. v-raf murine sarcoma viral oncogene homolog B (BRAF) and tumor protein p53 (TP53) mutations cooccur in a high proportion of ATCs, particularly those associated with a precursor papillary thyroid carcinoma (PTC). To develop an adult-onset model of BRAF-mutant ATC, we generated a thyroid-specific CreER transgenic mouse. We used a Cre-regulated Braf(V600E) mouse and a conditional Trp53 allelic series to demonstrate that p53 constrains progression from PTC to ATC. Gene expression and immunohistochemical analyses of murine tumors identified the cardinal features of human ATC including loss of differentiation, local invasion, distant metastasis, and rapid lethality. We used small-animal ultrasound imaging to monitor autochthonous tumors and showed that treatment with the selective BRAF inhibitor PLX4720 improved survival but did not lead to tumor regression or suppress signaling through the MAPK pathway. The combination of PLX4720 and the mapk/Erk kinase (MEK) inhibitor PD0325901 more completely suppressed MAPK pathway activation in mouse and human ATC cell lines and improved the structural response and survival of ATC-bearing animals. This model expands the limited repertoire of autochthonous models of clinically aggressive thyroid cancer, and these data suggest that small-molecule MAPK pathway inhibitors hold clinical promise in the treatment of advanced thyroid carcinoma.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
120 |
13
|
Bautista F, Paci A, Minard-Colin V, Dufour C, Grill J, Lacroix L, Varlet P, Valteau-Couanet D, Geoerger B. Vemurafenib in pediatric patients with BRAFV600E mutated high-grade gliomas. Pediatr Blood Cancer 2014; 61:1101-3. [PMID: 24375920 DOI: 10.1002/pbc.24891] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/12/2013] [Indexed: 11/11/2022]
Abstract
We present three pediatric patients with BRAFV600E mutant high-grade gliomas treated by vemurafenib on a nominative authorization level at our institution. One patient with anaplastic ganglioglioma experienced confirmed partial tumor response and significant clinical improvement and she is alive 20 months after start of treatment. A second patient with ganglioglioma responded transiently to re-introduction of vemurafenib after immunotherapy. Pharmacokinetic studies suggest that maximum concentration and exposure of vemurafenib at steady-state is dose-dependent and similar in children to that reported in adults. These cases suggest that BRAFV600 is an oncogenic driver in pediatric gliomas. Further exploration in clinical studies is ongoing.
Collapse
|
Case Reports |
11 |
111 |
14
|
Spagnolo F, Ghiorzo P, Orgiano L, Pastorino L, Picasso V, Tornari E, Ottaviano V, Queirolo P. BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies. Onco Targets Ther 2015; 8:157-68. [PMID: 25653539 PMCID: PMC4303458 DOI: 10.2147/ott.s39096] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BRAF inhibitors vemurafenib and dabrafenib achieved improved overall survival over chemotherapy and have been approved for the treatment of BRAF-mutated metastatic melanoma. More recently, the combination of BRAF inhibitor dabrafenib with MEK inhibitor trametinib has shown improved progression-free survival, compared to dabrafenib monotherapy, in a Phase II study and has received approval by the US Food and Drug Administration. However, even when treated with the combination, most patients develop mechanisms of acquired resistance, and some of them do not achieve tumor regression at all, because of intrinsic resistance to therapy. Along with the development of BRAF inhibitors, immunotherapy made an important step forward: ipilimumab, an anti-CTLA-4 monoclonal antibody, was approved for the treatment of metastatic melanoma; anti-PD-1 agents achieved promising results in Phase I/II trials, and data from Phase III studies will be ready soon. The availability of such drugs, which are effective regardless of BRAF status, has made the therapeutic approach more complex, as first-line treatment with BRAF inhibitors may not be the best choice for all BRAF-mutated patients. The aim of this paper is to review the systemic therapeutic options available today for patients affected by BRAF V600-mutated metastatic melanoma, as well as to summarize the mechanisms of resistance to BRAF inhibitors and discuss the possible strategies to overcome them. Moreover, since the molecular analysis of tumor specimens is now a pivotal and decisional factor in the treatment strategy of metastatic melanoma patients, the advances in the molecular detection techniques for the BRAF V600 mutation will be reported.
Collapse
|
Review |
10 |
110 |
15
|
Sapkota B, Hill CE, Pollack BP. Vemurafenib enhances MHC induction in BRAF V600E homozygous melanoma cells. Oncoimmunology 2014; 2:e22890. [PMID: 23483066 PMCID: PMC3583938 DOI: 10.4161/onci.22890] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To optimally integrate targeted kinase inhibitors and immunotherapies in the treatment of melanoma, it will be critical to understand how BRAFV600E mutational status and BRAFV600E inhibition influence the expression of genes that govern antitumor immune responses. Because major histocompatibility complex (MHC) molecules are critical for interactions between tumor cells and lymphocytes, we investigated the impact of BRAFV600E-selective inhibitors on the expression of MHC molecules. We found that the treatment of A375 melanoma cells with vemurafenib enhances the induction of MHC Class I and Class II molecules by interferon γ and IFNα2b. Consistent with these findings, we observed that the forced overexpression of BRAFV600E has the opposite effect and can repress the baseline expression of MHC Class I molecules in A375 cells. Further studies utilizing eight other melanoma cell lines revealed that the vemurafenib-mediated enhancement of MHC induction by IFNγ only occurs in the context of homozygous, but not heterozygous, BRAFV600E mutation. These findings suggest that BRAFV600E activity directly influences the expression of MHC molecules and the response to Type I and Type II IFNs. Furthermore, our data suggest that the effect of vemurafenib on the expression of immune system-relevant genes may depend on the zygosity of the BRAFV600E mutation, which is not routinely assessed in melanoma patients.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
110 |
16
|
Wong JR, Nanji AA, Galor A, Karp CL. Management of conjunctival malignant melanoma: a review and update. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 9:185-204. [PMID: 25580155 DOI: 10.1586/17469899.2014.921119] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Conjunctival malignant melanoma is a pigmented lesion of the ocular surface. It is an uncommon but potentially devastating tumor that may invade the local tissues of the eye, spread systemically through lymphatic drainage and hematogenous spread, and recur in spite of treatment. Despite its severity, the rarity of available cases has limited the evidence for diagnosis and management. This review will provide an overview of the epidemiology, presentation, diagnosis, management, and surveillance of conjunctival melanoma, with an emphasis on recent advances in biological therapies to treat this disease.
Collapse
|
Journal Article |
11 |
106 |
17
|
Kim A, Cohen MS. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin Drug Discov 2016; 11:907-16. [PMID: 27327499 DOI: 10.1080/17460441.2016.1201057] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION In the era of precision medicine and sophisticated modern genetics, the discovery of the BRAF(V600) inhibitor, vemurafenib, quickly became the model for targeted therapy in melanomas. As early as 2002, the majority of metastatic melanomas were described to harbor the BRAF(V600) mutation, setting the stage for an explosion of interest for targeting this protein as a novel therapeutic strategy. The highly selective BRAF(V600) inhibitor, vemurafenib, was identified initially through a large-scale drug screen. AREAS COVERED Here we examine vemurafenib's journey from discovery to clinical use in metastatic melanoma. Topics covered include preclinical data, single agent Phase 1,2 and 3 clinical trials, resistance issues and mechanisms, adverse effects including the development of squamous cell cancers, and combination trials. EXPERT OPINION Due to its tolerance, low toxicity profile, rapid tumor response, and improved outcomes in melanoma patients with BRAF(V600) mutations, vemurafenib was advanced rapidly through clinical trials to receive FDA approval in 2011. While its efficacy is well documented, durability has become an issue for most patients who experience therapeutic resistance in approximately 6-8 months. In addition, a concerning toxicity observed in patients taking the drug include development of localized cutaneous squamous cell carcinomas (SCCs). It is hypothesized that drug resistance and SCC development result from a similar paradoxical activation of protein signaling pathways, specifically MAPK. Identification of these mechanisms has led to additional treatment strategies involving new combination therapies.
Collapse
|
Review |
9 |
103 |
18
|
Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Görgens A, Giebel B, Schadendorf D, Paschen A. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J Cancer 2013; 133:1653-63. [PMID: 23526263 DOI: 10.1002/ijc.28168] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/08/2013] [Indexed: 01/03/2023]
Abstract
Myeloid derived suppressor cells (MDSCs) suppress innate and adaptive immunity, thereby limiting anti-tumor immune responses in cancer patients. In patients with advanced melanoma, the phenotype and function of MDSCs remains controversial. In our study, we further explored two distinct subpopulations of MDSCs and investigated the impact of Vemurafenib on these cells. Flow cytometry analysis revealed that in comparison to healthy donors and patients with localized disease, PBMCs from patients with metastatic melanoma showed an increased frequency of CD14(+) HLA-DR(-/low) monocytic MDSCs (moMDSCs) and of a previously unrecognized population of CD14(-) CD66b(+) Arginase1(+) granulocytic MDSCs (grMDSCs). In vitro, both populations suppressed autologous T-cell proliferation, which was tested in CFSE-based proliferation assays. Vemurafenib treatment of melanoma patients reduced the frequency of both moMDSCs and grMDSCs. According to our in vivo finding, conditioned medium (CM) from Vemurafenib treated melanoma cells was less active in inducing moMDSCs in vitro than CM from untreated melanoma cells. In conclusion, patients with advanced melanoma show increased levels of moMDSCs, and of a population of CD14(-) CD66b(+) Arginase1(+) grMDSCs. Both MDSCs are distinct populations capable of suppressing autologous T-cell responses independently of each other. In vitro as well as in vivo, Vemurafenib inhibits the generation of human moMDSCs. Thus, Vemurafenib decreases immunosuppression in patients with advanced melanoma, indicating its potential as part of future immunotherapies.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
100 |
19
|
Schreck KC, Grossman SA, Pratilas CA. BRAF Mutations and the Utility of RAF and MEK Inhibitors in Primary Brain Tumors. Cancers (Basel) 2019; 11:E1262. [PMID: 31466300 PMCID: PMC6769482 DOI: 10.3390/cancers11091262] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022] Open
Abstract
BRAF mutations have been identified as targetable, oncogenic mutations in many cancers. Given the paucity of treatments for primary brain tumors and the poor prognosis associated with high-grade gliomas, BRAF mutations in glioma are of considerable interest. In this review, we present the spectrum of BRAF mutations and fusion alterations present in each class of primary brain tumor based on publicly available databases and publications. We also summarize clinical experience with RAF and MEK inhibitors in patients with primary brain tumors and describe ongoing clinical trials of RAF inhibitors in glioma. Sensitivity to RAF and MEK inhibitors varies among BRAF mutations and between tumor types as only class I BRAF V600 mutations are sensitive to clinically available RAF inhibitors. While class II and III BRAF mutations are found in primary brain tumors, further research is necessary to determine their sensitivity to third-generation RAF inhibitors and/or MEK inhibitors. We recommend that the neuro-oncologist consider using these drugs primarily in the setting of a clinical trial for patients with BRAF-altered glioma in order to advance our knowledge of their efficacy in this patient population.
Collapse
|
Review |
6 |
99 |
20
|
Ascierto PA, Simeone E, Giannarelli D, Grimaldi AM, Romano A, Mozzillo N. Sequencing of BRAF inhibitors and ipilimumab in patients with metastatic melanoma: a possible algorithm for clinical use. J Transl Med 2012; 10:107. [PMID: 22640478 PMCID: PMC3464706 DOI: 10.1186/1479-5876-10-107] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/28/2012] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Ipilimumab and vemurafenib have both been shown to improve survival in phase III trials of patients with metastatic melanoma. Although vemurafenib is associated with a rapid onset of activity, responses are often of limited duration. Conversely, responses to ipilimumab take time to develop, but can be durable. Currently, limited data exist on the sequencing of these agents in patients with the BRAFV600 mutation. The aim of this analysis was to identify factors that could potentially be used to optimise the order in which ipilimumab and BRAF inhibitors are administered in this patient population. METHODS This was a retrospective, single-institution, analysis of patients treated with vemurafenib 960 mg or dabrafenib 150 mg twice-daily and ipilimumab 3 mg/kg every 3 weeks for 4 doses as part of a clinical trial or expanded access program. Eligible patients tested positive for the BRAFV600 mutation and had sequentially received treatment with vemurafenib or dabrafenib followed by ipilimumab, or vice versa. RESULTS In total, 34 BRAF-mutation positive patients were eligible, comprising six patients who received ipilimumab followed by a BRAF inhibitor, and 28 patients treated with a BRAF inhibitor who subsequently received ipilimumab. Of these 28 patients, 12 (43%) had rapid disease progression resulting in death and were unable to complete ipilimumab treatment as per protocol. These patients were classified as having rapid disease progression. Median overall survival for rapid progressors was 5.7 months (95% CI: 5.0-6.3), compared with 18.6 months (95% CI: 3.2-41.3; p < 0.0001) for those patients who were able to complete ipilimumab treatment. Baseline factors associated with rapid progression were elevated lactate dehydrogenase, a performance status of 1 and the presence of brain metastases. Patients were more likely to have rapid disease progression if they had at least two of these risk factors at baseline. CONCLUSIONS Our analysis suggests it may be possible to identify those patients at high risk of rapid disease progression upon relapse with a BRAF inhibitor who might not have time to subsequently complete ipilimumab treatment. We hypothesise that these BRAF-mutation positive patients may benefit from being treated with ipilimumab first.
Collapse
|
research-article |
13 |
96 |
21
|
Subbiah V, Puzanov I, Blay JY, Chau I, Lockhart AC, Raje NS, Wolf J, Baselga J, Meric-Bernstam F, Roszik J, Diamond EL, Riely GJ, Sherman EJ, Riehl T, Pitcher B, Hyman DM. Pan-Cancer Efficacy of Vemurafenib in BRAF V600-Mutant Non-Melanoma Cancers. Cancer Discov 2020; 10:657-663. [PMID: 32029534 PMCID: PMC7196502 DOI: 10.1158/2159-8290.cd-19-1265] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 01/30/2023]
Abstract
BRAF V600 mutations occur in a wide range of tumor types, and RAF inhibition has become standard in several of these cancers. Despite this progress, BRAF V600 mutations have historically been considered a clear demonstration of tumor lineage context-dependent oncogene addiction, based predominantly on the insensitivity to RAF inhibition in colorectal cancer. However, the true broader activity of RAF inhibition pan-cancer remains incompletely understood. To address this, we conducted a multicohort "basket" study of the BRAF inhibitor vemurafenib in non-melanoma BRAF V600 mutation-positive solid tumors. In total, 172 patients with 26 unique cancer types were treated, achieving an overall response rate of 33% and median duration of response of 13 months. Responses were observed in 13 unique cancer types, including historically treatment-refractory tumor types such as cholangiocarcinoma, sarcoma, glioma, neuroendocrine carcinoma, and salivary gland carcinomas. Collectively, these data demonstrate that single-agent BRAF inhibition has broader clinical activity than previously recognized. SIGNIFICANCE: These data suggest that BRAF V600 mutations lead to oncogene addiction and are clinically actionable in a broad range of non-melanoma cancers, including tumor types in which RAF inhibition is not currently considered standard of care.See related commentary by Ribas and Lo, p. 640.This article is highlighted in the In This Issue feature, p. 627.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
88 |
22
|
Johnson DB, Wallender EK, Cohen DN, Likhari SS, Zwerner JP, Powers JG, Shinn L, Kelley MC, Joseph RW, Sosman JA. Severe cutaneous and neurologic toxicity in melanoma patients during vemurafenib administration following anti-PD-1 therapy. Cancer Immunol Res 2015; 1:373-7. [PMID: 24490176 DOI: 10.1158/2326-6066.cir-13-0092] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune checkpoint inhibitors such as ipilimumab and targeted BRAF inhibitors have dramatically altered the landscape of melanoma therapeutics over the past few years. Agents targeting the programmed cell death-1/ligand (PD-1/PD-L1) axis are now being developed and appear to be highly active clinically with favorable toxicity profiles. We report two patients with BRAF V600E mutant melanoma who were treated with anti-PD-1 agents as first-line therapy without significant toxicity, followed by vemurafenib at disease progression. Both patients developed severe hypersensitivity drug eruptions with multi-organ injury early in their BRAF inhibitor treatment course. One patient subsequently developed acute inflammatory demyelinating polyneuropathy (AIDP) and the other developed anaphylaxis upon low-dose vemurafenib rechallenge. Further investigation of the immune response during combination or sequences of melanoma therapeutics is warranted. Furthermore, clinicians should maintain a high index of suspicion for these toxicities when vemurafenib is administered following an anti-PD-1 agent.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
87 |
23
|
Cooper ZA, Frederick DT, Juneja VR, Sullivan RJ, Lawrence DP, Piris A, Sharpe AH, Fisher DE, Flaherty KT, Wargo JA. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology 2013; 2:e26615. [PMID: 24251082 PMCID: PMC3827093 DOI: 10.4161/onci.26615] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
There have been significant advances with regard to BRAF-targeted therapies against metastatic melanoma. However, the majority of patients receiving BRAF inhibitors (BRAFi) manifest disease progression within a year. We have recently shown that melanoma patients treated with BRAFi exhibit an increase in melanoma-associated antigens and in CD8+ tumor-infiltrating lymphocytes in response to therapy. To characterize such a T-cell infiltrate, we analyzed the complementarity-determining region 3 (CDR3) of rearranged T-cell receptor (TCR) β chain-coding genes in tumor biopsies obtained before the initiation of BRAFi and 10-14 d later. We observed an increase in the clonality of tumor-infiltrating lymphocytes in 7 of 8 patients receiving BRAFi, with a statistically significant 21% aggregate increase in clonality. Over 80% of individual T-cell clones detected after initiation of BRAFi treatment were new clones. Interestingly, the comparison of tumor infiltrates with clinical responses revealed that patients who had a high proportion of pre-existing dominant clones after the administration of BRAFi responded better to therapy than patients who had a low proportion of such pre-existing dominant clones following BRAFi. These data suggest that although the inhibition of BRAF in melanoma patients results in tumor infiltration by new lymphocytes, the response to treatment appears to be related to the presence of a pre-existing population of tumor-infiltrating T-cell clones.
Collapse
|
Journal Article |
12 |
82 |
24
|
Challenging resistance mechanisms to therapies for metastatic melanoma. Trends Pharmacol Sci 2013; 34:656-66. [PMID: 24210882 DOI: 10.1016/j.tips.2013.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 11/20/2022]
Abstract
Melanoma is the most aggressive form of skin cancer and, if spread outside the epidermis, has a dismal prognosis. Before the approval of the anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) monoclonal antibody ipilimumab and the BRAF inhibitors vemurafenib and dabrafenib, no other agents had demonstrated better results in terms of overall survival than the DNA-methylating compound dacarbazine (or its oral analog temozolomide). However, most patients with metastatic melanoma do not obtain long-lasting clinical benefit from ipilimumab and responses to BRAF inhibitors are short lived. Thus, combination therapies with inhibitors of DNA repair (e.g., poly(ADP-ribose) polymerase [PARP] inhibitors), novel immunomodulators (monoclonal antibodies against programmed death-1 [PD-1] or its ligand PD-L1), targeted therapies (mitogen-activated protein kinase [MAPK]/extracellular signal-regulated kinase [ERK] kinase [MEK] or phosphatidylinositol 3-kinase [PI3K]/AKT/mammalian target of rapamycin [mTOR] inhibitors) or antiangiogenic agents are currently being investigated to improve the efficacy of antimelanoma therapies. This review discusses the implications of simultaneously targeting key regulators of melanoma cell proliferation/survival and immune responses to counteract resistance.
Collapse
|
Review |
12 |
81 |
25
|
Goodall ML, Wang T, Martin KR, Kortus MG, Kauffman AL, Trent JM, Gately S, MacKeigan JP. Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib. Autophagy 2015; 10:1120-36. [PMID: 24879157 PMCID: PMC4091172 DOI: 10.4161/auto.28594] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a dynamic cell survival mechanism by which a double-membrane vesicle, or autophagosome, sequesters portions of the cytosol for delivery to the lysosome for recycling. This process can be inhibited using the antimalarial agent chloroquine (CQ), which impairs lysosomal function and prevents autophagosome turnover. Despite its activity, CQ is a relatively inadequate inhibitor that requires high concentrations to disrupt autophagy, highlighting the need for improved small molecules. To address this, we screened a panel of antimalarial agents for autophagy inhibition and chemically synthesized a novel series of acridine and tetrahydroacridine derivatives. Structure-activity relationship studies of the acridine ring led to the discovery of VATG-027 as a potent autophagy inhibitor with a high cytotoxicity profile. In contrast, the tetrahydroacridine VATG-032 showed remarkably little cytotoxicity while still maintaining autophagy inhibition activity, suggesting that both compounds act as autophagy inhibitors with differential effects on cell viability. Further, knockdown of autophagy-related genes showed no effect on cell viability, demonstrating that the ability to inhibit autophagy is separate from the compound cytotoxicity profiles. Next, we determined that both inhibitors function through lysosomal deacidification mechanisms and ultimately disrupt autophagosome turnover. To evaluate the genetic context in which these lysosomotropic inhibitors may be effective, they were tested in patient-derived melanoma cell lines driven by oncogenic BRAF (v-raf murine sarcoma viral oncogene homolog B). We discovered that both inhibitors sensitized melanoma cells to the BRAF V600E inhibitor vemurafenib. Overall, these autophagy inhibitors provide a means to effectively block autophagy and have the potential to sensitize mutant BRAF melanomas to first-line therapies.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
81 |