1
|
Caudill MA, Strupp BJ, Muscalu L, Nevins JEH, Canfield RL. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study. FASEB J 2018; 32:2172-2180. [PMID: 29217669 DOI: 10.1096/fj.201700692rr] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rodent studies demonstrate that supplementing the maternal diet with choline during pregnancy produces life-long cognitive benefits for the offspring. In contrast, the two experimental studies examining cognitive effects of maternal choline supplementation in humans produced inconsistent results, perhaps because of poor participant adherence and/or uncontrolled variation in intake of choline or other nutrients. We examined the effects of maternal choline supplementation during pregnancy on infant cognition, with intake of choline and other nutrients tightly controlled. Women entering their third trimester were randomized to consume, until delivery, either 480 mg choline/d ( n = 13) or 930 mg choline/d ( n = 13). Infant information processing speed and visuospatial memory were tested at 4, 7, 10, and 13 mo of age ( n = 24). Mean reaction time averaged across the four ages was significantly faster for infants born to mothers in the 930 ( vs. 480) mg choline/d group. This result indicates that maternal consumption of approximately twice the recommended amount of choline during the last trimester improves infant information processing speed. Furthermore, for the 480-mg choline/d group, there was a significant linear effect of exposure duration (infants exposed longer showed faster reaction times), suggesting that even modest increases in maternal choline intake during pregnancy may produce cognitive benefits for offspring.-Caudill, M. A., Strupp, B. J., Muscalu, L., Nevins, J. E. H., Canfield, R. L. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
123 |
2
|
Groen MA, Whitehouse AJO, Badcock NA, Bishop DVM. Does cerebral lateralization develop? A study using functional transcranial Doppler ultrasound assessing lateralization for language production and visuospatial memory. Brain Behav 2012; 2:256-69. [PMID: 22741100 PMCID: PMC3381631 DOI: 10.1002/brb3.56] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 01/19/2023] Open
Abstract
In the majority of people, language production is lateralized to the left cerebral hemisphere and visuospatial skills to the right. However, questions remain as to when, how, and why humans arrive at this division of labor. In this study, we assessed cerebral lateralization for language production and for visuospatial memory using functional transcranial Doppler ultrasound in a group of 60 typically developing children between the ages of six and 16 years. The typical pattern of left-lateralized activation for language production and right-lateralized activation for visuospatial memory was found in the majority of the children (58%). No age-related change in direction or strength of lateralization was found for language production. In contrast, the strength of lateralization (independent of direction) for visuospatial memory function continued to increase with age. In addition, boys showed a trend for stronger right-hemisphere lateralization for visuospatial memory than girls, but there was no gender effect on language laterality. We tested whether having language and visuospatial functions in the same hemisphere was associated with poor cognitive performance and found no evidence for this "functional crowding" hypothesis. We did, however, find that children with left-lateralized language production had higher vocabulary and nonword reading age-adjusted standard scores than other children, regardless of the laterality of visuospatial memory. Thus, a link between language function and left-hemisphere lateralization exists, and cannot be explained in terms of maturational change.
Collapse
|
research-article |
13 |
85 |
3
|
Structural Variability within Frontoparietal Networks and Individual Differences in Attentional Functions: An Approach Using the Theory of Visual Attention. J Neurosci 2015. [PMID: 26224851 DOI: 10.1523/jneurosci.0210-15.2015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Visuospatial attention allows us to select and act upon a subset of behaviorally relevant visual stimuli while ignoring distraction. Bundesen's theory of visual attention (TVA) (Bundesen, 1990) offers a quantitative analysis of the different facets of attention within a unitary model and provides a powerful analytic framework for understanding individual differences in attentional functions. Visuospatial attention is contingent upon large networks, distributed across both hemispheres, consisting of several cortical areas interconnected by long-association frontoparietal pathways, including three branches of the superior longitudinal fasciculus (SLF I-III) and the inferior fronto-occipital fasciculus (IFOF). Here we examine whether structural variability within human frontoparietal networks mediates differences in attention abilities as assessed by the TVA. Structural measures were based on spherical deconvolution and tractography-derived indices of tract volume and hindrance-modulated orientational anisotropy (HMOA). Individual differences in visual short-term memory (VSTM) were linked to variability in the microstructure (HMOA) of SLF II, SLF III, and IFOF within the right hemisphere. Moreover, VSTM and speed of information processing were linked to hemispheric lateralization within the IFOF. Differences in spatial bias were mediated by both variability in microstructure and volume of the right SLF II. Our data indicate that the microstructural and macrostrucutral organization of white matter pathways differentially contributes to both the anatomical lateralization of frontoparietal attentional networks and to individual differences in attentional functions. We conclude that individual differences in VSTM capacity, processing speed, and spatial bias, as assessed by TVA, link to variability in structural organization within frontoparietal pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
75 |
4
|
Cognitive deficits in long-term anabolic-androgenic steroid users. Drug Alcohol Depend 2013; 130:208-14. [PMID: 23253252 PMCID: PMC3608708 DOI: 10.1016/j.drugalcdep.2012.11.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/11/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Millions of individuals worldwide have used anabolic-androgenic steroids (AAS) to gain muscle or improve athletic performance. Recently, in vitro investigations have suggested that supraphysiologic AAS doses cause apoptosis of neuronal cells. These findings raise the possibility, apparently still untested, that humans using high-dose AAS might eventually develop cognitive deficits. METHODS We administered five cognitive tests from the computerized CANTAB battery (Pattern Recognition Memory, Verbal Recognition Memory, Paired Associates Learning, Choice Reaction Time, and Rapid Visual Information Processing) to 31 male AAS users and 13 non-AAS-using weightlifters age 29-55, recruited and studied in May 2012 in Middlesbrough, UK. Testers were blinded to participants' AAS status and other historical data. RESULTS Long-term AAS users showed no significant differences from nonusers on measures of response speed, sustained attention, and verbal memory. On visuospatial memory, however, AAS users performed significantly more poorly than nonusers, and within the user group, visuospatial performance showed a significant negative correlation with total lifetime AAS dose. These were large effects: on Pattern Recognition Memory, long-term AAS users underperformed nonusers by almost one standard deviation, based on normative population scores (adjusted mean difference in z-scores=0.89; p=0.036), and performance on this test declined markedly with increasing lifetime AAS dose (adjusted change in z-score=-0.13 per 100g of lifetime AAS dose; p=0.002). These results remained stable in sensitivity analyses addressing potential confounding factors. CONCLUSIONS These preliminary findings raise the ominous possibility that long-term high-dose AAS exposure may cause cognitive deficits, notably in visuospatial memory.
Collapse
|
research-article |
12 |
73 |
5
|
Schott BH, Wüstenberg T, Lücke E, Pohl IM, Richter A, Seidenbecher CI, Pollmann S, Kizilirmak JM, Richardson-Klavehn A. Gradual acquisition of visuospatial associative memory representations via the dorsal precuneus. Hum Brain Mapp 2018; 40:1554-1570. [PMID: 30430687 DOI: 10.1002/hbm.24467] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/18/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
Activation of parietal cortex structures like the precuneus is commonly observed during explicit memory retrieval, but the role of parietal cortices in encoding has only recently been appreciated and is still poorly understood. Considering the importance of the precuneus in human visual attention and imagery, we aimed to assess a potential role for the precuneus in the encoding of visuospatial representations into long-term memory. We therefore investigated the acquisition of constant versus repeatedly shuffled configurations of icons on background images over five subsequent days in 32 young, healthy volunteers. Functional magnetic resonance imaging was conducted on Days 1, 2, and 5, and persistent memory traces were assessed by a delayed memory test after another 5 days. Constant compared to shuffled configurations were associated with significant improvement of position recognition from Day 1 to 5 and better delayed memory performance. Bilateral dorsal precuneus activations separated constant from shuffled configurations from Day 2 onward, and coactivation of the precuneus and hippocampus dissociated recognized and forgotten configurations, irrespective of condition. Furthermore, learning of constant configurations elicited increased functional coupling of the precuneus with dorsal and ventral visual stream structures. Our results identify the precuneus as a key brain structure in the acquisition of detailed visuospatial information by orchestrating a parieto-occipito-temporal network.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
45 |
6
|
Sharp-Wave Ripples in Primates Are Enhanced near Remembered Visual Objects. Curr Biol 2016; 27:257-262. [PMID: 28041797 DOI: 10.1016/j.cub.2016.11.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/08/2016] [Accepted: 11/10/2016] [Indexed: 12/25/2022]
Abstract
The hippocampus plays an important role in memory for events that are distinct in space and time. One of the strongest, most synchronous neural signals produced by the hippocampus is the sharp-wave ripple (SWR), observed in a variety of mammalian species during offline behaviors, such as slow-wave sleep [1-3] and quiescent waking and pauses in exploration [4-8], leading to long-standing and widespread theories of its contribution to plasticity and memory during these inactive or immobile states [9-14]. Indeed, during sleep and waking inactivity, hippocampal SWRs in rodents appear to support spatial long-term and working memory [4, 15-23], but so far, they have not been linked to memory in primates. More recently, SWRs have been observed during active, visual scene exploration in macaques [24], opening up the possibility that these active-state ripples in the primate hippocampus are linked to memory for objects embedded in scenes. By measuring hippocampal SWRs in macaques during search for scene-contextualized objects, we found that SWR rate increased with repeated presentations. Furthermore, gaze during SWRs was more likely to be near the target object on repeated than on novel presentations, even after accounting for overall differences in gaze location with scene repetition. This proximity bias with repetition occurred near the time of target object detection for remembered targets. The increase in ripple likelihood near remembered visual objects suggests a link between ripples and memory in primates; specifically, SWRs may reflect part of a mechanism supporting the guidance of search based on past experience.
Collapse
|
Journal Article |
9 |
37 |
7
|
Dickinson CA, Intraub H. Transsaccadic representation of layout: what is the time course of boundary extension? J Exp Psychol Hum Percept Perform 2008; 34:543-55. [PMID: 18505322 PMCID: PMC2754043 DOI: 10.1037/0096-1523.34.3.543] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How rapidly does boundary extension occur? Across experiments, trials included a 3-scene sequence (325 ms/picture), masked interval, and repetition of 1 scene. The repetition was the same view or differed (more close-up or wide angle). Observers rated the repetition as same as, closer than, or more wide angle than the original view on a 5-point scale. Masked intervals were 100, 250, 625, or 1,000 ms in Experiment 1 and 42, 100, or 250 ms in Experiments 2 and 3. Boundary extension occurred in all cases: Identical views were rated as too "close-up," and distractor views elicited the rating asymmetry typical of boundary extension (wider angle distractors were rated as being more similar to the original than were closer up distractors). Most important, boundary extension was evident when only a 42-ms mask separated the original and test views. Experiments 1 and 3 included conditions eliciting a gaze shift prior to the rating test; this did not eliminate boundary extension. Results show that boundary extension is available soon enough and is robust enough to play an on-line role in view integration, perhaps supporting incorporation of views within a larger spatial framework.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
29 |
8
|
Hohenfeld C, Nellessen N, Dogan I, Kuhn H, Müller C, Papa F, Ketteler S, Goebel R, Heinecke A, Shah NJ, Schulz JB, Reske M, Reetz K. Cognitive Improvement and Brain Changes after Real-Time Functional MRI Neurofeedback Training in Healthy Elderly and Prodromal Alzheimer's Disease. Front Neurol 2017; 8:384. [PMID: 28848488 PMCID: PMC5552678 DOI: 10.3389/fneur.2017.00384] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/19/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cognitive decline is characteristic for Alzheimer's disease (AD) and also for healthy ageing. As a proof-of-concept study, we examined whether this decline can be counteracted using real-time fMRI neurofeedback training. Visuospatial memory and the parahippocampal gyrus (PHG) were targeted. METHODS Sixteen healthy elderly subjects (mean age 63.5 years, SD = 6.663) and 10 patients with prodromal AD (mean age 66.2 years, SD = 8.930) completed the experiment. Four additional healthy subjects formed a sham-feedback condition to validate the paradigm. The protocol spanned five examination days (T1-T5). T1 contained a neuropsychological pre-test, the encoding of a real-world footpath, and an anatomical MRI scan of the brain. T2-T4 included the fMRI neurofeedback training paradigm, in which subjects learned to enhance activation of the left PHG while recalling the path encoded on T1. At T5, the neuropsychological post-test and another anatomical MRI brain scan were performed. The neuropsychological battery included the Montreal Cognitive Assessment (MoCA); the Visual and Verbal Memory Test (VVM); subtests of the Wechsler Memory Scale (WMS); the Visual Patterns Test; and Trail Making Tests (TMT) A and B. RESULTS Healthy elderly and patients with prodromal AD showed improved visuospatial memory performance after neurofeedback training. Healthy subjects also performed better in a working-memory task (WMS backward digit-span) and in the MoCA. Both groups were able to elicit parahippocampal activation during training, but no significant changes in brain activation were found over the course of the training. However, Granger-causality-analysis revealed changes in cerebral connectivity over the course of the training, involving the parahippocampus and identifying the precuneus as main driver of activation in both groups. Voxel-based morphometry showed increases in grey matter volumes in the precuneus and frontal cortex. Neither cognitive enhancements, nor parahippocampal activation were found in the control group undergoing sham-feedback. CONCLUSION These findings suggest that cognitive decline, either related to prodromal AD or healthy ageing, could be counteracted using fMRI-based neurofeedback. Future research needs to determine the potential of this method as a treatment tool.
Collapse
|
Journal Article |
8 |
29 |
9
|
Nelson AJD, Hindley EL, Pearce JM, Vann SD, Aggleton JP. The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning. Front Behav Neurosci 2015; 9:11. [PMID: 25705182 PMCID: PMC4319482 DOI: 10.3389/fnbeh.2015.00011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/13/2015] [Indexed: 01/28/2023] Open
Abstract
The study examined the importance of the retrosplenial cortex for the incidental learning of the spatial arrangement of distinctive features within a scene. In a modified Morris water-maze, rats spontaneously learnt the location of an escape platform prior to swimming to that location. For this, rats were repeatedly placed on a submerged platform in one corner of either a rectangular (Experiment 1) or square (Experiments 2, 3) pool with walls of different appearance. The rats were then released in the center of the pool for their first test trial. In Experiment 1, the correct corner and its diagonally opposite partner (also correct) were specified by the geometric properties of the pool. Rats with retrosplenial lesions took longer to first reach a correct corner, subsequently showing an attenuated preference for the correct corners. A reduced preference for the correct corner was also found in Experiment 2, when platform location was determined by the juxtaposition of highly salient visual cues (black vs. white walls). In Experiment 3, less salient visual cues (striped vs. white walls) led to a robust lesion impairment, as the retrosplenial lesioned rats showed no preference for the correct corner. When subsequently trained actively to swim to the correct corner over successive trials, retrosplenial lesions spared performance on all three discriminations. The findings not only reveal the importance of the retrosplenial cortex for processing various classes of visuospatial information but also highlight a broader role in the incidental learning of the features of a spatial array, consistent with the translation of scene information.
Collapse
|
research-article |
10 |
19 |
10
|
Liampas I, Folia V, Ntanasi E, Yannakoulia M, Sakka P, Hadjigeorgiou G, Scarmeas N, Dardiotis E, Kosmidis MH. Longitudinal episodic memory trajectories in older adults with normal cognition. Clin Neuropsychol 2023; 37:304-321. [PMID: 35400289 DOI: 10.1080/13854046.2022.2059011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To determine the longitudinal trajectories and normative standards of episodic memory in older adults. METHODS Participants were drawn from the cognitively normal(CN) subgroup of the population-based HELIAD cohort, a fairly representative cohort of the older Greek population. Verbal and non-verbal memory were assessed using the Greek Verbal Learning Test and Medical College of Georgia-Complex Figure Test. Baseline and longitudinal associations of memory performance with age, sex and formal education were explored with linear regression analysis and generalized estimated equations. RESULTS A total of 1607 predominantly female (60%) individuals (73.82 ± 5.43 years), with a mean educational attainment of 8.17(±4.86) years were CN at baseline. Baseline analysis revealed a continuum of memory decline with aging and lower educational attainment. Women performed better in composite and verbal memory measures, while men performed better in non-verbal memory tasks. A subgroup of 761 participants with available assessments after 3.07(±0.82) years remained CN at follow-up. Composite memory scores yearly diminished by an additional 0.007 of a SD for each additional year of age at baseline. Regarding verbal learning, immediate free verbal recall, delayed free verbal recall and delayed cued verbal recall, an additional yearly decrease of 0.107, 0.043, 0.036 and 0.026 words were respectively recorded at follow-up, for each additional year of age at baseline. Women underwent steeper yearly decreases of 0.227 words in delayed cued verbal recall. No significant longitudinal associations emerged for immediate non-verbal memory, delayed non-verbal memory and immediate cued verbal recall. CONCLUSIONS In the present study, aging (but not educational attainment) was consistently associated with steeper verbal memory decline. Supplemental data for this article is available online at https://doi.org/10.1080/13854046.2022.2059011 .
Collapse
|
|
2 |
18 |
11
|
Külzow N, Cavalcanti de Sousa AV, Cesarz M, Hanke JM, Günsberg A, Harder S, Koblitz S, Grittner U, Flöel A. No Effects of Non-invasive Brain Stimulation on Multiple Sessions of Object-Location-Memory Training in Healthy Older Adults. Front Neurosci 2018; 11:746. [PMID: 29375290 PMCID: PMC5767718 DOI: 10.3389/fnins.2017.00746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/20/2017] [Indexed: 01/03/2023] Open
Abstract
Object-location memory (OLM) is known to decline with normal aging, a process accelerated in pathological conditions like mild cognitive impairment (MCI). In order to maintain cognitive health and to delay the transition from healthy to pathological conditions, novel strategies are being explored. Tentative evidence suggests that combining cognitive training and anodal transcranial direct current stimulation (atDCS), both reported to induce small and often inconsistent behavioral improvements, could generate larger or more consistent improvements or both, compared to each intervention alone. Here, we explored the combined efficacy of these techniques on OLM. In a subject-blind sham-controlled cross-over design 32 healthy older adults underwent a 3-day visuospatial training paired with either anodal (20 min) or sham (30 s) atDCS (1 mA, temporoparietal). Subjects were asked to learn the correct object-location pairings on a street map, shown over five learning blocks on each training day. Acquisition performance was assessed by accuracy on a given learning block in terms of percentage of correct responses. Training success (performance on last training day) and delayed memory after 1-month were analyzed by mixed model analysis and were controlled for gender, age, education, sequence of stimulation and baseline performance. Exploratory analysis of atDCS effects on within-session (online) and between-session (offline) memory performance were conducted. Moreover, transfer effects on similar trained (visuospatial) and less similar (visuo-constructive, verbal) untrained memory tasks were explored, both immediately after training, and on follow-up. We found that atDCS paired with OLM-training did not enhance success in training or performance in 1-month delayed memory or transfer tasks. In sum, this study did not support the notion that the combined atDCS-training approach improves immediate or delayed OLM in older adults. However, specifics of the experimental design, and a non-optimal timing of atDCS between sessions might have masked beneficial effects and should be more systematically addressed in future studies.
Collapse
|
Journal Article |
7 |
15 |
12
|
Luo Y, Wang J, Wu H, Zhu D, Zhang Y. Working-memory training improves developmental dyslexia in Chinese children. Neural Regen Res 2014; 8:452-60. [PMID: 25206687 PMCID: PMC4146131 DOI: 10.3969/j.issn.1673-5374.2013.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022] Open
Abstract
Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memory training. In the present study, thirty dyslexic children aged 8-11 years were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.
Collapse
|
Journal Article |
11 |
14 |
13
|
Visuospatial memory improvement in patients with diffuse axonal injury (DAI): a 1-year follow-up study. Acta Neuropsychiatr 2017; 29:35-42. [PMID: 27725006 DOI: 10.1017/neu.2016.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Diffuse axonal injury (DAI) is prevalent in traumatic brain injury (TBI), and is often associated with poor outcomes and cognitive impairment, including memory deficits. Few studies have explored visual memory after TBI and its relationship to executive functioning. Executive functioning is crucial for remembering an object's location, operating devices, driving, and route finding. We compared visual memory performance via the Rey-Osterrieth Complex Figure (ROCF) test 6 and 12 months after DAI. METHOD In total, 40 patients (mean age 28.7 years; 87.5% male) with moderate-to-severe DAI following a road traffic accident completed the 1-year follow-up. There was a three-phase prospective assessment. In phase 1 (1-3 months after trauma), patients completed the Beck Depression Inventory (BDI) and State-Trait Anxiety Inventory (STAI). In phases 2 (6 months) and 3 (12 months), they completed the BDI, STAI, and a neuropsychological battery [ROCF copy and recall, digit span forward/backward, Grooved Pegboard test, intelligence quotient (IQ) by Wechsler Adult Intelligence Scale-III (WAIS-III)]. RESULTS There was an improvement in ROCF recall over time (p=0.013), but not ROCF copy (p=0.657).There was no change in executive function (Savage scores) copy (p=0.230) or recall (p=0.155). Age, years of education, severity of the trauma, and IQ did not influence ROCF recall improvement. CONCLUSION There are time-dependent improvements in visual memory in patients with DAI. Neuroplasticity in the 1st months after trauma provides an opportunity for visuospatial memory learning. The present findings may be useful to formulate management plans for long-term TBI rehabilitation.
Collapse
|
|
8 |
13 |
14
|
Operto FF, Vivenzio V, Scuoppo C, Padovano C, Roccella M, Quatrosi G, Pastorino GMG. Perampanel and Visuospatial Skills in Children With Epilepsy. Front Neurol 2021; 12:696946. [PMID: 34305800 PMCID: PMC8296464 DOI: 10.3389/fneur.2021.696946] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Perampanel (PER) is a non-competitive AMPA glutamate receptor antagonist approved for focal and generalized seizures as add-on therapy. PER does not seem to negatively affect the cognitive profile in children and adolescents, but its influence on visuospatial abilities is still to be assessed. The aim of our study was to assess visuospatial skills through a standardized neuropsychological evaluation in adolescents taking PER for 12 months. Methods: Our sample included 46 adolescents aged 12–18 years with focal and generalized drug-resistant epilepsy already in therapy with one or two antiseizure medications. Changes in visuospatial perception and memory were assessed by the Rey–Osterrieth Complex Figure Test at baseline (before taking PER) and after 12 months of pharmacological treatment. Executive functions and non-verbal intelligence were also assessed at baseline. Results: After 12 months of PER therapy, the mean scores on the Rey–Osterrieth Complex Figure Test remained almost unchanged for both visuospatial perception and visuospatial memory skills. At baseline, visuospatial memory was related to executive function, and visuospatial perception was related to executive function and non-verbal intelligence. Conclusions: Adjunctive treatment with PER did not negatively affect visuospatial skills. No adverse event effects have been reported after 12 months of follow-up, and this suggests a good tolerability in the middle-to-long term.
Collapse
|
Journal Article |
4 |
12 |
15
|
Baldacchino A, Tolomeo S, Balfour DJ, Matthews K. Profiles of visuospatial memory dysfunction in opioid-exposed and dependent populations. Psychol Med 2019; 49:1174-1184. [PMID: 30457069 DOI: 10.1017/s0033291718003318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chronic opioid exposure is common world-wide, but behavioural performance remains under-investigated. This study aimed to investigate visuospatial memory performance in opioid-exposed and dependent clinical populations and its associations with measures of intelligence and cognitive impulsivity. METHODS We recruited 109 participants: (i) patients with a history of opioid dependence due to chronic heroin use (n = 24), (ii) heroin users stabilised on methadone maintenance treatment (n = 29), (iii) participants with a history of chronic pain and prescribed tramadol and codeine (n = 28) and (iv) healthy controls (n = 28). The neuropsychological tasks from the Cambridge Neuropsychological Test Automated Battery included the Delayed Matching to Sample (DMS), Pattern Recognition Memory, Spatial Recognition Memory, Paired Associate Learning, Spatial Span Task, Spatial Working Memory and Cambridge Gambling Task. Pre-morbid general intelligence was assessed using the National Adult Reading Test. RESULTS As hypothesised, this study identified the differential effects of chronic heroin and methadone exposures on neuropsychological measures of visuospatial memory (p < 0.01) that were independent of injecting behaviour and dependence status. The study also identified an improvement in DMS performance (specifically at longer delays) when the methadone group was compared with the heroin group and also when the heroin group was stabilised onto methadone. Results identified differential effects of chronic heroin and methadone exposures on various neuropsychological measures of visuospatial memory independently from addiction severity measures, such as injecting behaviour and dependence status.
Collapse
|
|
6 |
11 |
16
|
Domagalik A, Oginska H, Beldzik E, Fafrowicz M, Pokrywka M, Chaniecki P, Rekas M, Marek T. Long-Term Reduction of Short-Wavelength Light Affects Sustained Attention and Visuospatial Working Memory With No Evidence for a Change in Circadian Rhythmicity. Front Neurosci 2020; 14:654. [PMID: 32719581 PMCID: PMC7348134 DOI: 10.3389/fnins.2020.00654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/27/2020] [Indexed: 01/01/2023] Open
Abstract
The short wavelength, i.e., blue light, is crucial for non-image forming effects such as entrainment of the circadian system in humans. Moreover, many studies showed that blue light enhances alertness and performance in cognitive tasks. However, most scientific reports in this topic are based on experiments using short exposure to blue or blue-enriched light, and only a few focused on the effects of its reduced transmittance, especially in longer periods. The latter could potentially give insight into understanding if age-related sleep problems and cognitive decline are related to less amount of blue light reaching the retina, as the eyes' lenses yellow with age. In this study, we investigated the effects of prolonged blocking of blue light on cognitive functioning, in particular-sustained attention and visuospatial working memory, as well as on sleep, and melatonin and cortisol levels. A group of young, healthy participants was randomly allocated to either blue light blocking or control group. Depending on the group, participants wore amber contact lenses, reducing the transmittance of blue light by ∼90% or regular contact lenses for a period of 4 weeks. No changes were observed for measurements related to sleep and sleep-wake rhythm. Dim light melatonin onset, evening levels of melatonin, and morning cortisol answer did not show any significant alterations during blue light (BL) blockade. The significant effects were revealed both for sustained attention and visuospatial memory, i.e., the longer blocking the blue light lasted, the greater decrease in performance observed. Additionally, the follow-up session conducted ∼1 week after taking off the blue-blocking lenses revealed that in case of sustained attention, this detrimental effect of blocking BL is fully reversible. Our findings provide evidence that prolonged reduction of BL exposure directly affects human cognitive functioning regardless of circadian rhythmicity.
Collapse
|
|
5 |
10 |
17
|
Øverås M, Kapstad H, Brunborg C, Landrø NI, Rø Ø. Is overestimation of body size associated with neuropsychological weaknesses in anorexia nervosa? EUROPEAN EATING DISORDERS REVIEW 2017; 25:129-134. [PMID: 28217881 DOI: 10.1002/erv.2500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 10/21/2016] [Accepted: 11/25/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Recent research indicates some evidence of neuropsychological weaknesses in visuospatial memory, central coherence and set-shifting in adults with anorexia nervosa (AN). The growing interest in neuropsychological functioning of patients with AN is based upon the assumption that neuropsychological weaknesses contribute to the clinical features of the illness. However, due to a paucity of research on the connection between neuropsychological difficulties and the clinical features of AN, this link remains hypothetical. The main objective of this study was to explore the association between specific areas of neuropsychological functioning and body size estimation in patients with AN and healthy controls. METHODS The sample consisted of 36 women diagnosed with AN and 34 healthy female controls. Participants were administered the continuous visual memory test and the recall trials of Rey Complex Figure Test to assess visual memory. Central coherence was assessed using the copy trial of Rey Complex Figure Test, and the Wisconsin Card Sorting Test was used to assess set-shifting. Body size estimation was assessed with a computerized morphing programme. RESULTS The analyses showed no significant correlations between any of the neuropsychological measures and body size estimation. CONCLUSION The results suggest that there is no association between these areas of neuropsychological difficulties and body size estimation among patients with AN. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.
Collapse
|
Journal Article |
8 |
9 |
18
|
Jeon SH, Park YH, Oh SY, Kang JJ, Han YH, Jeong HJ, Lee JM, Park M, Kim JS, Dieterich M. Neural Correlates of Transient Mal de Debarquement Syndrome: Activation of Prefrontal and Deactivation of Cerebellar Networks Correlate With Neuropsychological Assessment. Front Neurol 2020; 11:585. [PMID: 32695063 PMCID: PMC7338684 DOI: 10.3389/fneur.2020.00585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Mal de debarquement syndrome (MdDS) is characterized by a subjective perception of self-motion after exposure to passive motion, mostly after sea travel. A transient form of MdDS (t-MdDS) is common in healthy individuals without pathophysiological certainty. In the present cross-sectional study, the possible neuropsychiatric and functional neuroimaging changes in local fishermen with t-MdDS were evaluated. Methods: The present study included 28 fishermen from Buan County in South Korea; 15 (15/28, 53.6%) participants experienced t-MdDS for 1–6 h, and 13 were asymptomatic (13/28, 46.4%). Vestibular function tests were performed using video-oculography, the video head impulse test, and ocular and cervical vestibular-evoked myogenic potentials. Visuospatial function was also assessed by the Corsi block test. Brain imaging comprised structural MRI, resting-state functional MRI, and [18F]FDG PET scans. Results: The results of vestibular function tests did not differ between the fishermen with and those without t-MdDS. However, participants with t-MdDS showed better performance in visuospatial memory function than those without t-MdDS (6.40 vs. 5.31, p-value = 0.016) as determined by the Corsi block test. Structural brain MRIs were normal in both groups. [18F]FDG PET showed a relative hypermetabolism in the bilateral occipital and prefrontal cortices and hypometabolism in the vestibulocerebellum (nodulus and uvula) in participants with t-MdDS compared to those without t-MdDS. Resting-state functional connectivities were significantly decreased between the vestibular regions of the flocculus, superior temporal gyrus, and parietal operculum and the visual association areas of the middle occipital gyrus, fusiform gyrus, and cuneus in participants with t-MdDS. Analysis of functional connectivity of the significant regions in the PET scans revealed decreased connectivity between the prefrontal cortex and visual processing areas in the t-MdDS group. Conclusion: Increased visuospatial memory, altered metabolism in the prefrontal cortex, visual cognition cortices, and the vestibulocerebellum, and decreased functional connectivity between these two functional areas might indicate reductions in the integration of vestibular input and enhancement of visuospatial attention in subjects with t-MdDS. Current functional neuroimaging similarities from transient MdDS via chronic MdDS to functional dizziness and anxiety disorders suggest a shared mechanism of enhanced self-awareness as a kind of continuum or as overlap disorders.
Collapse
|
Journal Article |
5 |
9 |
19
|
Ayala-Feliciano M, Pons-Valerio JJ, Pons-Madera J, Acevedo SF. The Relationship between Visuospatial Memory and Coping Strategies in Breast Cancer Survivors. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2011; 5:117-30. [PMID: 21695096 PMCID: PMC3117625 DOI: 10.4137/bcbcr.s6957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background: In the US there are over 2.5 million breast cancer survivors (BCSs), most of whom have required some type of intensive treatment. How individuals cope with the treatment process may relate to why neurocognitive problems arise. Method: We explored the impact of treatment for breast cancer (BC) on performance of the Memory Island task, both on working memory and on the general index of cognitive performance in relation to coping strategies of BCSs compared to age-matched controls. Results: The evidence obtained suggests a reduced performance in visuospatial memory in BCSs. Those who used emotional coping strategies displayed reduced performance in visuospatial learning and immediate memory. Those women who used problem-focused coping strategies performed better in those tasks measuring psychomotor speed, general intelligence, and delayed visuospatial memory. Conclusions: It is concluded that further investigation of the relationship between coping strategies and performance on visuospatial tasks may provide useful information on residual levels of neurocognitive deficits and psychosocial adaptation in BCSs.
Collapse
|
Journal Article |
14 |
8 |
20
|
Gonthier C. Charting the Diversity of Strategic Processes in Visuospatial Short-Term Memory. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2020; 16:294-318. [PMID: 33048607 DOI: 10.1177/1745691620950697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the abundant literature on visuospatial short-term memory, researchers have devoted little attention to strategic processes: What procedures do subjects implement to memorize visuospatial material? Evidence for various strategies exists, but it is spread across a variety of fields. This integrative review of the literature brings together scattered evidence to provide an overview of strategic processes in visuospatial memory tasks. The diversity of strategies and their proposed operating mechanisms are reviewed and discussed. The evidence leads to proposing seven broad strategic processes used in visuospatial short-term memory, each with multiple variants. Strategies can vary across individuals, but the same subjects also appear to use multiple strategies depending on the perceptual features of to-be-remembered displays. These results point to a view of visuospatial strategies as a functional library of facilitatory processes on which subjects can draw to support visuospatial short-term memory performance. Implications are discussed for the difference between visual and spatial tasks, for the appropriate measurement of strategic behaviors, and for the interpretation of performance in visuospatial memory tasks.
Collapse
|
Journal Article |
5 |
8 |
21
|
Tippett DC, Breining B, Goldberg E, Meier E, Sheppard SM, Sherry E, Stockbridge M, Suarez A, Wright AE, Hillis AE. Visuomotor Figure Construction and Visual Figure Delayed Recall and Recognition in Primary Progressive Aphasia. APHASIOLOGY 2019; 34:1456-1470. [PMID: 33281269 PMCID: PMC7716596 DOI: 10.1080/02687038.2019.1670330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/09/2019] [Indexed: 06/11/2023]
Abstract
BACKGROUND Individuals with primary progressive aphasia (PPA) develop visuospatial deficits over time, and those with logopenic variant (lvPPA) are at greatest risk of developing such deficits. However, not all previous studies of visuospatial deficits in PPA have ensured equivalent duration of disease across variants and few have measured deficits longitudinally. AIMS The aims of our study were to: 1) investigate differences in baseline visuomotor figure construction, visual figure delayed recall, and figure recognition in PPA variants with similar symptom duration at baseline, and 2) explore patterns of decline in these areas. METHODS & PROCEDURES Ninety-three individuals with PPA [39 lvPPA, 24 nonfluent agrammatic PPA (nfaPPA), and 30 semantic variant PPA (svPPA)] were administered the Benson Complex Figure Copy, Benson Complex Figure Delay (Recall), and Benson Figure Recognition. Thirty individuals completed this testing 3 to 47 months post baseline. OUTCOME & RESULTS Participants with lvPPA and svPPA showed lower mean scores than those with nfaPPA on visual figure delayed recall at baseline, even though there were no differences in estimated time from disease onset or correlation with disease severity as reflected by naming performance, F(2, 90) = 5.78, p < .004. Those with nfaPPA performed significantly better than those with lvPPA, Tukey HSD p < .05, and those with svPPA, Tukey HSD p < .01. There were no differences between variants in rate of decline in visuomotor figure construction, visual figure delayed recall, and figure recognition. CONCLUSIONS These findings revealed relatively spared visuospatial memory in nfaPPA, which may aid in the differential diagnosis of PPA and contribute to designing therapy or compensatory strategies.
Collapse
|
research-article |
6 |
6 |
22
|
Mochizuki-Kawai H, Kotani I, Mochizuki S, Yamakawa Y. Structured Floral Arrangement Program Benefits in Patients With Neurocognitive Disorder. Front Psychol 2018; 9:1328. [PMID: 30123151 PMCID: PMC6085549 DOI: 10.3389/fpsyg.2018.01328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023] Open
Abstract
We attempted to clarify positive benefits in cognitive abilities and motivation during our cognitive intervention [structured floral arrangement (SFA) program] for patients with neurocognitive disorder due to stroke, traumatic brain injury (TBI), and other related disorders. In this SFA program, participants are required to arrange cut flowers and leaves on absorbent foam according to an instruction sheet. In a previous study of patients with schizophrenia, our SFA program encouraged participants and contributed to stimulating their visuospatial process and memory. Here, 27 patients with neurocognitive disorders participated in this study. Sixteen patients were assigned to an SFA-treated group and participated in six sessions during two phases plus to daily activities. Eleven non-treated patients engaged only daily activities during the same period. We compared Apathy Scale scores and neuropsychological scores between the SFA-treated and non-treated patients. Their mean attendance rate was more than 90% during the two phases. SFA-treated patients copied a Rey–Osterrieth complex figure more accurately than non-treated patients (p < 0.05) during the later intervention phase, whereas during the earlier phase, accuracy was comparable between treated and non-treated groups. In the SFA-treated group, recall scores also improved (p < 0.01), and the positive outcomes were maintained for about 3 months (p < 0.05). The Apathy Scale scores did not show significant change in either the SFA-treated or non-treated groups. Our present results suggest that the SFA program encouraged continuous participation to cognitive intervention and was useful for ameliorating dysfunctions in visuospatial memory and recognition in patients with neurocognitive disorder.
Collapse
|
Journal Article |
7 |
5 |
23
|
Tang H, Riley MR, Constantinidis C. Lateralization of Executive Function: Working Memory Advantage for Same Hemifield Stimuli in the Monkey. Front Neurosci 2017; 11:532. [PMID: 29018321 PMCID: PMC5623043 DOI: 10.3389/fnins.2017.00532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/13/2017] [Indexed: 11/25/2022] Open
Abstract
Working memory capacity, the amount of information that may be maintained in mind over a period of seconds, is extremely limited, to a handful of items. Some evidence exists that the number of visual items that may be maintained in working memory is independent for the two hemifields. To test this idea, we trained monkeys to perform visual working memory tasks that required maintenance in memory of the locations and/or shapes of 3–5 visual stimuli. We then tested whether systematic performance differences were present for stimuli concentrated in the same hemifield, vs. distributed across hemifields. We found little evidence to support the expectation that working memory capacity is independent in the two hemifields. Instead, when an advantage of stimulus arrangement was present, it involved multiple stimuli presented in the same hemifield. This conclusion was consistent across variations of the task, performance levels, and apparent strategies adopted by individual subjects. This result suggests that factors such as grouping that favor processing of stimuli in relative proximity may counteract the benefits of independent processing in the two hemispheres. Our results reveal an important property of working memory and place constraints on models of working memory capacity.
Collapse
|
Journal Article |
8 |
5 |
24
|
Burggraaf R, Frens MA, Hooge ITC, van der Geest JN. Performance on tasks of visuospatial memory and ability: A cross-sectional study in 330 adolescents aged 11 to 20. APPLIED NEUROPSYCHOLOGY-CHILD 2017; 7:129-142. [PMID: 28075186 DOI: 10.1080/21622965.2016.1268960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cognitive functions mature at different points in time between birth and adulthood. Of these functions, visuospatial skills, such as spatial memory and part-to-whole organization, have often been tested in children and adults but have been less frequently evaluated during adolescence. We studied visuospatial memory and ability during this critical developmental period, as well as the correlation between these abilities, in a large group of 330 participants (aged 11 to 20 years, 55% male). To assess visuospatial memory, the participants were asked to memorize and reproduce sequences of random locations within a grid using a computer. Visuospatial ability was tested using a variation of the Design Organization Test (DOT). In this paper-and-pencil test, the participants had one minute to reproduce as many visual patterns as possible using a numerical code. On the memory task, compared with younger participants, older participants correctly reproduced more locations overall and longer sequences of locations, made fewer mistakes and needed less time to reproduce the sequences. In the visuospatial ability task, the number of correctly reproduced patterns increased with age. We show that both visuospatial memory and ability improve significantly throughout adolescence and that performance on both tasks is significantly correlated.
Collapse
|
Journal Article |
8 |
4 |
25
|
Park I, Ha M, Kim T, Lho SK, Moon SY, Kim M, Kwon JS. Cortical gyrification differences between early- and late-onset obsessive-compulsive disorder: neurobiological evidence for neurodevelopmentally distinct subtypes. Psychol Med 2023; 53:5976-5985. [PMID: 36259417 PMCID: PMC10520599 DOI: 10.1017/s0033291722003129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Identifying more homogenous subtypes of patients with obsessive-compulsive disorder (OCD) using biological evidence is critical for understanding complexities of the disorder in this heterogeneous population. Age of onset serves as a useful subtyping scheme for distinguishing OCD into two subgroups that aligns with neurodevelopmental perspectives. The underlying neurobiological markers for these distinct neurodevelopmental differences can be identified by investigating gyrification changes to establish biological evidence-based homogeneous subtypes. METHODS We compared whole-brain cortical gyrification in 84 patients with early-onset OCD, 84 patients with late-onset OCD, and 152 healthy controls (HCs) to identify potential markers for early neurodevelopmental deficits using the local gyrification index (lGI). Then, the relationships between lGI in clusters showing significant differences and performance in visuospatial memory and verbal fluency, which are considered trait-related neurocognitive impairments in OCD, were further examined in early-onset OCD patients. RESULTS The early-onset OCD patients exhibited significantly greater gyrification than those with late-onset OCD patients and HCs in frontoparietal and cingulate regions, including the bilateral precentral, postcentral, precuneus, paracentral, posterior cingulate, superior frontal, and caudal anterior cingulate gyri. Moreover, impaired neurocognitive functions in early-onset OCD patients were correlated with increased gyrification. CONCLUSIONS Our findings provide a neurobiological marker to distinguish the OCD population into more neurodevelopmentally homogeneous subtypes, which may contribute to the understanding of the neurodevelopmental underpinnings of an etiology in early-onset OCD consistent with the accumulated phenotypic evidence of greater neurodevelopmental deficits in early-onset OCD than in late-onset OCD.
Collapse
|
research-article |
2 |
4 |