1
|
Deb S, Basu J, Choudhary M. An overview of next generation sequencing strategies and genomics tools used for tuberculosis research. J Appl Microbiol 2024; 135:lxae174. [PMID: 39003248 DOI: 10.1093/jambio/lxae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Tuberculosis (TB) is a grave public health concern and is considered the foremost contributor to human mortality resulting from infectious disease. Due to the stringent clonality and extremely restricted genomic diversity, conventional methods prove inefficient for in-depth exploration of minor genomic variations and the evolutionary dynamics operating in Mycobacterium tuberculosis (M.tb) populations. Until now, the majority of reviews have primarily focused on delineating the application of whole-genome sequencing (WGS) in predicting antibiotic resistant genes, surveillance of drug resistance strains, and M.tb lineage classifications. Despite the growing use of next generation sequencing (NGS) and WGS analysis in TB research, there are limited studies that provide a comprehensive summary of there role in studying macroevolution, minor genetic variations, assessing mixed TB infections, and tracking transmission networks at an individual level. This highlights the need for systematic effort to fully explore the potential of WGS and its associated tools in advancing our understanding of TB epidemiology and disease transmission. We delve into the recent bioinformatics pipelines and NGS strategies that leverage various genetic features and simultaneous exploration of host-pathogen protein expression profile to decipher the genetic heterogeneity and host-pathogen interaction dynamics of the M.tb infections. This review highlights the potential benefits and limitations of NGS and bioinformatics tools and discusses their role in TB detection and epidemiology. Overall, this review could be a valuable resource for researchers and clinicians interested in NGS-based approaches in TB research.
Collapse
|
2
|
Ghorbani M, Khoshdoozmasouleh N. Distinct oral DNA viral signatures in rheumatoid arthritis: a Pilot study. J Oral Microbiol 2024; 16:2348260. [PMID: 38698892 PMCID: PMC11064737 DOI: 10.1080/20002297.2024.2348260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Background Despite evidence linking viruses and oral microbiome to rheumatoid arthritis (RA), limited whole genome sequencing research has been conducted on the oral virome (a viral component of the microbiome) of untreated RA patients. This pilot research seeks to address this knowledge gap by comparing the oral virome of untreated rheumatoid arthritis patients (RAs) and healthy individuals (HCs). Method Whole genome DNA sequence of saliva samples from 45 participants including 21 RAs and 24 age and gender matched HCs was obtained from the BioProject: PRJEB6997. Metaphlan3 pipeline and LEfSe analysis were used for the viral signature detection. Wilcoxon pairwise test and ROC analysis were used to validate and predict signatures. Results RA exhibits higher alpha diversity compared to HCs. Callitrichine gammaherpesvirus 3, Human gammaherpesvirus 4 (EBV), Murid betaherpesvirus 8, and Suid alphaherpesvirus 1 were enriched in RAs, while Aotine betaherpesvirus 1 from the Cytomegalovirus genus was enriched in HCs. In addition, Saccharomyces cerevisiae killer virus M1 (ScV-M1) was found to be enriched in RAs, whereas bacteriophage Hk97virus (Siphoviridae) and Cd119virus (Myoviridae) were enriched in HCs. Conclusion This study identifies significant DNA oral viral signatures at species level as potential biomarkers for the early detection and diagnosis of rheumatoid arthritis.
Collapse
|
3
|
Gunosewoyo H, Kruger G. Editorial: Antimycobacterial drug discovery: molecular therapeutics and target identification, Volume II. Front Pharmacol 2023; 14:1202287. [PMID: 37497109 PMCID: PMC10367545 DOI: 10.3389/fphar.2023.1202287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
|
4
|
Haider Z, Wästerlid T, Spångberg LD, Rabbani L, Jylhä C, Thorvaldsdottir B, Skaftason A, Awier HN, Krstic A, Gellerbring A, Lyander A, Hägglund M, Jeggari A, Rassidakis G, Sonnevi K, Sander B, Rosenquist R, Tham E, Smedby KE. Whole-genome informed circulating tumor DNA analysis by multiplex digital PCR for disease monitoring in B-cell lymphomas: a proof-of-concept study. Front Oncol 2023; 13:1176698. [PMID: 37333831 PMCID: PMC10272573 DOI: 10.3389/fonc.2023.1176698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Analyzing liquid biopsies for tumor-specific aberrations can facilitate detection of measurable residual disease (MRD) during treatment and at follow-up. In this study, we assessed the clinical potential of using whole-genome sequencing (WGS) of lymphomas at diagnosis to identify patient-specific structural (SVs) and single nucleotide variants (SNVs) to enable longitudinal, multi-targeted droplet digital PCR analysis (ddPCR) of cell-free DNA (cfDNA). Methods In 9 patients with B-cell lymphoma (diffuse large B-cell lymphoma and follicular lymphoma), comprehensive genomic profiling at diagnosis was performed by 30X WGS of paired tumor and normal specimens. Patient-specific multiplex ddPCR (m-ddPCR) assays were designed for simultaneous detection of multiple SNVs, indels and/or SVs, with a detection sensitivity of 0.0025% for SV assays and 0.02% for SNVs/indel assays. M-ddPCR was applied to analyze cfDNA isolated from serially collected plasma at clinically critical timepoints during primary and/or relapse treatment and at follow-up. Results A total of 164 SNVs/indels were identified by WGS including 30 variants known to be functionally relevant in lymphoma pathogenesis. The most frequently mutated genes included KMT2D, PIM1, SOCS1 and BCL2. WGS analysis further identified recurrent SVs including t(14;18)(q32;q21) (IGH::BCL2), and t(6;14)(p25;q32) (IGH::IRF4). Plasma analysis at diagnosis showed positive circulating tumor DNA (ctDNA) levels in 88% of patients and the ctDNA burden correlated with baseline clinical parameters (LDH and sedimentation rate, p-value <0.01). While clearance of ctDNA levels after primary treatment cycle 1 was observed in 3/6 patients, all patients analyzed at final evaluation of primary treatment showed negative ctDNA, hence correlating with PET-CT imaging. One patient with positive ctDNA at interim also displayed detectable ctDNA (average variant allele frequency (VAF) 6.9%) in the follow-up plasma sample collected 2 years after final evaluation of primary treatment and 25 weeks before clinical manifestation of relapse. Conclusion In summary, we demonstrate that multi-targeted cfDNA analysis, using a combination of SNVs/indels and SVs candidates identified by WGS analysis, provides a sensitive tool for MRD monitoring and can detect lymphoma relapse earlier than clinical manifestation.
Collapse
|
5
|
Gaikwad AB, Kumari R, Yadav S, Rangan P, Wankhede DP, Bhat KV. Small cardamom genome: development and utilization of microsatellite markers from a draft genome sequence of Elettaria cardamomum Maton. FRONTIERS IN PLANT SCIENCE 2023; 14:1161499. [PMID: 37235027 PMCID: PMC10206324 DOI: 10.3389/fpls.2023.1161499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/28/2023]
Abstract
Small cardamom (Elettaria cardamomum Maton), the queen of spices, is the third most expensive spice in the world after saffron and vanilla, valued highly for its aroma and taste. This perennial herbaceous plant is a native of coastal parts of Southern India and displays a significant amount of morphological diversity. Its genetic potential has not been exploited due to lack of genomic resources limiting our understanding of the genome and important metabolic pathways which give it the economic advantage in the spice industry. Here, we report upon the de novo assembled, draft whole genome sequence of cardamom variety, Njallani Green Gold. We used a hybrid assembly strategy using the reads from the Oxford Nanopore, Illumina and 10x Genomics GemCode sequencing chemistries. The assembled genome length was 1.06 Gb (gigabases) which is close to the estimated genome size of cardamom. More than 75% of the genome was captured in 8000 scaffolds with a N50 of 0.15 Mb. The genome appears to have a high repeat content and 68055 gene models were predicted. The genome is close to Musa species and displays an expansion and contraction in different gene families. The draft assembly was used for in silico mining of simple sequence repeats (SSRs). A total of 2,50,571 SSRs were identified of which 2,18,270 were perfect SSRs and 32,301 were compound SSRs. Among the perfect SSRs, trinucleotides were most abundant (1,25,329) and hexanucleotide repeats appear least (2,380). From the 2,50,571 SSRs mined, 2,27,808 primer pairs were designed based on flanking sequence information. Wet lab validation was performed for 246 SSR loci and based on their amplification profiles, 60 SSR markers were used for diversity analysis of a set of 60 diverse cardamom accessions. The average number of alleles detected per locus were 14.57 with a minimum of 4 and maximum of 30 alleles. Population structure analysis revealed the presence of high degree of admixtures which could primarily be due to cross-pollination prevalent in this species. The SSR markers identified would help in the development of gene or trait-linked markers which can be subsequently used for marker-assisted breeding for crop improvement in cardamom. The information on utilization of the SSR loci for generation of markers has been developed into a public database, 'cardamomSSRdb' that is freely available for use by the cardamom community.
Collapse
|
6
|
Al Khleifat A, Iacoangeli A, Jones AR, van Vugt JJFA, Moisse M, Shatunov A, Zwamborn RAJ, van der Spek RAA, Cooper-Knock J, Topp S, van Rheenen W, Kenna B, Van Eijk KR, Kenna K, Byrne R, López V, Opie-Martin S, Vural A, Campos Y, Weber M, Smith B, Fogh I, Silani V, Morrison KE, Dobson R, van Es MA, McLaughlin RL, Vourc’h P, Chio A, Corcia P, de Carvalho M, Gotkine M, Panades MP, Mora JS, Shaw PJ, Landers JE, Glass JD, Shaw CE, Basak N, Hardiman O, Robberecht W, Van Damme P, van den Berg LH, Veldink JH, Al-Chalabi A. Telomere length analysis in amyotrophic lateral sclerosis using large-scale whole genome sequence data. Front Cell Neurosci 2022; 16:1050596. [PMID: 36589292 PMCID: PMC9799999 DOI: 10.3389/fncel.2022.1050596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, leading to progressive weakness of voluntary muscles, with death following from neuromuscular respiratory failure, typically within 3 to 5 years. There is a strong genetic contribution to ALS risk. In 10% or more, a family history of ALS or frontotemporal dementia is obtained, and the Mendelian genes responsible for ALS in such families have now been identified in about 50% of cases. Only about 14% of apparently sporadic ALS is explained by known genetic variation, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication, differ between sexes, and shorten naturally with age. Sex and age are risk factors for ALS and we therefore investigated telomere length in ALS. Methods Samples were from Project MinE, an international ALS whole genome sequencing consortium that includes phenotype data. For validation we used donated brain samples from motor cortex from people with ALS and controls. Ancestry and relatedness were evaluated by principal components analysis and relationship matrices of DNA microarray data. Whole genome sequence data were from Illumina HiSeq platforms and aligned using the Isaac pipeline. TelSeq was used to quantify telomere length using whole genome sequence data. We tested the association of telomere length with ALS and ALS survival using Cox regression. Results There were 6,580 whole genome sequences, reducing to 6,195 samples (4,315 from people with ALS and 1,880 controls) after quality control, and 159 brain samples (106 ALS, 53 controls). Accounting for age and sex, there was a 20% (95% CI 14%, 25%) increase of telomere length in people with ALS compared to controls (p = 1.1 × 10-12), validated in the brain samples (p = 0.03). Those with shorter telomeres had a 10% increase in median survival (p = 5.0×10-7). Although there was no difference in telomere length between sporadic ALS and familial ALS (p=0.64), telomere length in 334 people with ALS due to expanded C9orf72 repeats was shorter than in those without expanded C9orf72 repeats (p = 5.0×10-4). Discussion Although telomeres shorten with age, longer telomeres are a risk factor for ALS and worsen prognosis. Longer telomeres are associated with ALS.
Collapse
|
7
|
Saavedra SY, Bernal JF, Montilla-Escudero E, Arévalo SA, Prada DA, Valencia MF, Moreno J, Hidalgo AM, García-Vega ÁS, Abrudan M, Argimón S, Kekre M, Underwood A, Aanensen DM, Duarte C, Donado-Godoy P. Complexity of Genomic Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Isolates in Colombia Urges the Reinforcement of Whole Genome Sequencing-Based Surveillance Programs. Clin Infect Dis 2021; 73:S290-S299. [PMID: 34850835 PMCID: PMC8634422 DOI: 10.1093/cid/ciab777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an emerging public health problem. This study explores the specifics of CRKP epidemiology in Colombia based on whole genome sequencing (WGS) of the National Reference Laboratory at Instituto Nacional de Salud (INS)'s 2013-2017 sample collection. METHODS A total of 425 CRKP isolates from 21 departments were analyzed by HiSeq-X10®Illumina high-throughput sequencing. Bioinformatic analysis was performed, primarily using the pipelines developed collaboratively by the National Institute for Health Research Global Health Research Unit (GHRU) on Genomic Surveillance of Antimicrobial Resistance (AMR), and AGROSAVIA. RESULTS Of the 425 CRKP isolates, 91.5% were carbapenemase-producing strains. The data support a recent expansion and the endemicity of CRKP in Colombia with the circulation of 7 high-risk clones, the most frequent being CG258 (48.39% of isolates). We identified genes encoding carbapenemases blaKPC-3, blaKPC-2, blaNDM-1, blaNDM-9, blaVIM-2, blaVIM-4, and blaVIM-24, and various mobile genetic elements (MGE). The virulence of CRKP isolates was low, but colibactin (clb3) was present in 25.2% of isolates, and a hypervirulent CRKP clone (CG380) was reported for the first time in Colombia. ST258, ST512, and ST4851 were characterized by low levels of diversity in the core genome (ANI > 99.9%). CONCLUSIONS The study outlines complex CRKP epidemiology in Colombia. CG258 expanded clonally and carries specific carbapenemases in specific MGEs, while the other high-risk clones (CG147, CG307, and CG152) present a more diverse complement of carbapenemases. The specifics of the Colombian situation stress the importance of WGS-based surveillance to monitor evolutionary trends of sequence types (STs), MGE, and resistance and virulence genes.
Collapse
|
8
|
Fujino K, Kawahara Y, Koyanagi KO, Shirasawa K. Translation of continuous artificial selection on phenotype into genotype during rice breeding programs. BREEDING SCIENCE 2021; 71:125-133. [PMID: 34377060 PMCID: PMC8329892 DOI: 10.1270/jsbbs.20089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 06/13/2023]
Abstract
Understanding genetic diversity among local populations is a primary goal of modern crop breeding programs. Here, we demonstrated the genetic relationships of rice varieties in Hokkaido, Japan, one of the northern limits of rice cultivation around the world. Furthermore, artificial selection during rice breeding programs has been characterized using genome sequences. We utilized 8,565 single nucleotide polymorphisms and insertion/deletion markers distributed across the genome in genotype-by-sequencing for genetic diversity analyses. Phylogenetics, genetic population structure, and principal component analysis showed that a total of 110 varieties were classified into four distinct clusters according to different populations geographically and historically. Furthermore, the genome sequences of 19 rice varieties along with historic representations in Hokkaido, nucleotide diversity and FST values in each cluster revealed that artificial selection of elite phenotypes focused on chromosomal regions. These results clearly demonstrated the history of the selections on agronomic traits as genome sequences among current rice varieties from Hokkaido.
Collapse
|
9
|
Aprea G, Scattolini S, D’Angelantonio D, Chiaverini A, Di Lollo V, Olivieri S, Marcacci M, Mangone I, Salucci S, Antoci S, Cammà C, Di Pasquale A, Migliorati G, Pomilio F. Whole Genome Sequencing Characterization of HEV3- e and HEV3- f Subtypes among the Wild Boar Population in the Abruzzo Region, Italy: First Report. Microorganisms 2020; 8:microorganisms8091393. [PMID: 32932776 PMCID: PMC7565956 DOI: 10.3390/microorganisms8091393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 01/26/2023] Open
Abstract
Hepatitis E virus (HEV) is an emergent zoonotic pathogen, causing worldwide acute and chronic hepatitis in humans. HEV comprises eight genotypes and several subtypes. HEV genotypes 3 and 4 (HEV3 and HEV4) are zoonotic. In Italy, the most part of HEV infections (80%) is due to autochthonous HEV3 circulation of the virus, and the key role played by wild animals is generally accepted. Abruzzo is an Italian region officially considered an HEV "hot spot", with subtype HEV3-c being up to now the only one reported among wild boars. During the year 2018-2019, a group of wild boars in Abruzzo were screened for HEV; positive RNA liver samples were subjected to HEV characterization by using the whole genome sequencing (WGS) approach methodology. This represents the first report about the detection of HEV-3 subtypes e and f in the wild boar population in this area. Since in Italy human infections from HEV 3-e and f have been associated with pork meat consumption, our findings deserve more in-depth analysis with the aim of evaluating any potential correlation between wild animals, the pork chain production and HEV human infections.
Collapse
|
10
|
Jagadeesan B, Baert L, Wiedmann M, Orsi RH. Comparative Analysis of Tools and Approaches for Source Tracking Listeria monocytogenes in a Food Facility Using Whole-Genome Sequence Data. Front Microbiol 2019; 10:947. [PMID: 31143162 PMCID: PMC6521219 DOI: 10.3389/fmicb.2019.00947] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/15/2019] [Indexed: 12/04/2022] Open
Abstract
As WGS is increasingly used by food industry to characterize pathogen isolates, users are challenged by the variety of analysis approaches available, ranging from methods that require extensive bioinformatics expertise to commercial software packages. This study aimed to assess the impact of analysis pipelines (i.e., different hqSNP pipelines, a cg/wgMLST pipeline) and the reference genome selection on analysis results (i.e., hqSNP and allelic differences as well as tree topologies) and conclusion drawn. For these comparisons, whole genome sequences were obtained for 40 Listeria monocytogenes isolates collected over 18 years from a cold-smoked salmon facility and 2 other isolates obtained from different facilities as part of academic research activities; WGS data were analyzed with three hqSNP pipelines and two MLST pipelines. After initial clustering using a k-mer based approach, hqSNP pipelines were run using two types of reference genomes: (i) closely related closed genomes (“closed references”) and (ii) high-quality de novo assemblies of the dataset isolates (“draft references”). All hqSNP pipelines identified similar hqSNP difference ranges among isolates in a given cluster; use of different reference genomes showed minimal impacts on hqSNP differences identified between isolate pairs. Allelic differences obtained by wgMLST showed similar ranges as hqSNP differences among isolates in a given cluster; cgMLST consistently showed fewer differences than wgMLST. However, phylogenetic trees and dendrograms, obtained based on hqSNP and cg/wgMLST data, did show some incongruences, typically linked to clades supported by low bootstrap values in the trees. When a hqSNP cutoff was used to classify isolates as “related” or “unrelated,” use of different pipelines yielded a considerable number of discordances; this finding supports that cut-off values are valuable to provide a starting point for an investigation, but supporting and epidemiological evidence should be used to interpret WGS data. Overall, our data suggest that cgMLST-based data analyses provide for appropriate subtype differentiation and can be used without the need for preliminary data analyses (e.g., k-mer based clustering) or external closed reference genomes, simplifying data analyses needs. hqSNP or wgMLST analyses can be performed on the isolate clusters identified by cgMLST to increase the precision on determining the genomic similarity between isolates.
Collapse
|
11
|
Shastri AA, Ahuja K, Ratnaparkhe MB, Shah A, Gagrani A, Lal A. Vector Quantized Spectral Clustering Applied to Whole Genome Sequences of Plants. Evol Bioinform Online 2019; 15:1176934319836997. [PMID: 30936678 PMCID: PMC6435876 DOI: 10.1177/1176934319836997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
Abstract
We develop a Vector Quantized Spectral Clustering (VQSC) algorithm that is a combination of spectral clustering (SC) and vector quantization (VQ) sampling for grouping genome sequences of plants. The inspiration here is to use SC for its accuracy and VQ to make the algorithm computationally cheap (the complexity of SC is cubic in terms of the input size). Although the combination of SC and VQ is not new, the novelty of our work is in developing the crucial similarity matrix in SC as well as use of k-medoids in VQ, both adapted for the plant genome data. For Soybean, we compare our approach with commonly used techniques like Un-weighted Pair Graph Method with Arithmetic mean (UPGMA) and Neighbor Joining (NJ). Experimental results show that our VQSC outperforms both these techniques significantly in terms of cluster quality (average improvement of 21% over UPGMA and 24% over NJ) as well as time complexity (order of magnitude faster than both UPGMA and NJ).
Collapse
|
12
|
Hau SJ, Allué-Guardia A, Rusconi B, Haan JS, Davies PR, Frana TS, Eppinger M, Nicholson TL. Single Nucleotide Polymorphism Analysis Indicates Genetic Distinction and Reduced Diversity of Swine-Associated Methicillin Resistant Staphylococcus aureus (MRSA) ST5 Isolates Compared to Clinical MRSA ST5 Isolates. Front Microbiol 2018; 9:2078. [PMID: 30271385 PMCID: PMC6142820 DOI: 10.3389/fmicb.2018.02078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/14/2018] [Indexed: 01/05/2023] Open
Abstract
Livestock associated methicillin resistant S. aureus (LA-MRSA) are lineages adapted to livestock species. LA-MRSA can be transmitted to humans and public health concerns exist because livestock may be the largest MRSA reservoir outside of hospital settings. Although the predominant European (ST398) and Asian (ST9) lineages of LA-MRSA are considered livestock adapted, North American swine also harbor ST5, a globally disseminated and highly pathogenic lineage. This study applied whole genome sequencing and single nucleotide polymorphism (SNP) typing to compare the population structure and genetic relatedness between swine associated and human clinical MRSA ST5 isolates. The established high-resolution phylogenomic framework revealed that LA-MRSA and human clinical MRSA ST5 are genetically distinct. LA-MRSA isolates were found to be clonal within farms, while greater genome diversity was observed among sampled clinical MRSA ST5. Analysis of the accessory genome demonstrated that LA-MRSA ST5 isolates and clinical MRSA ST5 isolates harbor different AMR genes and virulence factors, consistent with the SNP analysis. Collectively, our data indicate LA-MRSA and clinical MRSA ST5 isolates are distinct and the swine reservoir is likely of minimal significance as a source of clinical MRSA ST5 infections.
Collapse
|
13
|
McClure JAM, Lakhundi S, Kashif A, Conly JM, Zhang K. Genomic Comparison of Highly Virulent, Moderately Virulent, and Avirulent Strains From a Genetically Closely-Related MRSA ST239 Sub-lineage Provides Insights Into Pathogenesis. Front Microbiol 2018; 9:1531. [PMID: 30042755 PMCID: PMC6048232 DOI: 10.3389/fmicb.2018.01531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
The genomic comparison of virulent (TW20), moderately virulent (CMRSA6/CMRSA3), and avirulent (M92) strains from a genetically closely-related MRSA ST239 sub-lineage revealed striking similarities in their genomes and antibiotic resistance profiles, despite differences in virulence and pathogenicity. The main differences were in the spa gene (coding for staphylococcal protein A), lpl genes (coding for lipoprotein-like membrane proteins), cta genes (genes involved in heme synthesis), and the dfrG gene (coding for a trimethoprim-resistant dihydrofolate reductase), as well as variations in the presence or content of some prophages and plasmids, which could explain the virulence differences of these strains. TW20 was positive for all genetic traits tested, compared to CMRSA6, CMRSA3, and M92. The major components differing among these strains included spa and lpl with TW20 carrying both whereas CMRSA6/CMRSA3 carry spa identical to TW20 but have a disrupted lpl. M92 is devoid of both these traits. Considering the role played by these components in innate immunity and virulence, it is predicted that since TW20 has both the components intact and functional, these traits contribute to its pathogenesis. However, CMRSA6/CMRSA3 are missing one of these components, hence their intermediately virulent nature. On the contrary, M92 is completely devoid of both the spa and lpl genes and is avirulent. Mobile genetic elements play a potential role in virulence. TW20 carries three prophages (ϕSa6, ϕSa3, and ϕSPβ-like), a pathogenicity island and two plasmids. CMRSA6, CMRSA3, and M92 contain variations in one or more of these components. The virulence associated genes in these components include staphylokinase, entertoxins, antibiotic/antiseptic/heavy metal resistance and bacterial persistence. Additionally, there are many hypothetical proteins (present with variations among strains) with unknown function in these mobile elements which could be making an important contribution in the virulence of these strains. The above mentioned repertoire of virulence components in TW20 likely contributes to its increased virulence, while the absence and/or modification of one or more of these components in CMRSA6/CMRSA3 and M92 likely affects the virulence of the strains.
Collapse
|
14
|
Hao L, Holden MTG, Wang X, Andrew L, Wellnitz S, Hu F, Whaley M, Sammons S, Knipe K, Frace M, McNamara LA, Liberator P, Anderson AS. Distinct evolutionary patterns of Neisseria meningitidis serogroup B disease outbreaks at two universities in the USA. Microb Genom 2018; 4. [PMID: 29616896 PMCID: PMC5989579 DOI: 10.1099/mgen.0.000155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neisseria meningitidis serogroup B (MnB) was responsible for two independent meningococcal disease outbreaks at universities in the USA during 2013. The first at University A in New Jersey included nine confirmed cases reported between March 2013 and March 2014. The second outbreak occurred at University B in California, with four confirmed cases during November 2013. The public health response to these outbreaks included the approval and deployment of a serogroup B meningococcal vaccine that was not yet licensed in the USA. This study investigated the use of whole-genome sequencing(WGS) to examine the genetic profile of the disease-causing outbreak isolates at each university. Comparative WGS revealed differences in evolutionary patterns between the two disease outbreaks. The University A outbreak isolates were very closely related, with differences primarily attributed to single nucleotide polymorphisms/insertion-deletion (SNP/indel) events. In contrast, the University B outbreak isolates segregated into two phylogenetic clades, differing in large part due to recombination events covering extensive regions (>30 kb) of the genome including virulence factors. This high-resolution comparison of two meningococcal disease outbreaks further demonstrates the genetic complexity of meningococcal bacteria as related to evolution and disease virulence.
Collapse
|
15
|
Antony Ceasar S, Maharajan T, Ajeesh Krishna TP, Ramakrishnan M, Victor Roch G, Satish L, Ignacimuthu S. Finger Millet [ Eleusine coracana (L.) Gaertn.] Improvement: Current Status and Future Interventions of Whole Genome Sequence. FRONTIERS IN PLANT SCIENCE 2018; 9:1054. [PMID: 30083176 PMCID: PMC6064933 DOI: 10.3389/fpls.2018.01054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 05/05/2023]
Abstract
The whole genome sequence (WGS) of the much awaited, nutrient rich and climate resilient crop, finger millet (Eleusine coracana (L.) Gaertn.) has been released recently. While possessing superior mineral nutrients and excellent shelf life as compared to other major cereals, multiploidy nature of the genome and relatively small plantation acreage in less developed countries hampered the genome sequencing of finger millet, disposing it as one of the lastly sequenced genomes in cereals. The genomic information available for this crop is very little when compared to other major cereals like rice, maize and barley. As a result, only a limited number of genetic and genomic studies has been undertaken for the improvement of this crop. Finger millet is known especially for its superior calcium content, but the high-throughput studies are yet to be performed to understand the mechanisms behind calcium transport and grain filling. The WGS of finger millet is expected to help to understand this and other important molecular mechanisms in finger millet, which may be harnessed for the nutrient fortification of other cereals. In this review, we discuss various efforts made so far on the improvement of finger millet including genetic improvement, transcriptome analysis, mapping of quantitative trait loci (QTLs) for traits, etc. We also discuss the pitfalls of modern genetic studies and provide insights for accelerating the finger millet improvement with the interventions of WGS in near future. Advanced genetic and genomic studies aided by WGS may help to improve the finger millet, which will be helpful to strengthen the nutritional security in addition to food security in the developing countries of Asia and Africa.
Collapse
|