1
|
Pruvot M, Fine AE, Hollinger C, Strindberg S, Damdinjav B, Buuveibaatar B, Chimeddorj B, Bayandonoi G, Khishgee B, Sandag B, Narmandakh J, Jargalsaikhan T, Bataa B, McAloose D, Shatar M, Basan G, Mahapatra M, Selvaraj M, Parida S, Njeumi F, Kock R, Shiilegdamba E. Outbreak of Peste des Petits Ruminants among Critically Endangered Mongolian Saiga and Other Wild Ungulates, Mongolia, 2016-2017. Emerg Infect Dis 2020; 26:51-62. [PMID: 31855146 PMCID: PMC6924898 DOI: 10.3201/eid2601.181998] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The 2016-2017 introduction of peste des petits ruminants virus (PPRV) into livestock in Mongolia was followed by mass mortality of the critically endangered Mongolian saiga antelope and other rare wild ungulates. To assess the nature and population effects of this outbreak among wild ungulates, we collected clinical, histopathologic, epidemiologic, and ecological evidence. Molecular characterization confirmed that the causative agent was PPRV lineage IV. The spatiotemporal patterns of cases among wildlife were similar to those among livestock affected by the PPRV outbreak, suggesting spillover of virus from livestock at multiple locations and time points and subsequent spread among wild ungulates. Estimates of saiga abundance suggested a population decline of 80%, raising substantial concerns for the species' survival. Consideration of the entire ungulate community (wild and domestic) is essential for elucidating the epidemiology of PPRV in Mongolia, addressing the threats to wild ungulate conservation, and achieving global PPRV eradication.
Collapse
|
research-article |
5 |
43 |
2
|
Quéméré E, Galan M, Cosson JF, Klein F, Aulagnier S, Gilot-Fromont E, Merlet J, Bonhomme M, Hewison AJM, Charbonnel N. Immunogenetic heterogeneity in a widespread ungulate: the European roe deer (Capreolus capreolus). Mol Ecol 2015; 24:3873-87. [PMID: 26120040 DOI: 10.1111/mec.13292] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/25/2022]
Abstract
Understanding how immune genetic variation is shaped by selective and neutral processes in wild populations is of prime importance in both evolutionary biology and epidemiology. The European roe deer (Capreolus capreolus) has considerably expanded its distribution range these last decades, notably by colonizing agricultural landscapes. This range shift is likely to have led to bottlenecks and increased roe deer exposure to a new range of pathogens that until recently predominantly infected humans and domestic fauna. We therefore investigated the historical and contemporary forces that have shaped variability in a panel of genes involved in innate and acquired immunity in roe deer, including Mhc-Drb and genes encoding cytokines or toll-like receptors (TLRs). Together, our results suggest that genetic drift is the main contemporary evolutionary force shaping immunogenetic variation within populations. However, in contrast to the classical view, we found that some innate immune genes involved in micropathogen recognition (e.g. Tlrs) continue to evolve dynamically in roe deer in response to pathogen-mediated positive selection. Most studied Tlrs (Tlr2, Tlr4 and Tlr5) had similarly high levels of amino acid diversity in the three studied populations including one recently established in southwestern France that showed a clear signature of genetic bottleneck. Tlr2 implicated in the recognition of Gram-positive bacteria in domestic ungulates, showed strong evidence of balancing selection. The high immunogenetic variation revealed here implies that roe deer are able to cope with a wide spectrum of pathogens and to respond rapidly to emerging infectious diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
35 |
3
|
Franzo G, Grassi L, Tucciarone CM, Drigo M, Martini M, Pasotto D, Mondin A, Menandro ML. A wild circulation: High presence of Porcine circovirus 3 in different mammalian wild hosts and ticks. Transbound Emerg Dis 2019; 66:1548-1557. [PMID: 30901142 DOI: 10.1111/tbed.13180] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/14/2019] [Indexed: 12/01/2022]
Abstract
Porcine circovirus 3 (PCV-3) has emerged as a potential threat for swine industry, being consistently reported in the presence of several clinical signs all around the world. Recently, its presence in wild boar has been demonstrated at high prevalence. This evidence is surprising since the lower density of wild populations might not be expected to sustain such efficient viral transmission. Porcine circoviruses were proven to exhibit a certain plasticity in the host tropism and were detected in unrelated species, like mice, dogs and ruminants. However, if this scenario applies also to wild animals remains to be established. Therefore, this study aimed to investigate the presence of PCV-3 in wild ungulates other than wild boar and in related hematophagous ectoparasites. One hundred and nine animals were sampled from different hilly and mountain areas of Friuli Venezia Giulia, including 9 chamois (Rupicapra rupicapra), 17 red deer (Cervus elaphus), 4 mouflons (Ovis musimon), 50 roe deer (Capreolus capreolus) and 29 wild boars (Sus scrofa). Additionally, host-matched ectoparasites were collected when present. Porcine circovirus 3 was diagnosed using molecular techniques and sequencing. This study results confirmed the high PCV-3 occurrence in wild boar and reported for the first time its presence, at low prevalence, in chamois and roe deer. Moreover, two ticks (Ixodes ricinus), one of which non-engorged, collected from PCV-3 negative roe deer, tested PCV-3 positive. The genetic characterization of some of the strains collected from non-swine hosts allowed to prove that, albeit clearly part of PCV-3 species, they were genetically unique, demonstrating the absence of among-samples contamination and thus confirming the actual presence of PCV-3 genome in these new hosts. Therefore, this study highlights an unexpected broad PCV-3 distribution and circulation in the wild, rising further questions on porcine circoviruses infectious cycle, epidemiology and origin, which will deserve additional investigations.
Collapse
|
Journal Article |
6 |
32 |
4
|
Triguero-Ocaña R, Laguna E, Jiménez-Ruiz S, Fernández-López J, García-Bocanegra I, Barasona JÁ, Risalde MÁ, Montoro V, Vicente J, Acevedo P. The wildlife-livestock interface on extensive free-ranging pig farms in central Spain during the "montanera" period. Transbound Emerg Dis 2020; 68:2066-2078. [PMID: 32979253 DOI: 10.1111/tbed.13854] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
The effective management of shared pathogens between wild ungulates and livestock requires the understanding of the processes of interaction between them. In this work, we studied the interspecific frequency of interaction (ifreq) and its spatiotemporal pattern between wild and domestic ungulates that coexist in free-ranging farms. For this purpose, 6 red deer, 6 wild boar, 8 Iberian pigs and 3 cattle were monitored using GPS devices during the "montanera" period (the period in which Iberian pigs are maintained in extensive conditions to feed on acorn). The ifreq was quantified for two spatiotemporal windows: 30 m - 10 min, for inferring potential direct interactions (short window), and 30 m - 12 days for indirect interactions (large window). Secondly, the variation in the ifreq was modelled with regard to 2 temporal (time of the day and week of the year) and 4 environmental factors (distance to water, distance to vegetation cover, Quercus density and distance to feeding points). The interactions at the short window were scarce (N = 13); however, they were very frequent at the large one (N = 37,429), with the red deer as the species with the greatest involvement in the interactions. Models showed that the time of the day and distance to water were the variables that best predicted the ifreq and they were conditioned by differences in the activity pattern of the targeted species. Food resource availability also predicted the ifreq, especially at the short window and between wild species. The results presented here highlight the role that wild ungulates may play in the transmission of pathogens to extensive livestock in general and pigs in particular and show the epidemiological risk of certain areas, periods of time and management practices (for wildlife and livestock) as well as providing useful information in the prevention of the transmission of shared pathogens.
Collapse
|
Journal Article |
5 |
20 |
5
|
Triguero-Ocaña R, Martínez-López B, Vicente J, Barasona JA, Martínez-Guijosa J, Acevedo P. Dynamic Network of Interactions in the Wildlife-Livestock Interface in Mediterranean Spain: An Epidemiological Point of View. Pathogens 2020; 9:pathogens9020120. [PMID: 32069995 PMCID: PMC7169396 DOI: 10.3390/pathogens9020120] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/02/2022] Open
Abstract
The correct management of diseases that are transmitted between wildlife and livestock requires a reliable estimate of the pathogen transmission rate. The calculation of this parameter is a challenge for epidemiologists, since transmission can occur through multiple pathways. The social network analysis is a widely used tool in epidemiology due to its capacity to identify individuals and communities with relevant roles for pathogen transmission. In the present work, we studied the dynamic network of interactions in a complex epidemiological scenario using information from different methodologies. In 2015, nine red deer, seven fallow deer, six wild boar and nine cattle were simultaneously monitored using GPS-GSM-Proximity collars in Doñana National Park. In addition, 16 proximity loggers were set in aggregation points. Using the social network analysis, we studied the dynamic network of interactions, including direct and indirect interactions, between individuals of different species and the potential transmission of pathogens within this network. The results show a high connection between species through indirect interactions, with a marked seasonality in the conformation of new interactions. Within the network, we differentiated four communities that included individuals of all the species. Regarding the transmission of pathogens, we observed the important role that fallow deer could be playing in the maintenance and transmission of pathogens to livestock. The present work shows the need to consider different types of methodologies in order to understand the complete functioning of the network of interactions at the wildlife/livestock interface. It also provides a methodological approach applicable to the management of shared diseases.
Collapse
|
Journal Article |
5 |
17 |
6
|
Lauzi S, Luzzago C, Chiani P, Michelacci V, Knijn A, Pedrotti L, Corlatti L, Buccheri Pederzoli C, Scavia G, Morabito S, Tozzoli R. Free-ranging red deer (Cervus elaphus) as carriers of potentially zoonotic Shiga toxin-producing Escherichia coli. Transbound Emerg Dis 2021; 69:1902-1911. [PMID: 34080316 PMCID: PMC9540879 DOI: 10.1111/tbed.14178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022]
Abstract
Shiga toxin‐producing E. coli (STEC) are zoonotic foodborne pathogens of outmost importance and interest has been raised in recent years to define the potential zoonotic role of wildlife in STEC infection. This study aimed to estimate prevalence of STEC in free‐ranging red deer (Cervus elaphus) living in areas with different anthropisation levels and describe the characteristics of strains in order to evaluate the potential risk posed to humans. Two‐hundred one deer faecal samples collected in 2016–2018 from animals of Central Italian Alps were examined by bacteriological analysis and PCR screening of E. coli colonies for stx1, stx2 and eae genes. STEC strains were detected in 40 (19.9%) deer, with significantly higher prevalence in offspring than in yearlings. Whole genome analysis was performed to characterise a subset of 31 STEC strains. The most frequently detected serotype was O146:H28 (n = 10, 32.3%). Virulotyping showed different stx subtypes combinations, with stx2b‐only (n = 15, 48.4%) being the most prevalent. All STEC lacked the eae gene but harbored additional virulence genes, particularly adhesins, toxins and/or other colonisation factors also described in STEC isolated from disease in humans. The most frequently detected genes were astA (n = 22, 71%), subAB (n = 21, 68%), iha (n = 26, 83.9%) and lpfA (n = 24, 77%). Four hybrid STEC/Enterotoxigenic E. coli strains were also identified. According to the most recent paradigm for pathogenicity assessment of STEC issued by the European Food Safety Authority, our results suggest that red deer are carriers of STEC strains that may have zoonotic potential, regardless of the anthropisation levels. Particular attention should be drawn to these findings while handling and preparing game meat. Furthermore, deer may release STEC in the environment, possibly leading to the contamination of soil and water sources.
Collapse
|
Journal Article |
4 |
14 |
7
|
Jelocnik M, Taylor-Brown A, O'Dea C, Anstey S, Bommana S, Masters N, Katouli M, Jenkins C, Polkinghorne A. Detection of a range of genetically diverse chlamydiae in Australian domesticated and wild ungulates. Transbound Emerg Dis 2019; 66:1132-1137. [PMID: 30873753 DOI: 10.1111/tbed.13171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Abstract
Chlamydiae are globally widespread obligate intracellular bacteria, which several species are a well-recognized threat to human and animal health. In Australia, the most successful chlamydial species are the infamous koala pathogen C. pecorum, and C. psittaci, an emerging pathogen associated with zoonotic events. Little is known about infections caused by other chlamydial organisms in Australian livestock or wildlife. Considering that these hosts can be encountered by humans at the animal/human interface, in this study, we investigated genetic diversity of chlamydial organisms infecting Australian domesticated and wild ungulates. A total of 185 samples from 129 domesticated (cattle, horses, sheep, and pigs) and 29 wild (deer) ungulate hosts were screened with C. pecorum and C. psittaci species-specific assays, followed by a screen with pan-Chlamydiales assay. Overall, chlamydial DNA was detected in 120/185 (65%) samples, including all ungulate hosts. Species-specific assays further revealed that C. pecorum and C. psittaci DNA were detected in 27% (50/185) and 6% (11/185) of the samples, respectively, however from domesticated hosts only. A total of 46 "signature" 16S rRNA sequences were successfully resolved by sequencing and were used for phylogenetic analyses. Sequence analyses revealed that genetically diverse novel as well as traditional chlamydial organisms infect an expanded range of ungulate hosts in Australia. Detection of the C. psittaci and C. pecorum in livestock, and novel taxa infecting horses and deer raises questions about the genetic make-up and pathogenic potential of these organisms, but also concerns about risks of spill-over between livestock, humans, and native wildlife.
Collapse
|
Journal Article |
6 |
14 |
8
|
Ecotyping of Anaplasma phagocytophilum from Wild Ungulates and Ticks Shows Circulation of Zoonotic Strains in Northeastern Italy. Animals (Basel) 2021; 11:ani11020310. [PMID: 33530571 PMCID: PMC7911980 DOI: 10.3390/ani11020310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Tick-borne infectious diseases represent a rising threat both for human and animal health, since they are emerging worldwide. Among the bacterial infections, Anaplasma phagocytophilum has been largely neglected in Europe. Despite its diffusion in ticks and animals, the ecoepidemiology of its genetic variants is not well understood. The latest studies identify four ecotypes of Anaplasma phagocytophilum in Europe, and only ecotype I has shown zoonotic potential. The aim of the present study was to investigate the genetic variants of Anaplasma phagocytophilum in wild ungulates, the leading reservoir species, and in feeding ticks, the main vector of infection. The analyzed samples were collected in northeastern Italy, the same area where the first Italian human cases of anaplasmosis in the country were reported. Using biomolecular tools and phylogenetic analysis, ecotypes I and II were detected in both ticks (Ixodes ricinus species) and wild ungulates. Specifically, ecotype II was mainly detected in roe deer and related ticks; and ecotype I, the potentially zoonotic variant, was detected in Ixodes ricinus ticks and also in roe deer, red deer, chamois, mouflon, and wild boar. These findings reveal not only the wide diffusion of Anaplasma phagocytophilum, but also the presence of zoonotic variants. Abstract Anaplasma phagocytophilum (A. phagocytophilum) is a tick-borne pathogen causing disease in both humans and animals. Human granulocytic anaplasmosis (HGA) is an emerging disease, but despite the remarkable prevalence in European ticks and wild animals, human infection appears underdiagnosed. Several genetic variants are circulating in Europe, including the zoonotic ecotype I. This study investigated A. phagocytophilum occurrence in wild ungulates and their ectoparasites in an area where HGA has been reported. Blood samples from wild ungulates and ectoparasites were screened by biomolecular methods targeting the mps2 gene. The groEL gene was amplified and sequenced to perform genetic characterization and phylogenetic analysis. A total of 188 blood samples were collected from different wild ungulates species showing an overall prevalence of 63.8% (88.7% in wild ruminants and 3.6% in wild boars). The prevalence of A. phagocytophilum DNA in ticks (manly Ixodes ricinus), and keds collected from wild ruminants was high, reflecting the high infection rates obtained in their hosts. Among ticks collected from wild boars (Hyalomma marginatum and Dermacentor marginatus) no DNA was detected. Phylogenetic analysis demonstrated the presence of ecotype I and II. To date, this is the first Italian report of ecotype I in alpine chamois, mouflon, and wild boar species. These findings suggest their role in HGA epidemiology, and the high prevalence detected in this study highlights that this human tick-borne disease deserves further attention.
Collapse
|
Journal Article |
4 |
14 |
9
|
Salvetti M, Bianchi A, Marangi M, Barlaam A, Giacomelli S, Bertoletti I, Roy L, Giangaspero A. Deer keds on wild ungulates in northern Italy, with a taxonomic key for the identification of Lipoptena spp. of Europe. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:74-85. [PMID: 31674696 DOI: 10.1111/mve.12411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Deer keds (Lipoptena spp.) are blood-sucking ectoparasites of domestic and wild animals, and also accidentally of humans. In Europe, five Lipoptena spp. have been recorded, although the lack of specific taxonomic keys has often led to mistaken identification or to missing data. The present study aimed to develop an identification key of the European species and also to identify Lipoptena spp. found on wild ungulates in northern Italy. In total, 390 hippoboscids were collected from Rupicapra rupicapra, Capreolus capreolus, Cervus elaphus and Ovis aries musimon in an Alpine area of Italy. After morphological identification, 140 specimens were subjected to phylogenetic analysis based on mitochondrial (CO1) and nuclear (CAD) gene sequences. Despite the expected presence of slight morphological variations, all specimens examined were identified both microscopically and molecularly as Lipoptena cervi (100% identity for both CO1 and CAD genes). The massive increase in wild ungulate populations can favour the possibility of detecting other species of Lipoptena. The identification keys proposed in the present study may help with monitoring the presence of Lipoptena species, particularly in European countries where this ectoparasite is neglected and for which various data (from diffusion to control methods) are still missing.
Collapse
|
|
5 |
11 |
10
|
Figueiredo AM, Dashti A, Santín M, Köster PC, Torres RT, Fonseca C, Mysterud A, Carvalho J, Sarmento P, Neves N, Hipólito D, Palmeira JD, Teixeira D, Lima C, Calero-Bernal R, Carmena D. Occurrence and molecular characterization of Enterocytozoon bieneusi in wild and domestic animal species in Portugal. Med Mycol 2023; 61:7028777. [PMID: 36746434 DOI: 10.1093/mmy/myad018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The phylum Microsporidia encompasses a diverse group of obligate, intracellular, and spore-forming organisms able to infect a wide range of animal hosts. Among them, Enterocytozoon bieneusi is the most frequently reported species in humans and animals. Little is known about the presence and epidemiology of E. bieneusi in wildlife. We investigated E. bieneusi occurrence and genetic diversity in wild and domestic mammals, through molecular-detection methods, from different regions across Portugal. A total of 756 samples were collected from 288, 242, and 226 wild carnivores, wild ungulates, and domestic animals, respectively. Overall, eight specimens were E. bieneusi-positive (1.1%, 8/756) obtained from five wild (Iberian lynx, Iberian wolf, red fox, stone marten, and wild boar) and one domestic (sheep) host. Nucleotide sequence analysis identified four genotypes of E. bieneusi, Type IV, Wildboar3, BEB6, and PtEbIX. Three of those genotypes belong to Groups 1 (Type IV and Wildboar3) and 2 (BEB6), which are known to contain genotypes capable of infecting a variety of hosts, including humans, highlighting their public health importance. PtEbIX belongs to the dog-specific Group 11. This study represents the first, largest, and most comprehensive molecular-based epidemiology survey carried out in Portugal in wild and domestic animals to date and the first worldwide identification of E. bieneusi in wolf species. Our study showed that wild carnivores and ungulates may act as reservoirs of zoonotic genotypes of E. bieneusi, establishing their role in maintaining the sylvatic cycle of this parasite while representing a potential source of infection for humans and domestic animals.
Collapse
|
|
2 |
10 |
11
|
Refaya AK, Ramanujam H, Ramalingam M, Rao GVS, Ravikumar D, Sangamithrai D, Shanmugam S, Palaniyandi K. Tuberculosis caused by Mycobacterium orygis in wild ungulates in Chennai, South India. Transbound Emerg Dis 2022; 69:e3327-e3333. [PMID: 35678472 DOI: 10.1111/tbed.14613] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
We report the isolation of Mycobacterium orygis, a member of Mycobacterium tuberculosis complex (MTBC), from two black bucks (Antelope cervicapra) and one spotted deer (Axis axis) from the Guindy National Park forest range in Chennai, India. Lung tissue and lymph node samples collected during post-mortem examination were processed using NaOH method and cultured in solid and liquid media. DNA extracted from the cultured isolates was used to amplify the mpt64 gene by specific primers and the band visualized at 240 bps confirmed the isolates as a member of MTBC. Further examination of these isolates by spoligotyping and whole-genome sequencing confirmed the isolates as M. orygis and the phylogenetic tree revealed their well-clustered position with other M. orygis isolates around the globe. The deletion of RD7-RD10, RDOryx_1, RDOryx_4, RD12Oryx, RD301 and RD315 further substantiated these isolates as M. orygis. The exact source of infection in animals was untraceable and the pairwise comparison of the genomes based on single-nucleotide polymorphisms difference did not detect any events of transmission within the affected animals. Nevertheless, it would be wise to take into account the environment where there exists a high chance of transmission due to the increased human-animal interaction. Since it is well known that the pathogen is capable of causing infection in both human and animal hosts, systematic surveillance and screening of spotted deer, black buck as well as humans in the vicinity is essential for successful implementation of the One Health approach.
Collapse
|
|
3 |
10 |
12
|
Woldemariyam FT, Kariuki CK, Kamau J, De Vleeschauwer A, De Clercq K, Lefebvre DJ, Paeshuyse J. Epidemiological Dynamics of Foot-and-Mouth Disease in the Horn of Africa: The Role of Virus Diversity and Animal Movement. Viruses 2023; 15:v15040969. [PMID: 37112947 PMCID: PMC10143177 DOI: 10.3390/v15040969] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The Horn of Africa is a large area of arid and semi-arid land, holding about 10% of the global and 40% of the entire African livestock population. The region's livestock production system is mainly extensive and pastoralist. It faces countless problems, such as a shortage of pastures and watering points, poor access to veterinary services, and multiple endemic diseases like foot-and-mouth disease (FMD). Foot-and-mouth disease is one of the most economically important livestock diseases worldwide and is endemic in most developing countries. Within Africa, five of the seven serotypes of the FMD virus (FMDV) are described, but serotype C is not circulating anymore, a burden unseen anywhere in the world. The enormous genetic diversity of FMDV is favored by an error-prone RNA-dependent RNA polymerase, intra-typic and inter-typic recombination, as well as the quasi-species nature of the virus. This paper describes the epidemiological dynamics of foot-and-mouth disease in the Horn of Africa with regard to the serotypes and topotypes distribution of FMDV, the livestock production systems practiced, animal movement, the role of wildlife, and the epidemiological complexity of FMD. Within this review, outbreak investigation data and serological studies confirm the endemicity of the disease in the Horn of Africa. Multiple topotypes of FMDV are described in the literature as circulating in the region, with further evolution of virus diversity predicted. A large susceptible livestock population and the presence of wild ungulates are described as complicating the epidemiology of the disease. Further, the husbandry practices and legal and illegal trading of livestock and their products, coupled with poor biosecurity practices, are also reported to impact the spread of FMDV within and between countries in the region. The porosity of borders for pastoralist herders fuels the unregulated transboundary livestock trade. There are no systematic control strategies in the region except for sporadic vaccination with locally produced vaccines, while literature indicates that effective control measures should also consider virus diversity, livestock movements/biosecurity, transboundary trade, and the reduction of contact with wild, susceptible ungulates.
Collapse
|
Review |
2 |
8 |
13
|
Dashti A, Santín M, Köster PC, Bailo B, Ortega S, Imaña E, Habela MÁ, Rivero-Juarez A, Vicente J, Arnal MC, de Luco DF, Morrondo P, Armenteros JA, Balseiro A, Cardona GA, Martínez-Carrasco C, Ortiz JA, Calero-Bernal R, Carmena D, González-Barrio D. Zoonotic Enterocytozoon bieneusi genotypes in free-ranging and farmed wild ungulates in Spain. Med Mycol 2022; 60:6696380. [PMID: 36095135 DOI: 10.1093/mmy/myac070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Microsporidia comprises a diverse group of obligate, intracellular, and spore-forming parasites that infect a wide range of animals. Among them, Enterocytozoon bieneusi is the most frequently reported species in humans and other mammals and birds. Data on the epidemiology of E. bieneusi in wildlife is limited. Hence, E. bieneusi was investigated in eight wild ungulate species present in Spain (genera Ammotragus, Capra, Capreolus, Cervus, Dama, Ovis, Rupicapra, and Sus) by molecular methods. Faecal samples were collected from free-ranging (n = 1058) and farmed (n = 324) wild ungulates from five Spanish bioregions. The parasite was detected only in red deer (10.4%, 68/653) and wild boar (0.8%, 3/359). Enterocytozoon bieneusi infections were more common in farmed (19.4%, 63/324) than in wild (1.5%, 5/329) red deer. Eleven genotypes were identified in red deer, eight known (BEB6, BEB17, EbCar2, HLJD-V, MWC_d1, S5, Type IV, and Wildboar3) and three novel (DeerSpEb1, DeerSpEb2, and DeerSpEb3) genotypes. Mixed genotype infections were detected in 15.9% of farmed red deer. Two genotypes were identified in wild boar, a known (Wildboar3) and a novel (WildboarSpEb1) genotypes. All genotypes identified belonged to E. bieneusi zoonotic Groups 1 and 2. This study provides the most comprehensive epidemiological study of E. bieneusi in Spanish ungulates to date, representing the first evidence of the parasite in wild red deer populations worldwide. Spanish wild boars and red deer are reservoir of zoonotic genotypes of E. bieneusi and might play an underestimated role in the transmission of this microsporidian species to humans and other animals.
Collapse
|
|
3 |
8 |
14
|
Cuadrado-Matías R, Baz-Flores S, Peralbo-Moreno A, Herrero-García G, Risalde MA, Barroso P, Jiménez-Ruiz S, Ruiz-Rodriguez C, Ruiz-Fons F. Determinants of Crimean-Congo haemorrhagic fever virus exposure dynamics in Mediterranean environments. Transbound Emerg Dis 2022; 69:3571-3581. [PMID: 36183164 PMCID: PMC10092370 DOI: 10.1111/tbed.14720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 02/07/2023]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is an emerging tick-borne human disease in Spain. Understanding the spatiotemporal dynamics and exposure risk determinants of CCHF virus (CCHFV) in animal models is essential to predict the time and areas of highest transmission risk. With this goal, we designed a longitudinal survey of two wild ungulate species, the red deer (Cervus elaphus) and the Eurasian wild boar (Sus scrofa), in Doñana National Park, a protected Mediterranean biodiversity hotspot with high ungulate and CCHFV vector abundance, and which is also one of the main stopover sites for migratory birds between Africa and western Europe. Both ungulates are hosts to the principal CCHFV vector in Spain, Hyalomma lusitanicum. We sampled wild ungulates annually from 2005 to 2020 and analysed the frequency of exposure to CCHFV by a double-antigen ELISA. The annual exposure risk was modelled as a function of environmental traits in an approach to understanding exposure risk determinants that allow us to predict the most likely places and years for CCHFV transmission. The main findings show that H. lusitanicum abundance is a fundamental driver of the fine-scale spatial CCHFV transmission risk, while inter-annual risk variation is conditioned by virus/vector hosts, host community structure and weather variations. The most relevant conclusion of the study is that the emergence of CCHF in Spain might be associated with recent wild ungulate population changes promoting higher vector abundance. This work provides relevant insights into the transmission dynamics of CCHFV in enzootic scenarios that would allow deepening the understanding of the ecology of CCHFV and its major determinants.
Collapse
|
|
3 |
7 |
15
|
Torretta E, Caviglia L, Serafini M, Meriggi A. Wolf predation on wild ungulates: how slope and habitat cover influence the localization of kill sites. Curr Zool 2017; 64:271-275. [PMID: 30403201 PMCID: PMC6007434 DOI: 10.1093/cz/zox031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
Based on data collected along the Ligurian Apennines and Alps (N-W Italy), we analysed the main environmental and human-related factors influencing the distribution of kill sites of the wolf Canis lupus. We mapped and digitized 62 kill sites collected during 2007-2016. Around each kill site, we defined a buffer corresponding to the potential hunting area of wolves. We compared kill site plots and an equal number of random plots. We formulated a model of kill site distribution following an approach presence versus availability by binary logistic regression analysis; we tested the hypothesis that wolf choice of kill sites is influenced by the physiography and the land use of the area. Among the preyed wild ungulates, we identified 23 roe deer Capreolus capreolus, 18 fallow deer Dama dama, 16 wild boars Sus scrofa, and 5 chamois Rupicapra rupicapra. Binary logistic regression analysis showed a negative effect of the road density, the urban areas, the mixed forests, and a positive effect of steep slopes and open habitats. Prey are more vulnerable to predators under certain conditions and predators are capable of selecting for these conditions. Wolves achieved this by selecting particular habitats in which to kill their prey: they preferred steep, open habitats far from human presence, where wild ungulates are more easily detectable and chasable.
Collapse
|
Journal Article |
8 |
7 |
16
|
Moraes DF, Lopez-Lopez P, Palmeira JD, Torres RT, Rivero-Juarez A, Dutra V, Nascimento M, Mesquita JR. Screening for hepatitis E virus genotype 3 in red deer (Cervus elaphus) and fallow deer (Dama dama), Portugal, 2018-2020. Transbound Emerg Dis 2022; 69:2764-2768. [PMID: 34913605 DOI: 10.1111/tbed.14427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/25/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022]
Abstract
Hepatitis E virus (HEV) genotype 3 is the most prevalent HEV genotype in Europe causing mostly asymptomatic infections in humans, but can also sporadically cause severe acute hepatitis, chronic liver disease, chronic hepatitis in immunocompromised patients and extra-hepatic manifestations. Although much is today known about the swine reservoir, no information is available on the occurrence of HEV from widely distributed deer species in Portugal. Here, we investigated the presence and characterized HEV in free-living deer in Portugal by screening stools from red deer (Cervus elaphus) (n = 95) and fallow deer (Dama dama) (n = 35) for HEV by a broad-spectrum nested RT-PCR, followed by sequencing and phylogenetic analysis. Two red deer females, sampled in central Portugal, showed to be shedding HEV (2.1%; 95% confidence interval: 0.58-7.35). Sequencing and genetic characterization showed that these two deer HEV sequences were 98.96% identical to each other, being both of HEV genotype 3 subgenotype 3e. The increasing numbers and distribution of deer in Portugal and the zoonotic features of the circulating HEV genotype 3 subgenotype 3e highlights the importance of continued surveillance directed to food-borne diseases, especially those involving wild animals and deer in particular.
Collapse
|
|
3 |
7 |
17
|
Buzan E, Potušek S, Urzi F, Pokorny B, Šprem N. Genetic characterisation of wild ungulates: successful isolation and analysis of DNA from widely available bones can be cheap, fast and easy. Zookeys 2020; 965:141-156. [PMID: 32973384 PMCID: PMC7483325 DOI: 10.3897/zookeys.965.54862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/03/2020] [Indexed: 01/02/2023] Open
Abstract
Genetic characterisation of wild ungulates can be a useful tool in wildlife management and in obtaining a greater understanding of their biological and ecological roles in a wider spatiotemporal context. Different ways of optimising methodologies and reducing the costs of genetic analyses using widely available bone tissues collected within regular hunting allocations were examined. Successful isolation and analysis of DNA from widely available bones can be cheap, fast and easy. In particular, this study explored the possibility of using bones for extracting high quality nuclear DNA for microsatellite analysis. The utility of applying a modified demineralisation process using two commercially available DNA isolation kits, which differ significantly in price, was evaluated. The sample sets included bones and, for comparison, muscle tissues from four wild ungulate species: chamois (Rupicapra rupicapra), roe deer (Capreolus capreolus), wild boar (Sus scrofa), and Alpine ibex (Capra ibex). For the recent bones, these results confirmed that the DNA concentrations and microsatellite amplification were sufficiently high, even when using low-cost kits, after prior demineralisation. For old bones, prior demineralisation and use of a specially designed isolation kit led to a more successful extraction of DNA. Besides reducing kit-related costs, low-cost kits are much faster and therefore make genetic analysis more efficient.
Collapse
|
research-article |
5 |
2 |
18
|
Barja I, Navarro-Castilla Á, Ortiz-Jiménez L, España Á, Hinojosa R, Sánchez-Sotomayor D, Iglesias Á, España J, Rubio-Sánchez S, Martín-Romero S, Vielva J, Horcajada-Sánchez F. Wild Ungulates Constitute the Basis of the Diet of the Iberian Wolf in a Recently Recolonized Area: Wild Boar and Roe Deer as Key Species for Its Conservation. Animals (Basel) 2023; 13:3364. [PMID: 37958119 PMCID: PMC10647792 DOI: 10.3390/ani13213364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The Iberian wolf (Canis lupus signatus) is recolonizing historical distribution areas after decades of absence. As in other human-dominated landscapes, finding a balance to protect this species by favoring recolonization and mitigating human-wildlife conflicts is a challenge. Since wolves are often generalist opportunistic predators, we studied their diet composition in central Spain to evaluate the consumption of domestic ungulates and provide reliable data that could help local authorities to deal with the current wolf-cattle ranchers conflict and coexistence. Diet composition (% prey occurrence, % prey ingested biomass) was analyzed through the identification of prey hairs present in 671 scats collected between 2017 and 2021. The wolves fed more on wild ungulates (82% occurrence) than domestic ones (18%). Wild boar (Sus scrofa, 44% occurrence) and roe deer (Capreolus capreolus, 35%) were the most consumed prey. The wolves positively selected these two species. The wolves' diets varied between seasons, years, and forest regions, but a diet based on wild ungulates predominated over domestic ones. Food niche breadth showed variations depending on seasons and years. Preserving the availability and diversity of wild ungulates may favor reducing livestock attacks and would be an achievable goal that would help to conserve this species and reduce conservation conflicts.
Collapse
|
research-article |
2 |
2 |
19
|
Nava M, Corlatti L, Formenti N, Trogu T, Pedrotti L, Gugiatti A, Lanfranchi P, Luzzago C, Ferrari N. Parasite-mediated manipulation? Toxoplasma gondii infection increases risk behaviour towards culling in red deer. Biol Lett 2023; 19:20230292. [PMID: 37848050 PMCID: PMC10581775 DOI: 10.1098/rsbl.2023.0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
Parasites can modify host behaviour to increase their chances of survival and transmission. Toxoplasma gondii is a globally distributed protozoan whose ability to modify host behaviour is well known in taxa such as rats and humans. Less well known are the effects on the behaviour of wild species, with the exception of a few studies on primates and carnivores. Taking advantage of a culling activity conducted in Stelvio National Park (Italy), the serological status of T. gondii was studied in 260 individuals of red deer Cervus elaphus with respect to the risk of being culled. A temporal culling rank index was fitted as a response variable, and T. gondii serological status as the main explanatory variable in linear models, accounting for covariates such as sex, age, jaw length, bone marrow fat and culling location. The overall seroprevalence of T. gondii was 31.5%, and the selected models suggested that seropositive deer were culled earlier than seronegative ones, but this effect was only evident in females, in individuals with medium-good body condition, and in areas with greater human presence. Our results suggest that T. gondii may be involved in risk behaviour in large herbivores, supporting its role as a facilitator of predation risk.
Collapse
|
research-article |
2 |
2 |
20
|
GIS as an Epidemiological Tool to Monitor the Spatial-Temporal Distribution of Tuberculosis in Large Game in a High-Risk Area in Portugal. Animals (Basel) 2021; 11:ani11082374. [PMID: 34438831 PMCID: PMC8388723 DOI: 10.3390/ani11082374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Hunting of large game is an activity of great social and economic importance. However, it can cause public health problems due to the zoonotic diseases of these animals, such as tuberculosis. Regular space–time monitoring of hunted animals’ health status allows both the hunters and competent authorities to understand the geographic location of the hunted animals, as well as the occurrence of possible diseases in these animals. This investigation presents the results of the assessment of the spatial–temporal distribution of tuberculosis in large game in a tuberculosis high-risk area in Portugal in the form of maps, which allow any interested party to quickly analyse the hunting situation regardless of their technical or scientific knowledge. Abstract Since April 2011, Portugal has implemented specific national legislation (Notice No. 1/2011), defining “Epidemiologic Risk Areas for Bovine Tuberculosis in Large Game” and mitigation measures in these areas, including Idanha-a-Nova county. A GIS project was created to record information that would allow us to analyse the spatial–temporal distribution, both for hunting bags and tuberculosis occurrence, in hunted wild boar and red deer in Idanha-a-Nova. Hunting bag and tuberculosis-like lesion data were recorded during post-mortem inspection across 11 hunting seasons, totalling 9844 animals. The difference in tuberculosis occurrence for these species was statistically significant in nearly all 11 seasons, with wild boars presenting approximately twice the occurrence of red deer. No significant difference was noted before and after the Notice No. 1/2011 implementation. These results, following GIS-based spatial analysis, enable us to state that both large game species displayed an irregular tuberculosis pattern for the 2006–2016 period, and we identified some specific areas of high risk for both species. Southern areas of the county may be considered the priority for intervention. This research demonstrates the potential of GIS tools to evaluate, in the field, the results and efficacy of legislation such as Notice No. 1/2011, and to ensure the correct implementation of cost-effective mitigation strategies for tuberculosis in large game species.
Collapse
|
|
4 |
1 |
21
|
Jiménez-Ruiz S, Vicente J, Risalde MA, Acevedo P, Cano-Terriza D, González-Barrio D, Barroso P, García-Bocanegra I. Survey of Culicoides-borne Bluetongue and Schmallenberg viruses at the wildlife-livestock interface in Doñana National Park (Spain). Transbound Emerg Dis 2022; 69:e1815-e1824. [PMID: 35304824 DOI: 10.1111/tbed.14516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
A cross-sectional study was carried out to assess the circulation of bluetongue virus (BTV) and Schmallenberg virus (SBV) within the wild and domestic ungulate host community in Doñana National Park (southwestern Spain). A total of 440 animals, including 138 cattle, 102 red deer (Cervus elaphus), 101 fallow deer (Dama dama) and 99 wild boar (Sus scrofa) were sampled in 2015 during the seasonal peak of Culicoides spp. (summer-autumn). Serum and spleen samples were analysed to detect exposure (using commercial blocking ELISAs) and infection (by RT-PCR), respectively, to BTV and SBV. Cattle were not tested by BTV-bELISA because all were previously vaccinated against BTV serotypes 1 and 4. High BTV seroprevalences were found in red deer (97.0%) and fallow deer (64.7%). Antibodies against SBV were detected in 37.0% of cattle, 16.8% of red deer, 23.5% of fallow deer and 2.0% of wild boar. Thirty-eight of the 203 deer (18.7%; 17 red deer and 21 fallow deer) were co-exposed to both viral agents. BTV-4 RNA was confirmed in four red deer and two fallow deer. SBV RNA was found in two fallow deer. Co-infections were not detected. Our results indicate high exposure, widespread distribution, and active circulation of BTV and SBV in the ruminant community in the study area. We provide additional evidence for the potential role of wild cervids as reservoirs of these Culicoides-borne viruses in two different epidemiological scenarios: with vaccination (BTV) and without vaccination (SBV) of sympatric livestock. This study highlights the importance of wildlife surveillance, particularly of cervid species, for the proper execution of control programmes of Culicoides-borne diseases in extensively reared livestock. This article is protected by copyright. All rights reserved.
Collapse
|
|
3 |
1 |
22
|
Wessels JE, Ishida Y, Rivera NA, Stirewalt SL, Brown WM, Novakofski JE, Roca AL, Mateus-Pinilla NE. The Impact of Variation in the Toll-like Receptor 3 Gene on Epizootic Hemorrhagic Disease in Illinois Wild White-Tailed Deer ( Odocoileus virginianus). Genes (Basel) 2023; 14:426. [PMID: 36833353 PMCID: PMC9956177 DOI: 10.3390/genes14020426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Epizootic hemorrhagic disease (EHD) leads to high mortality in white-tailed deer (Odocoileus virginianus) and is caused by a double-stranded RNA (dsRNA) virus. Toll-like receptor 3 (TLR3) plays a role in host immune detection and response to dsRNA viruses. We, therefore, examined the role of genetic variation within the TLR3 gene in EHD among 84 Illinois wild white-tailed deer (26 EHD-positive deer and 58 EHD-negative controls). The entire coding region of the TLR3 gene was sequenced: 2715 base pairs encoding 904 amino acids. We identified 85 haplotypes with 77 single nucleotide polymorphisms (SNPs), of which 45 were synonymous mutations and 32 were non-synonymous. Two non-synonymous SNPs differed significantly in frequency between EHD-positive and EHD-negative deer. In the EHD-positive deer, phenylalanine was relatively less likely to be encoded at codon positions 59 and 116, whereas leucine and serine (respectively) were detected less frequently in EHD-negative deer. Both amino acid substitutions were predicted to impact protein structure or function. Understanding associations between TLR3 polymorphisms and EHD provides insights into the role of host genetics in outbreaks of EHD in deer, which may allow wildlife agencies to better understand the severity of outbreaks.
Collapse
|
research-article |
2 |
|
23
|
Pasciu V, Nieddu M, Sotgiu FD, Baralla E, Berlinguer F. Fecal thyroid hormone metabolites in wild ungulates: a mini-review. Front Vet Sci 2024; 11:1407479. [PMID: 38840625 PMCID: PMC11150844 DOI: 10.3389/fvets.2024.1407479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
This review aims to analyse the fluctuations of fecal thyroid hormone metabolites (FTMs) related to environmental and individual variables in different species of wild ungulates and provide a collection of assay methods. The great advantage of fecal sampling is being completely non-invasive. A systemic search was conducted from 2019 to 2024, using data sources PubMed, Scopus, Web of Science, and the World Wide Web, and ten studies were found on this topic. Three studies used the radioimmunoassay method for FTMs analysis, while the others used a less expensive enzyme-linked immunosorbent assay. Most of these papers validated the method for the species-specific matrix. Related to the studied variables, some authors analysed FTM fluctuations only concerning individual variables, and others in response to both. Temperature and fecal cortisol metabolites (FCMs) were the most studied environmental and individual variables, respectively. Since FTMs are an integrative measure of plasma thyroid hormones, the information obtained from a non-invasive-assay method regarding wild ungulate physiology is becoming of great interest to the scientific community.
Collapse
|
Review |
1 |
|
24
|
Mammalian Orthoreovirus (MRV) Is Widespread in Wild Ungulates of Northern Italy. Viruses 2021; 13:v13020238. [PMID: 33546342 PMCID: PMC7913563 DOI: 10.3390/v13020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022] Open
Abstract
Mammalian orthoreoviruses (MRVs) are emerging infectious agents that may affect wild animals. MRVs are usually associated with asymptomatic or mild respiratory and enteric infections. However, severe clinical manifestations have been occasionally reported in human and animal hosts. An insight into their circulation is essential to minimize the risk of diffusion to farmed animals and possibly to humans. The aim of this study was to investigate the presence of likely zoonotic MRVs in wild ungulates. Liver samples were collected from wild boar, red deer, roe deer, and chamois. Samples originated from two areas (Sondrio and Parma provinces) in Northern Italy with different environmental characteristics. MRV detection was carried out by PCR; confirmation by sequencing and typing for MRV type 3, which has been frequently associated with disease in pigs, were carried out for positive samples. MRV prevalence was as high as 45.3% in wild boars and 40.6% in red deer in the Sondrio area, with lower prevalence in the Parma area (15.4% in wild boars). Our findings shed light on MRV occurrence and distribution in some wild species and posed the issue of their possible role as reservoir.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
|
25
|
Phylodynamic Analysis Suggests That Deer Species May Be a True Reservoir for Hepatitis E Virus Genotypes 3 and 4. Microorganisms 2023; 11:microorganisms11020375. [PMID: 36838340 PMCID: PMC9967072 DOI: 10.3390/microorganisms11020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Hepatitis E virus (HEV) genotypes 3 and 4 (HEV-3 and HEV-4) cause zoonotic infection in humans, with domestic pigs and wild boars being the main reservoirs of infection. Other than suids, HEV-3 and HEV-4 are found in ruminants, most frequently in deer species. However, it is still debatable, whether HEV infection in deer is a spillover, or indicates a stable virus circulation in these host species. To explore the patterns of HEV-3 and HEV-4 transmission in deer and other host species, we performed a Bayesian analysis of HEV sequences available in GenBank. A total of 27 HEV sequences from different deer species were found in GenBank. Sequences from wild boars collected in the same territories, as well as sequences from all mammals that were most similar to sequences from deer in blast search, were added to the dataset, comprising 617 in total sequences. Due to the presence of partial genomic sequences, they were divided into four subsets (two ORF1 fragments and two ORF2 fragments) and analyzed separately. European HEV-3 sequences and Asian HEV-4 sequences collected from deer species demonstrated two transmission patterns. The first pattern was spillover infection, and the second pattern was deer-to-deer transmission, indicating stable HEV circulation in these species. However, all geographic HEV clusters that contained both deer and swine sequences originated from ancestral swine strains. HEV-3 and HEV-4 transmission patterns in ungulates reconstructed by means of Bayesian analysis indicate that deer species are a true host for HEV. However, wild and domestic swine are often the primary source of infection for ruminants living in the same areas. Complete HEV genomic sequences from different parts of the world are crucial for further understanding the HEV-3 and HEV-4 circulation patterns in wildlife.
Collapse
|
research-article |
2 |
|