1
|
Pasay C, Mounsey K, Stevenson G, Davis R, Arlian L, Morgan M, Vyszenski-Moher D, Andrews K, McCarthy J. Acaricidal activity of eugenol based compounds against scabies mites. PLoS One 2010; 5:e12079. [PMID: 20711455 PMCID: PMC2920318 DOI: 10.1371/journal.pone.0012079] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/14/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human scabies is a debilitating skin disease caused by the "itch mite" Sarcoptes scabiei. Ordinary scabies is commonly treated with topical creams such as permethrin, while crusted scabies is treated with topical creams in combination with oral ivermectin. Recent reports of acaricide tolerance in scabies endemic communities in Northern Australia have prompted efforts to better understand resistance mechanisms and to identify potential new acaricides. In this study, we screened three essential oils and four pure compounds based on eugenol for acaricidal properties. METHODOLOGY/PRINCIPAL FINDINGS Contact bioassays were performed using live permethrin-sensitive S. scabiei var suis mites harvested from pigs and permethrin-resistant S. scabiei var canis mites harvested from rabbits. Results of bioassays showed that clove oil was highly toxic against scabies mites. Nutmeg oil had moderate toxicity and ylang ylang oil was the least toxic. Eugenol, a major component of clove oil and its analogues--acetyleugenol and isoeugenol, demonstrated levels of toxicity comparable to benzyl benzoate, the positive control acaricide, killing mites within an hour of contact. CONCLUSIONS The acaricidal properties demonstrated by eugenol and its analogues show promise as leads for future development of alternative topical acaricides to treat scabies.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
61 |
2
|
Ribeiro VLS, Dos Santos JC, Bordignon SAL, Apel MA, Henriques AT, von Poser GL. Acaricidal properties of the essential oil from Hesperozygis ringens (Lamiaceae) on the cattle tick Riphicephalus (Boophilus) microplus. BIORESOURCE TECHNOLOGY 2010; 101:2506-2509. [PMID: 19954969 DOI: 10.1016/j.biortech.2009.11.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 06/15/2009] [Accepted: 10/31/2009] [Indexed: 05/28/2023]
Abstract
Hesperozygis ringens (Benth.) Epling (Lamiaceae) is a strongly aromatic plant employed popularly for its antiparasitic properties. The leaves afforded 4% of essential oil constituted mainly by pulegone (86%). Laboratory tests were carried out to determine the toxicity of the essential oil species on engorged females and larvae of the cattle tick Riphicephalus (Boophilus) microplus using the adult immersion test (AIT) and the larval immersion test (LIT). It was observed that the essential oil at the concentration of 50 microL/mL and 25 microL/mL inhibited the egg laying significatively in relation to the controls and the eggs from these treated females were affected by the oil; the hatching was inhibited in 95% and 30%, respectively. In the LIT it was verified that the LC(99.9), LC(50) and LC(1) was 0.541 microL/mL, 0.260 microL/mL and 0.015 microL/mL, respectively. Pulegone, isolated from the oil, showed similar effect on the females and on the larvae, indicating that it is responsible for the oil activity.
Collapse
|
|
15 |
52 |
3
|
Martinez-Velazquez M, Rosario-Cruz R, Castillo-Herrera G, Flores-Fernandez JM, Alvarez AH, Lugo-Cervantes E. Acaricidal effect of essential oils from Lippia graveolens (Lamiales: Verbenaceae), Rosmarinus officinalis (Lamiales: Lamiaceae), and Allium sativum (Liliales: Liliaceae) against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:822-827. [PMID: 21845941 DOI: 10.1603/me10140] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Acaricidal effects of three essential oils extracted from Mexican oregano leaves (Lippia graveolens Kunth), rosemary leaves (Rosmarinus officinalis L.), and garlic bulbs (Allium sativum L.) on 10-d-old Rhipicephalus (Boophilus) microplus (Canestrini) tick larvae were evaluated by using the larval packet test bioassay. Serial dilutions of the three essential oils were tested from a starting concentration of 20 to 1.25%. Results showed that both Mexican oregano and garlic essential oils had very similar activity, producing high mortality (90-100%) in all tested concentrations on 10-d-old R. microplus tick larvae. Rosemary essential oil produced >85% larval mortality at the higher concentrations (10 and 20%), but the effect decreased noticeably to 40% at an oil concentration of 5%, and mortality was absent at 2.5 and 1.25% of the essential oil concentration. Chemical composition of the essential oils was elucidated by gas chromatography-mass spectrometry analyses. Mexican oregano essential oil included thymol (24.59%), carvacrol (24.54%), p-cymene (13.6%), and y-terpinene (7.43%) as its main compounds, whereas rosemary essential oil was rich in a-pinene (31.07%), verbenone (15.26%), and 1,8-cineol (14.2%), and garlic essential oil was rich in diallyl trisulfide (33.57%), diallyl disulfide (30.93%), and methyl allyl trisulfide (11.28%). These results suggest that Mexican oregano and garlic essential oils merit further investigation as components of alternative approaches for R. microplus tick control.
Collapse
|
|
14 |
45 |
4
|
Ghosh S, Tiwari SS, Srivastava S, Sharma AK, Kumar S, Ray DD, Rawat AKS. Acaricidal properties of Ricinus communis leaf extracts against organophosphate and pyrethroids resistant Rhipicephalus (Boophilus) microplus. Vet Parasitol 2013; 192:259-67. [PMID: 23084038 DOI: 10.1016/j.vetpar.2012.09.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 09/24/2012] [Accepted: 09/24/2012] [Indexed: 11/25/2022]
Abstract
Indian cattle ticks have developed resistance to commonly used acaricides and an attempt has been made to formulate an ecofriendly herbal preparation for the control of acaricide resistant ticks. A 95% ethanolic extract of Ricinus communis was used to test the efficacy against reference acaricide resistant lines by in vitro assay. In in vitro assay, the extract significantly affects the mortality rate of ticks in dose-dependent manner ranging from 35.0 ± 5.0 to 95.0 ± 5.0% with an additional effect on reproductive physiology of ticks by inhibiting 36.4-63.1% of oviposition. The leaf extract was found effective in killing 48.0, 56.7 and 60.0% diazinon, deltamethrin and multi-acaricide resistant ticks, respectively. However, the cidal and oviposition limiting properties of the extract were separated when the extract was fractionated with hexane, chloroform, n-butanol and water. The HPTLC finger printing profile of R. communis leaf extract under λ(max.) - 254 showed presence of quercetin, gallic acid, flavone and kaempferol which seemed to have synergistic acaricidal action. In vivo experiment resulted in 59.9% efficacy on Ist challenge, however, following 2nd challenge the efficacy was reduced to 48.5%. The results indicated that the 95% ethanolic leaf extract of R. communis can be used effectively in integrated format for the control of acaricide resistant ticks.
Collapse
|
|
12 |
43 |
5
|
Kiss T, Cadar D, Spînu M. Tick prevention at a crossroad: new and renewed solutions. Vet Parasitol 2012; 187:357-66. [PMID: 22424918 DOI: 10.1016/j.vetpar.2012.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/13/2012] [Accepted: 02/19/2012] [Indexed: 11/15/2022]
Abstract
Ticks have major economic impact through diseases they transmit, direct losses due to their detrimental effect and the efforts invested in prevention measures directed against them. Chemical acaricides represent the main line of anti-tick defense in both humans and domestic animals, but increasing concerns regarding development of acaricide resistance, especially in the cattle tick Rhipicephalus microplus, and environmental safety issues indicate the need for other, less aggressive but equally efficient methods. This paper aims to evaluate the potential, the scientific and economical limitations and future research directions regarding different alternative methods of tick control and their use in integrated pest management, with a separate reference to the pet industry. New research data in each field is presented and the economical aspects for each approach are individually emphasized.
Collapse
|
Review |
13 |
42 |
6
|
Araújo MJC, Câmara CAG, Born FS, Moraes MM, Badji CA. Acaricidal activity and repellency of essential oil from Piper aduncum and its components against Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2012; 57:139-55. [PMID: 22415244 DOI: 10.1007/s10493-012-9545-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/05/2012] [Indexed: 05/24/2023]
Abstract
The chemical composition of essential oil of leaves of Piper aduncum L., growing wild in a fragment of the Atlantic Rainforest biome in northeastern Brazil, was determined through gas chromatography-mass spectrometry. The acaricidal activity and repellency of the essential oil and its components [dillapiole (0.28 g/ml), α-humulene (0.016 g/ml), (E)-nerolidol (0.0007 g/ml) and β-caryophyllene (0.0021 g/ml)] were evaluated in the laboratory against adults of Tetranychus urticae Koch. The mites were more susceptible to the oil in fumigation tests (LC(50) = 0.01 μl/l of air) than in contact test with closed Petri dish (LC(50) = 7.17 μl/ml); mortality was reduced by approximately 50 % in the latter test. The repellent action of the oil and toxicity by fumigation and contact did not differ significantly from the positive control (eugenol). The repellent activity was attributed to the components (E)-nerolidol, α-humulene and β-caryophyllene, whereas toxicity by fumigation and contact was attributed to β-caryophyllene. The effect of Piper oil and the role of its components regarding host plant preference with a two-choice leaf disk test are also discussed.
Collapse
|
|
13 |
42 |
7
|
Berry JA, Hood WM, Pietravalle S, Delaplane KS. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L). PLoS One 2013; 8:e76536. [PMID: 24204638 PMCID: PMC3799823 DOI: 10.1371/journal.pone.0076536] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/01/2013] [Indexed: 12/11/2022] Open
Abstract
In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
37 |
8
|
Cavalcanti SCH, Niculau EDS, Blank AF, Câmara CAG, Araújo IN, Alves PB. Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). BIORESOURCE TECHNOLOGY 2010; 101:829-832. [PMID: 19758799 DOI: 10.1016/j.biortech.2009.08.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 05/28/2023]
Abstract
The essential oils from accessions of Lippia sidoides Cham. (Verbenaceae) were characterized by GC and GC/MS and investigated for their acaricidal activity against the two-spotted spider mite (Tetranychus urticae Koch). Twenty-nine compounds were identified with potential acaricidal activity. Glass receptacles were used as test chambers. For each dose and exposure time combination, three replicates were used. Each replicate consisted of 30 adult females of T. urticae, 10 mites in each leaf disk of Canavalia ensiformis placed in a Petri dish. Increasing amounts of oil or terpene were applied on a blotting paper strip, fixed on the inner surface of the glass recipient cover, corresponding to 2, 4, 6, 8, and 10 microL/L of air, respectively. Exposure periods were 24, 48, and 72 h. Data obtained in these experiments were submitted to probit analysis. The essential oil of L. sidoides, thymol and carvacrol exhibited potent acaricidal activity against T. urticae.
Collapse
|
|
15 |
37 |
9
|
Yu X, Liu Y, Li Y, Wang Q. Design, Synthesis, and Acaricidal/Insecticidal Activities of Oxazoline Derivatives Containing a Sulfur Ether Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9690-9695. [PMID: 26499937 DOI: 10.1021/acs.jafc.5b04126] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
On the basis of etoxazole, a series of novel 2-(2,6-difluorophenyl)-4-(4-substituted phenyl)-1,3-oxazolines containing a sulfur ether moiety were designed and synthesized via the key intermediate N-(1-(4-(bromomethyl)phenyl)-2-chloroethyl)-2,6-difluorobenzamide. The bioassay results showed that most of these designed target compounds exhibited excellent acaricidal activity against both the eggs and larvae of Tetranychus cinnabarinus, especially the eggs. Among compounds with high activity against the eggs of mites, the LC50 values of 2, 11, 17, and 19 were 0.0003, 0.0002, 0.0005, and 0.0008 mg L(-1), respectively, much lower than that of etoxazole (0.0089 mg L(-1)). Compound 2 was chosen to evaluate the acaricidal activity in the field, and the results displayed that at a concentration of 22 mg kg(-1), 2 had a much better control effect than etoxazole against both T. cinnabarinus and P. latus on eggplant. Some compounds also showed good insecticidal activities against oriental armyworm and mosquito. On the basis of our research, the newly found structure-activity relationship may guide the development of new acaricides/pesticides that are required in the agriculture market.
Collapse
|
|
10 |
37 |
10
|
Mermans C, Dermauw W, Geibel S, Van Leeuwen T. A G326E substitution in the glutamate-gated chloride channel 3 (GluCl3) of the two-spotted spider mite Tetranychus urticae abolishes the agonistic activity of macrocyclic lactones. PEST MANAGEMENT SCIENCE 2017; 73:2413-2418. [PMID: 28736919 DOI: 10.1002/ps.4677] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The macrocyclic lactones abamectin and milbemectin are frequently used to control phytophagous mites such as Tetranychus urticae. Consequently, resistance has developed and was genetically linked with substitutions in the glutamate-gated chloride channel (GluCl) subunits TuGluCl1 and TuGluCl3. Here, we functionally validated a G326E substitution in TuGluCl3 by functional expression in Xenopus laevis oocytes followed by two-electrode voltage-clamp electrophysiology. RESULTS Homomeric wild-type and mutated GluCl3 were successfully expressed. l-glutamic-acid-induced currents exhibited a rapid onset equal in both channels and EC50 for l-glutamic-acid was in the micromolar range (384.2 μm and 292.7 μm, respectively). Abamectin and milbemycin A4 elicited sustained currents in wild-type GluCl3, but the G326E substitution completely abolished the agonistic activity of macrocyclic lactones. CONCLUSION A target-site mutation in Tu GluCl3 contributes to avermectin resistance in T. urticae. However, given the multitude of channel genes and the potential additive or synergistic effects of mutations, to what extent mutations determine the often extremely strong resistance phenotype in the field deserves further study. © 2017 Society of Chemical Industry.
Collapse
|
|
8 |
36 |
11
|
Chang W, Nie J, Yan Z, Wang Y, Farooq S. Systemic Stereoselectivity Study of Etoxazole: Stereoselective Bioactivity, Acute Toxicity, and Environmental Behavior in Fruits and Soils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6708-6715. [PMID: 31140799 DOI: 10.1021/acs.jafc.9b01257] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This is the first systemic assessment of the stereoselectivity of etoxazole enantiomers. Etoxazole's stereoselective bioactivity was assessed against target organisms ( Tetranychus urticae eggs and Tetranychus cinnabarinus eggs), and its acute toxicity was assessed toward nontarget aquatic organisms ( Daphnia magna and Danio rerio). Additionally, stereoselective elimination was investigated in three species of fruits (grape and strawberry grown in a greenhouse and apple grown in an open field) and in field soil. The ovicidal activity of (+)-( S)-etoxazole against Tetranychus urticae and Tetranychus cinnabarinus eggs was about 16 and 24 times higher, respectively, than that of (-)-( R)-etoxazole. Inconsistent order of etoxazole isomer toxicity was found toward different aquatic organisms: (+)-( S)-etoxazole showed nearly 8.7 times higher acute toxicity than (-)-( R)-etoxazole toward Daphnia magna, whereas (-)-( R)-etoxazole was ∼4.5 times more toxic to Danio rerio than (+)-( S)-etoxazole. Stereoselective degradation of etoxazole enantiomers showed significant variation in various fruits and field soil. The (+)-( S)-etoxazole was preferentially dissipated in grape and strawberry fruits grown under greenhouse condition, whereas (-)-( R)-etoxazole degraded faster than its antipode in apple fruits and soils under open-field condition. Overall, the stereoselectivity of etoxazole enantiomers should be fully considered in comprehensive environmental health risk in future work.
Collapse
|
|
6 |
34 |
12
|
Zhang B, Sun Z, Lv M, Xu H. Semisynthesis of Matrinic Acid/Alcohol/Ester Derivatives, Their Pesticidal Activities, and Investigation of Mechanisms of Action against Tetranychus cinnabarinus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12898-12910. [PMID: 30452245 DOI: 10.1021/acs.jafc.8b04965] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To discover new natural-product-based potential pesticides, 85 matrinic acid/alcohol/ester derivatives were synthesized by structural modifications of a quinolizidine alkaloid matrine. N-(4-Methyl)benzylmatrinyl n-decylate (76) and N-(2-chloro)benzylmatrinyl n-undecylate (86) exhibited greater than seven-fold more pronounced acaricidal activity than matrine against Tetranychus cinnabarinus; N-(2-chloro)benzylmatrinyl benzoate (80) showed the most promising insecticidal activity against Mythimna separata. The carboxyl group of matrinic acids and introduction of n-decyl/ n-undecylcarbonyl into matrinic alcohols were important for the acaricidal activity; introduction of alkyloxy into the carboxyl of matrinic acids and introduction of the electron-withdrawing groups on the N-benzyl of matrinic esters were necessary for the insecticidal activity. Through RT-PCR and qRT-PCR analysis, it was shown that the lactam ring of matrine was vital for action on VGSC; opening the lactam ring of matrine and the alkylcarbonyl of side-chain were two important factors for acting with α1, α2, and α4 nAChR subunits; α1, α2, α4, and β3 subunits may be the target of action of compound 86 against T. cinnabarinus.
Collapse
|
|
7 |
33 |
13
|
Politi FAS, Figueira GM, Araújo AM, Sampieri BR, Mathias MIC, Szabó MPJ, Bechara GH, dos Santos LC, Vilegas W, Pietro RCLR. Acaricidal activity of ethanolic extract from aerial parts of Tagetes patula L. (Asteraceae) against larvae and engorged adult females of Rhipicephalus sanguineus (Latreille, 1806). Parasit Vectors 2012; 5:295. [PMID: 23244493 PMCID: PMC3533920 DOI: 10.1186/1756-3305-5-295] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tick Rhipicephalus sanguineus is the species with the largest worldwide distribution and is proven to be involved in the transmission of pathogens such as Babesia canis, Ehrlichia canis, Coxiella burnetii, Rickettsia ricketsii, Rickettsia conorii, among others. Studies have demonstrated acquisition of resistance to some of the active principles used in commercial formulations of acaricides. Tagetes patula (Asteraceae) is a plant with highlighted economic and commercial importance due to the production of secondary metabolites with insecticide and acaricide potential, mainly flavonoids, thiophenes and terpenes. METHODS The in vitro acaricide action of the ethanolic 70% extract from aerial parts of T. patula, obtained by percolation, was evaluated against larvae and engorged adult females of Rhipicephalus sanguineus by immersion test for 5 minutes. The chemical characterization of this extract was done by liquid chromatography coupled with mass spectrometry (LC-MS), using direct injection of sample. RESULTS Despite T. patula not proving lethal to adults in any of the concentrations tested, at 50.0 mg/mL oviposition rate decreased by 21.5% and eliminated 99.78% of the larvae. Also it was determined that the best results were obtained with 5 minutes of immersion. From the chromatographic analysis twelve O-glycosylated flavonoids were identified. CONCLUSIONS This is the first report on the acaricidal activity of T. patula extract against Rh. sanguineus. If we consider the application of the product in the environment, we could completely eliminate the larval stage of development of the ixodid Rh. sanguineus.
Collapse
|
research-article |
13 |
32 |
14
|
Nong X, Fang CL, Wang JH, Gu XB, Yang DY, Liu TF, Fu Y, Zhang RH, Zheng WP, Peng XR, Wang SX, Yang GY. Acaricidal activity of extract from Eupatorium adenophorum against the Psoroptes cuniculi and Sarcoptes scabiei in vitro. Vet Parasitol 2011; 187:345-9. [PMID: 22244533 DOI: 10.1016/j.vetpar.2011.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 12/10/2011] [Accepted: 12/16/2011] [Indexed: 11/18/2022]
Abstract
The possible acaricidal activity of Eupatorium adenophorum was analyzed using extracts created by water decocting, ethanol thermal circumfluence, and steam distillation. The toxic effect of each extract was tested against Psoroptes cuniculi and Sarcoptes scabiei in vitro. Ethanol thermal circumfluence extract had strong toxicity against mites, killing all S. scabiei at 0.5 and 1.0 g/ml (w/v) concentration, while 1g/ml extract was also found to kill all P. cuniculi within a 4-h period. Similarly, 0.25, 0.5 and 1.0 g/ml concentration of extract had strong toxicity against S. scabiei, with median lethal time (LT(50)) values at 0.866, 0.785 and 0.517 h, respectively. 0.5 g/ml and 1g/ml showed strong acaricidal action against P. cuniculi; the LT(50) values were 0.93 h and 1.29 h, respectively. The median lethal concentration (LC(50)) values were 0.22 g/ml for Scabies mite and 0.64 g/ml for P. cuniculi in 1h. The results indicated that E. adenophorum contains potent acaricidal ingredients; as a first step in the potential development of novel drugs, it may provide new acaricidal compounds for the effective control of animal acariasis.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
31 |
15
|
Flor-Weiler LB, Behle RW, Stafford KC. Susceptibility of four tick species, Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, and Rhipicephalus sanguineus (Acari: Ixodidae), to nootkatone from essential oil of grapefruit. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:322-6. [PMID: 21485368 DOI: 10.1603/me10148] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Toxicity of nootkatone was determined in laboratory assays against unfed nymphs of Amblyomma americanum L., Dermacentor variabilis (Say), Ixodes scapularis Say, and Rhipicephalus sanguineus Latreille. We determined the 50% lethal concentration (LC50) and 90% lethal concentration (LC90) of nootkatone by recording tick mortality 24 h after exposure in treated glass vials. Nymphs were susceptible to nootkatone with LC50 values of 0.352, 0.233, 0.169, and 0.197 microg/cm2, and LC90 values of 1.001, 0.644, 0.549, and 0.485 microg/cm2 for A. americanum, D. variabilis, I. scapularis, and R. sanguineus, respectively. The LC50 value for R. sanquineus was not significantly different from D. variabilis or I. scapularis. Other LC50 comparisons were significantly different. The LC90 for A. americanum was higher when compared with the three other tick species, which were not significantly different. Because nootkatone is volatile, we measured the amount of nootkatone recovered from duplicate-treated vials before tick exposure and from vials after tick exposure. Nootkatone recovered from vials before exposure ranged from 82 to 112% of the expected amounts. The nootkatone recovered after the 24-h exposure period ranged from 89% from vials coated with higher concentrations of nootkatone, down to 29% from vials coated with low nootkatone concentrations. Determination of the nootkatone residue after vial coating demonstrated loss of the active compound while verifying the levels of tick exposure. Toxicity of low concentrations of nootkatone to the active questing stage of ticks reported in this study provides a reference point for future formulation research to exploit nootkatone as a safe and environment-friendly tick control.
Collapse
|
|
14 |
30 |
16
|
Mossa ATH, Afia SI, Mohafrash SMM, Abou-Awad BA. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10526-10537. [PMID: 29181754 DOI: 10.1007/s11356-017-0752-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Green and nanoacaricides including essential oil (EO) nanoemulsions are important compounds to provide new, active, safe acaricides and lead to improvement of avoiding the risk of synthetic acaricides. This study was carried out for the first time on eriophyid mites to develop nanoemulsion of garlic essential oil by ultrasonic emulsification and evaluate its acaricidal activity against the two eriophyid olive mites Aceria oleae Nalepa and Tegolophus hassani (Keifer). Acute toxicity of nanoemulsion was also studied on male rats. Garlic EO was analyzed by gas chromatography-mass spectrometry (GC-MS), and the major compounds were diallyl sulfide (8.6%), diallyl disulfide (28.36%), dimethyl tetrasulfide (15.26%), trisulfide,di-2-propenyl (10.41%), and tetrasulfide,di-2-propenyl (9.67%). Garlic oil nanoemulsion with droplet size 93.4 nm was formulated by ultrasonic emulsification for 35 min. Emulsification time and oil and surfactant ratio correlated to the emulsion droplet size and stability. The formulated nanoemulsion showed high acaricidal activity against injurious eriophyid mites with LC50 298.225 and 309.634 μg/ml, respectively. No signs of nanoemulsion toxicity were noted in treating rats; thus, it may be considered non-toxic to mammals. Stability of garlic oil nanoemulsion, high acaricidal activity, and the absence of organic toxic solvents make the formulation that may be a possible acaricidal product. Results suggest the possibility of developing suitable natural nanoacaricide from garlic oil.
Collapse
|
|
7 |
29 |
17
|
Yu X, Zhang Y, Liu Y, Li Y, Wang Q. Synthesis and Acaricidal- and Insecticidal-Activity Evaluation of Novel Oxazolines Containing Sulfiliminyl Moieties and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4224-4231. [PMID: 30905158 DOI: 10.1021/acs.jafc.9b00657] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sulfimides and sulfoximines are highly relevant for medicinal chemistry and crop protection, as the resulting products can reveal interesting bioactivities. Herein, we report the design and synthesis of a series of novel 2,4-diphenyl-1,3-oxazolines containing sulfiliminyl and sulfoximinyl moieties. The acaricidal and insecticidal activities of the new compounds were evaluated and indicated that these compounds exhibited excellent acaricidal activities against spider mite larvae and eggs. The LC50 values of 6a-7, 6b-3, 6b-4, 6c-2, and 6c-4 against spider mite larvae were about 4 to 6 times lower than that of the commercial insecticide etoxazole (0.0221 mg L-1), and the LC50 value of 6a-4 against spider mite eggs was 0.0006 mg L-1, which was 10 times lower than that of etoxazole (0.0063 mg L-1). At the same time, most of the compounds showed insecticidal activity though their structure-activity relationships that were different. Oxazolines containing an N-cyano sulfiliminyl moiety at the para position of the 4-phenyl group exhibited better insecticidal activities against cotton bollworm and corn borer than etoxazole, whereas the compounds containing groups derived from sulfiliminyl and sulfoximinyl had weak insecticidal activities. This research again proved that the substituent type at the para site of the 4-phenyl moiety has a decisive role on the biological activity and insecticidal spectrum.
Collapse
|
|
6 |
23 |
18
|
Song HY, Yang JY, Suh JW, Lee HS. Acaricidal activities of apiol and its derivatives from Petroselinum sativum seeds against Dermatophagoides pteronyssinus, Dermatophagoides farinae, and Tyrophagus putrescentiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7759-7764. [PMID: 21688847 DOI: 10.1021/jf201945y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The acaricidal effects of an active constituent derived from Petroselinum sativum seeds and its derivatives were determined using impregnated fabric disk bioassay against Dermatophagoides farinae , Dermatophagoides pteronyssinus , and Tyrophagus putrescentiae and compared with that of synthetic acaricide. The acaricidal constituent of P. sativum was isolated by various chromatographic techniques and identified as apiol. On the basis of LD(50) values against D. farinae and D. pteronyssinus, apiol (0.81 and 0.94 μg/cm(2)) was 12.4 and 10.2 times more toxic than benzyl benzoate (10.0 and 9.58 μg/cm(2)), respectively. In acaricidal studies of apiol derivatives, 3,4-methylenedioxybenzonitrile (0.04, 0.03, and 0.59 μg/cm(2)) was 250, 319, and 20.7 times more toxic than benzyl benzoate (10.0, 9.58, and 12.2 μg/cm(2)) against D. farinae, D. pteronyssinus, and T. putrescentiae. In structure-activity relationships, the acaricidal activities of apiol derivatives could be related to allyl (-C(3)H(5)) and methoxy (-OCH(3)) functional groups. Furthermore, apiol and its derivatives could be useful for natural acaricides against these three mite species.
Collapse
|
|
14 |
22 |
19
|
Sut S, Pavela R, Kolarčik V, Cappellacci L, Petrelli R, Maggi F, Dall'Acqua S, Benelli G. Identification of Onosma visianii Roots Extract and Purified Shikonin Derivatives as Potential Acaricidal Agents against Tetranychus urticae. Molecules 2017. [PMID: 28621748 PMCID: PMC6152756 DOI: 10.3390/molecules22061002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is an increasing need for the discovery of reliable and eco-friendly pesticides and natural plant-derived products may play a crucial role as source of new active compounds. In this research, a lipophilic extract of Onosma visianii roots extract containing 12% of shikonin derivatives demonstrated significant toxicity and inhibition of oviposition against Tetranychus urticae mites. Extensive chromatographic separation allowed the isolation of 11 naphthoquinone derivatives that were identified by spectral techniques and were tested against Tetranychus urticae. All the isolated compounds presented effects against the considered mite and isobutylshikonin (1) and isovalerylshikonin (2) were the most active, being valuable model compounds for the study of new anti-mite agents.
Collapse
|
Journal Article |
8 |
22 |
20
|
Yu X, Liu Y, Li Y, Wang Q. Design, Synthesis, Acaricidal/Insecticidal Activity, and Structure-Activity Relationship Studies of Novel Oxazolines Containing Sulfone/Sulfoxide Groups Based on the Sulfonylurea Receptor Protein-Binding Site. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3034-3040. [PMID: 27046020 DOI: 10.1021/acs.jafc.6b00645] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Enormous compounds containing sulfone/sulfoxide groups have been used in a variety of fields, especially in drug and pesticide design. To search for novel environmentally benign and ecologically safe pesticides with unique modes of action, a series of 2,4-diphenyl-1,3-oxazolines containing sulfone/sulfoxide groups as chitin synthesis inhibitors (CSIs) were designed and synthesized on the basis of the sulfonylurea receptor protein-binding site for CSIs. Their structures were characterized by (1)H and (13)C nuclear magnetic resonance and high-resolution mass spectrometry. The acaricidal and insecticidal activities of the new compounds were evaluated. It was found that most of the target compounds displayed wonderful acaricidal activities against spider mite (Tetranychus cinnabarinus) larvae and eggs. Especially compounds I-4, II-3, and II-4 displayed higher activities than commercial etoxazole at a concentration of 2.5 mg L(-1). Some target compounds exhibited insecticidal activities against lepidopteran pests. The present work demonstrated that these compounds containing sulfone/sulfoxide groups could be considered as potential candidates for the development of novel acaricides in the future.
Collapse
|
|
9 |
22 |
21
|
Hao M, Sun Z, Xu J, Lv M, Xu H. Semisynthesis and Pesticidal Activities of Derivatives of the Diterpenoid Andrographolide and Investigation on the Stress Response of Aphis citricola Van der Goot (Homoptera: Aphididae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4131-4143. [PMID: 32162924 DOI: 10.1021/acs.jafc.9b08242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To discover natural-product-based pesticides, 7β-oxycarbonylandrographolide derivatives were stereoselectively constructed from a labdane diterpenoid andrographolide. Among them, 2'-(n)Pr-1',3'-dioxin-7β-oxy(m-Cl)benzoylandrographolide (IIc), 2'-(n)Pr-1',3'-dioxin-7β-oxyacetylandrographolide (IIf), 2'-(p-Me)Ph-1',3'-dioxin-7β-oxy(o-Cl)benzoylandrographolide (Vb), and 2'-(p-Me)Ph-1',3'-dioxin-7β-oxy(m-Cl)benzoylandrographolide (Vc) against Mythimna separata displayed the most promising growth inhibitory activity; 2'-(n)Pr-1',3'-dioxin-7β-oxy(o-Cl)benzoylandrographolide (IIb: LC50 = 0.406 mg/mL) and IIc (LC50 = 0.415 mg/mL) exhibited the most pronounced acaricidal activity (andrographolide; LC50: 5.106 mg/mL) and good control effects against Tetranychus cinnabarinus; compounds Ic, IIe, and Va-c (LD50 = 0.035-0.039 μg/nymph) showed potent aphicidal activity (andrographolide: LD50 = 0.178 μg/nymph), and compounds IIe and Vb showed good control effects against Aphis citricola. Moreover, it was found that Hsp70 of A. citricola was an important gene involved in stress response to andrographolide and its derivatives.
Collapse
|
|
5 |
22 |
22
|
Shi L, Wei P, Wang X, Shen G, Zhang J, Xiao W, Xu Z, Xu Q, He L. Functional Analysis of Esterase TCE2 Gene from Tetranychus cinnabarinus (Boisduval) involved in Acaricide Resistance. Sci Rep 2016; 6:18646. [PMID: 26725309 PMCID: PMC4698665 DOI: 10.1038/srep18646] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/23/2015] [Indexed: 01/31/2023] Open
Abstract
The carmine spider mite, Tetranychus cinnabarinus is an important pest of crops and vegetables worldwide, and it has the ability to develop resistance against acaricides rapidly. Our previous study identified an esterase gene (designated TCE2) over-expressed in resistant mites. To investigate this gene's function in resistance, the expression levels of TCE2 in susceptible, abamectin-, fenpropathrin-, and cyflumetofen-resistant strains were knocked down (65.02%, 63.14%, 57.82%, and 63.99%, respectively) via RNA interference. The bioassay data showed that the resistant levels to three acaricides were significantly decreased after the down-regulation of TCE2, indicating a correlation between the expression of TCE2 and the acaricide-resistance in T. cinnabarinus. TCE2 gene was then re-engineered for heterologous expression in Escherichia coli. The recombinant TCE2 exhibited α-naphthyl acetate activity (483.3 ± 71.8 nmol/mg pro. min(-1)), and the activity of this enzyme could be inhibited by abamectin, fenpropathrin, and cyflumetofen, respectively. HPLC and GC results showed that 10 μg of the recombinant TCE2 could effectively decompose 21.23% fenpropathrin and 49.70% cyflumetofen within 2 hours. This is the first report of a successful heterologous expression of an esterase gene from mites. This study provides direct evidence that TCE2 is a functional gene involved in acaricide resistance in T. cinnabarinus.
Collapse
|
research-article |
9 |
21 |
23
|
Yu H, Cheng Y, Xu M, Song Y, Luo Y, Li B. Synthesis, Acaricidal Activity, and Structure-Activity Relationships of Pyrazolyl Acrylonitrile Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9586-9591. [PMID: 27976890 DOI: 10.1021/acs.jafc.6b04221] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A series of novel pyrazolyl acrylonitrile derivatives was designed, targeting Tetranychus cinnabarinus, and synthesized. Their structures were identified by combination of 1H NMR, 13C NMR, and MS spectra. The structures of compounds 18 and 19 were further confirmed by X-ray diffraction. Extensive greenhouse bioassays indicated that compound 19 exhibits excellent acaricidal activity against all developmental stages of T. cinnabarinus, which is better than the commercialized compounds cyenopyrafen and spirodiclofen. It was shown that the acute toxicity of compounds 19 to mammals is quite low. The structure-activity relationships are also discussed.
Collapse
|
|
9 |
21 |
24
|
Chai BS, Liu CL, Li HC, He XM, Luo YM, Huang G, Zhang H, Chang JB. Design, synthesis and acaricidal activity of novel strobilurin derivatives containing pyrimidine moieties. PEST MANAGEMENT SCIENCE 2010; 66:1208-1214. [PMID: 20681007 DOI: 10.1002/ps.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND The intermediate derivatisation method based on bioisosteric replacement led to the discovery of the lead strobilurin compound 5a. To produce new strobilurin analogues with improved activity, a series of substituted pyrimidines were synthesised and bioassayed. RESULTS The compounds were identified by (1)H NMR, IR, MS and elemental analysis. The highly active compound 5 g was studied by X-ray diffraction. Preliminary bioassays demonstrated that some of the title compounds exhibited excellent acaricidal activity against Tetranychus cinnabarinus (Boisd.) at 10 mg L(-1). The relationship between structure and acaricidal activity is reported. CONCLUSION The present work demonstrates that strobilurin derivatives containing pyrimidine moieties can be used as possible lead compounds for developing novel acaricides.
Collapse
|
|
15 |
21 |
25
|
Dai H, Chen J, Li H, Dai B, He H, Fang Y, Shi Y. Synthesis and Bioactivities of Novel Pyrazole Oxime Derivatives Containing a 5-Trifluoromethylpyridyl Moiety. Molecules 2016; 21:276. [PMID: 26927054 PMCID: PMC6273062 DOI: 10.3390/molecules21030276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/29/2022] Open
Abstract
In this study, in order to find novel biologically active pyrazole oxime compounds, a series of pyrazole oxime derivatives containing a 5-trifluoromethylpyridyl moiety were synthesized. Preliminary bioassays indicated that most title compounds were found to display good to excellent acaricidal activity against Tetranychus cinnabarinus at a concentration of 200 μg/mL, and some designed compounds still showed excellent acaricidal activity against Tetranychus cinnabarinus at the concentration of 10 μg/mL, especially since the inhibition rates of compounds 8e, 8f, 8l, 8m, 8n, 8p, and 8q were all 100.00%. Interestingly, some target compounds exhibited moderate to good insecticidal activities against Plutella xylostella and Aphis craccivora at a concentration of 200 μg/mL; furthermore, compounds 8e and 8l possessed outstanding insecticidal activities against Plutella xylostella under the concentration of 50 μg/mL.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
19 |