1
|
Thallas-Bonke V, Thorpe SR, Coughlan MT, Fukami K, Yap FYT, Sourris KC, Penfold SA, Bach LA, Cooper ME, Forbes JM. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 2008; 57:460-9. [PMID: 17959934 DOI: 10.2337/db07-1119] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Excessive production of reactive oxygen species (ROS) via NADPH oxidase has been implicated in the pathogenesis of diabetic nephropathy. Since NADPH oxidase activation is closely linked to other putative pathways, its interaction with changes in protein kinase C (PKC) and increased advanced glycation was examined. RESEARCH DESIGN AND METHODS Streptozotocin-induced diabetic or nondiabetic Sprague Dawley rats were followed for 32 weeks, with groups randomized to no treatment or the NADPH oxidase assembly inhibitor apocynin (15 mg . kg(-1) . day(-1); weeks 16-32). Complementary in vitro studies were performed in which primary rat mesangial cells, in the presence and absence of advanced glycation end products (AGEs)-BSA, were treated with either apocynin or the PKC-alpha inhibitor Ro-32-0432. RESULTS; Apocynin attenuated diabetes-associated increases in albuminuria and glomerulosclerosis. Circulating, renal cytosolic, and skin collagen-associated AGE levels in diabetic rats were not reduced by apocynin. Diabetes-induced translocation of PKC, specifically PKC-alpha to renal membranes, was associated with increased NADPH-dependent superoxide production and elevated renal, serum, and urinary vascular endothelial growth factor (VEGF) concentrations. In both diabetic rodents and in AGE-treated mesangial cells, blockade of NADPH oxidase or PKC-alpha attenuated cytosolic superoxide and PKC activation and increased VEGF. Finally, renal extracellular matrix accumulation of fibronectin and collagen IV was decreased by apocynin. CONCLUSIONS In the context of these and previous findings by our group, we conclude that activation of NADPH oxidase via phosphorylation of PKC-alpha is downstream of the AGE-receptor for AGE interaction in diabetic renal disease and may provide a novel therapeutic target for diabetic nephropathy.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
269 |
2
|
Chou TC. Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia. Br J Pharmacol 2003; 139:1146-52. [PMID: 12871833 PMCID: PMC1573952 DOI: 10.1038/sj.bjp.0705360] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
1. Paeonol was tested for its anti-inflammatory and analgesic effects in a rat model of carrageenan-evoked thermal hyperalgesia. The possible mechanisms involved in these effects were also investigated. 2. Pre- and post-treatment with paeonol (30, 50 or 100 mg kg(-1), i.p.) dose-dependently inhibited the carrageenan-evoked thermal hyperalgesia. 3. Treatment with paeonol dose-dependently inhibited tumour necrosis factor-alpha (TNF-alpha) and interleukin-lbeta (IL-1beta) formation, but enhanced IL-10 production in the rat paw exudates both at the early (1.5 h) and late phase (4 h) after carrageenan injection. However, inhibition of IL-6 formation by paeonol was only observed at the late phase. 4. Paeonol dose-dependently decreased the formation of prostaglandin E(2) (PGE(2)) in rat paw exudates with a greater inhibition at the late phase. However, inhibition of nitrate generation was observed only during the late phase (at 4 h after carrageenan injection), accompanied by an attenuation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression in paw tissue. 5. Elevated myeloperoxidase activity, an indicator of neutrophil infiltration, in carrageenan-injected paws was also dose-dependently reduced in paeonol-treated rats. 6. Our results suggest that the mechanisms by which paeonol exerts its anti-inflammatory and analgesic effects in this inflammatory model may be associated with decreased production of proinflammatory cytokines, NO and PGE(2) and increased production of IL-10, an anti-inflammatory cytokine, in carrageenan-injected rat paws. In addition, attenuation of the elevated iNOS and COX-2 protein expression as well as neutrophil infiltration in carrageenan-injected paws may also be involved in the beneficial effects of paeonol.
Collapse
|
research-article |
22 |
162 |
3
|
Li H, Xie YH, Yang Q, Wang SW, Zhang BL, Wang JB, Cao W, Bi LL, Sun JY, Miao S, Hu J, Zhou XX, Qiu PC. Cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial injury in rats. PLoS One 2012; 7:e48872. [PMID: 23139821 PMCID: PMC3490947 DOI: 10.1371/journal.pone.0048872] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background Traditional Chinese medicinal herbs Cortex Moutan and Radix Salviae Milthiorrhizaeare are prescribed together for their putative cardioprotective effects in clinical practice. However, the rationale of the combined use remains unclear. The present study was designed to investigate the cardioprotective effects of paeonol and danshensu (representative active ingredient of Cortex Moutan and Radix Salviae Milthiorrhizae, respectively) on isoproterenol-induced myocardial infarction in rats and its underlying mechanisms. Methodology Paeonol (80 mg kg−1) and danshensu (160 mg kg−1) were administered orally to Sprague Dawley rats in individual or in combination for 21 days. At the end of this period, rats were administered isoproterenol (85 mg kg−1) subcutaneously to induce myocardial injury. After induction, rats were anaesthetized with pentobarbital sodium (35 mg kg−1) to record electrocardiogram, then sacrificed and biochemical assays of the heart tissues were performed. Principal Findings Induction of rats with isoproterenol resulted in a marked (P<0.001) elevation in ST-segment, infarct size, level of serum marker enzymes (CK-MB, LDH, AST and ALT), cTnI, TBARS, protein expression of Bax and Caspase-3 and a significant decrease in the activities of endogenous antioxidants (SOD, CAT, GPx, GR, and GST) and protein expression of Bcl-2. Pretreatment with paeonol and danshensu combination showed a significant (P<0.001) decrease in ST-segment elevation, infarct size, cTnI, TBARS, protein expression of Bax and Caspase-3 and a significant increase in the activities of endogenous antioxidants and protein expression of Bcl-2 and Nrf2 when compared with individual treated groups. Conclusions/Significance This study demonstrates the cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial infarction in rats. The mechanism might be associated with the enhancement of antioxidant defense system through activating of Nrf2 signaling and anti-apoptosis through regulating Bax, Bcl-2 and Caspase-3. It could provide experimental evidence to support the rationality of combinatorial use of traditional Chinese medicine in clinical practice.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
137 |
4
|
McCommis KS, Hodges WT, Brunt EM, Nalbantoglu ILK, McDonald WG, Holley C, Fujiwara H, Schaffer JE, Colca JR, Finck BN. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology 2017; 65:1543-1556. [PMID: 28027586 PMCID: PMC5397348 DOI: 10.1002/hep.29025] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 12/30/2022]
Abstract
Diseases of the liver related to metabolic syndrome have emerged as the most common and undertreated hepatic ailments. The cause of nonalcoholic fatty liver disease is the aberrant accumulation of lipid in hepatocytes, though the mechanisms whereby this leads to hepatocyte dysfunction, death, and hepatic fibrosis are still unclear. Insulin-sensitizing thiazolidinediones have shown efficacy in treating nonalcoholic steatohepatitis (NASH), but their widespread use is constrained by dose-limiting side effects thought to be due to activation of the peroxisome proliferator-activated receptor γ. We sought to determine whether a next-generation thiazolidinedione with markedly diminished ability to activate peroxisome proliferator-activated receptor γ (MSDC-0602) would retain its efficacy for treating NASH in a rodent model. We also determined whether some or all of these beneficial effects would be mediated through an inhibitory interaction with the mitochondrial pyruvate carrier 2 (MPC2), which was recently identified as a mitochondrial binding site for thiazolidinediones, including MSDC-0602. We found that MSDC-0602 prevented and reversed liver fibrosis and suppressed expression of markers of stellate cell activation in livers of mice fed a diet rich in trans-fatty acids, fructose, and cholesterol. Moreover, mice with liver-specific deletion of MPC2 were protected from development of NASH on this diet. Finally, MSDC-0602 directly reduced hepatic stellate cell activation in vitro, and MSDC-0602 treatment or hepatocyte MPC2 deletion also limited stellate cell activation indirectly by affecting secretion of exosomes from hepatocytes. CONCLUSION Collectively, these data demonstrate the effectiveness of MSDC-0602 for attenuating NASH in a rodent model and suggest that targeting hepatic MPC2 may be an effective strategy for pharmacologic development. (Hepatology 2017;65:1543-1556).
Collapse
|
Research Support, N.I.H., Extramural |
8 |
116 |
5
|
Zhang D, Anantharam V, Kanthasamy A, Kanthasamy AG. Neuroprotective effect of protein kinase C delta inhibitor rottlerin in cell culture and animal models of Parkinson's disease. J Pharmacol Exp Ther 2007; 322:913-22. [PMID: 17565007 DOI: 10.1124/jpet.107.124669] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies from our laboratory demonstrated that the protein kinase C (PKC) delta isoform is an oxidative stress-sensitive kinase and a key mediator of apoptotic cell death in Parkinson's Disease (PD) models (Eur J Neurosci 18:1387-1401, 2003; Mol Cell Neurosci 25:406-421, 2004). We showed that native PKC delta is proteolytically activated by caspase-3 and that suppression of PKC delta by dominant-negative mutant or small interfering RNA against the kinase can effectively block apoptotic cell death in cellular models of PD. In an attempt to translate the mechanistic studies to a neuroprotective strategy targeting PKC delta, we systematically characterized the neuroprotective effect of a PKC delta inhibitor, rottlerin, in 1-methyl-4-phenylpyridinium (MPP(+))-treated primary mesencephalic neuronal cultures as well as in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of PD. Rottlerin treatment in primary mesencephalic cultures significantly attenuated MPP(+)-induced tyrosine hydroxylase (TH)-positive neuronal cell and neurite loss. Administration of rottlerin, either intraperitoneally or orally, to C57 black mice showed significant protection against MPTP-induced locomotor deficits and striatal depletion of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid. Notably, rottlerin post-treatment was effective even when MPTP-induced depletion of dopamine and its metabolites was greater than 60%, demonstrating its neurorescue potential. Furthermore, the dose of rottlerin used in neuroprotective studies effectively attenuated the MPTP-induced PKC delta kinase activity. Importantly, stereological analysis of nigral neurons revealed rottlerin treatment significantly protected against MPTP-induced TH-positive neuronal loss in the substantia nigra compacta. Collectively, our findings demonstrate the neuroprotective effect of rottlerin in both cell culture and preclinical animal models of PD, and they suggest that pharmacological modulation of PKC delta may offer a novel therapeutic strategy for treatment of PD.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
114 |
6
|
Hsieh CL, Cheng CY, Tsai TH, Lin IH, Liu CH, Chiang SY, Lin JG, Lao CJ, Tang NY. Paeonol reduced cerebral infarction involving the superoxide anion and microglia activation in ischemia-reperfusion injured rats. JOURNAL OF ETHNOPHARMACOLOGY 2006; 106:208-15. [PMID: 16458462 DOI: 10.1016/j.jep.2005.12.027] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 12/15/2005] [Accepted: 12/15/2005] [Indexed: 05/06/2023]
Abstract
Both Moutan cortex of Paeonia suffruticosa Andrews (MC) and the root of Paeonia lactiflora Pall (PL) are important Traditional Chinese herbs used commonly to treat inflammatory and pyretic disorders. Paeonol, a common component of MC causes anti-platelet aggregation and scavenges free radicals. Therefore, the aim of the present study is to investigate the effects of Paeonol on cerebral infarct. A total of 60 male Sprague-Dawley (SD) rats were studied. An animal model of cerebral infarct was established by occluding both common carotid arteries and the right middle cerebral artery for 90 min, followed by a 24 h period of reperfusion. The percentage of cerebral infarction area to total brain area in each piece of brain tissue, and neuro-deficit score were measured. Superoxide anion was determined by the number of lucigenin-chemiluminescence (CL) counts. ED1 (mouse anti rat CD68) and interleukin-1beta (IL-1beta) immunostaining in the cerebral infarction region were also investigated for activation of microglia. The results indicated that Paeonol 15 and 20 mg/kg pretreatment and 20 mg posttreatment reduced the cerebral infarction area; Paeonol 15 and 20 mg/kg pretreatment reduced the neuro-deficit score. In addition, Paeonol 20 mg/kg pretreatment reduced the lucigenin-CL counts at 2 h period of reperfusion. The number of ED1 and IL-1beta immunoreactive cells also reduced in the cerebral infarction region; there were no significant changes in blood sugar levels. The results show that Paeonol reduced cerebral infarct and neuro-deficit in rat, suggesting Paeonol might play a similar role in reducing cerebral infarction in humans. Paeonol suppresses and scavenges superoxide anion, and inhibit microglia activation and IL-1beta in ischemia-reperfusion injured rats.
Collapse
|
|
19 |
112 |
7
|
Yousefian M, Shakour N, Hosseinzadeh H, Hayes AW, Hadizadeh F, Karimi G. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:200-213. [PMID: 30668430 DOI: 10.1016/j.phymed.2018.08.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/04/2018] [Accepted: 08/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Hypertension is a major public health problem worldwide. It is an important risk factor for other cardiovascular diseases such as coronary artery disease, stroke, heart failure, atrial fibrillation, peripheral vascular disease, chronic kidney disease, and atherosclerosis. PURPOSE There is strong evidence that excess ROS-derived NADPH oxidase (NOX) is an important agent in hypertension. It augments blood pressure in the presence of other pro-hypertensive factors such as angiotensin II (Ang II), an important and potent regulator of cardiovascular NADPH oxidase, activates NOX via AT1 receptors. NADPH oxidase, a multi-subunit complex enzyme, is considered as a key source of ROS production in the vasculature. The activation of this enzyme is needed for assembling Rac-1, p40phox, p47phox and p67phox subunits. Since, hypertensive patients need to control blood pressure for their entire life and because drugs and other chemicals often induce adverse effects, the use of natural phenolic compounds which are less toxic and potentially beneficial may be good avenues of addition research in our understand of the underlying mechanism involved in hypertension. This review focused on several natural phenolic compounds as berberine, thymoquinone, catechin, celastrol, apocynin, resveratrol, curcumin, hesperidine and G-hesperidine, and quercetin which are NOX inhibitors. In addition, structure activity relationship of these compounds eventually as the most inhibitors was discussed. METHODS This comprehensive review is based on pertinent papers by a selective search using relevant keywords that was collected using online search engines and databases such as ScienceDirect, Scopus and PubMed. The literature mainly focusing on natural products with therapeutic efficacies against hypertension via experimental models both in vitro and in vivo was identified. RESULTS It has been observed that these natural compounds prevent NADPH oxidase expression and ROS production while increasing NO bioavailability. It have been reported that they improve hypertension due to formation of a stable radical with ROS-derived NADPH oxidase and preventing the assembly of NOX subunites. CONCLUSION It is clear that natural phenolic compounds have some potential inhibitory effect on NADPH oxidase activity. In comparison to other phenolic plant compounds, the structural variability of the flavonoids should off different impacts on oxidative stress in hypertension including inhibition of nadph oxidase and direct scavenging of free radicals.
Collapse
|
Review |
6 |
110 |
8
|
Jiang Z, Rompala GR, Zhang S, Cowell RM, Nakazawa K. Social isolation exacerbates schizophrenia-like phenotypes via oxidative stress in cortical interneurons. Biol Psychiatry 2013; 73:1024-34. [PMID: 23348010 PMCID: PMC3638045 DOI: 10.1016/j.biopsych.2012.12.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Our previous studies indicated that N-methyl-D-aspartate receptor (NMDAR) deletion from a subset of corticolimbic interneurons in the mouse brain during early postnatal development is sufficient to trigger several behavioral and pathophysiological features resembling the symptoms of human schizophrenia. Interestingly, many of these behavioral phenotypes are exacerbated by social isolation stress. However, the mechanisms underlying the exacerbating effects of social isolation are unclear. METHODS With γ-aminobutyric acid-ergic interneuron-specific NMDAR hypofunction mouse model (Ppp1r2-Cre/fGluN1 knockout [KO] mice), we investigated whether oxidative stress is implicated in the social isolation-induced exacerbation of schizophrenia-like phenotypes and further explored the underlying mechanism of elevated oxidative stress in KO mice. RESULTS The reactive oxygen species (ROS) level in the cortex of group-housed KO mice was normal at 8 weeks although increased at 16 weeks old. Postweaning social isolation (PWSI) augmented the ROS levels in KO mice at both ages, which was accompanied by the onset of behavioral phenotype. Chronic treatment with apocynin, an ROS scavenger, abolished markers of oxidative stress and partially alleviated schizophrenia-like behavioral phenotypes in KO mice. Markers of oxidative stress after PWSI were especially prominent in cortical parvalbumin (PV)-positive interneurons. The vulnerability of PV interneurons to oxidative stress was associated with downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial energy metabolism and antioxidation. CONCLUSIONS These results suggest that a PWSI-mediated impairment in antioxidant defense mechanisms, presumably mediated by PGC-1α downregulation in the NMDAR-deleted PV-positive interneurons, results in oxidative stress, which, in turn, might contribute to exacerbation of schizophrenia-like behavioral phenotypes.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
109 |
9
|
Qin F, Simeone M, Patel R. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Free Radic Biol Med 2007; 43:271-81. [PMID: 17603936 DOI: 10.1016/j.freeradbiomed.2007.04.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 03/28/2007] [Accepted: 04/12/2007] [Indexed: 11/19/2022]
Abstract
Increases in NADPH oxidase activity, oxidative stress, and myocyte apoptosis coexist in failing hearts. In cardiac myocytes in vitro inhibition of NADPH oxidase reduces apoptosis. In this study, we tested the hypothesis that NADPH oxidase inhibition reduces myocyte apoptosis and improves cardiac function in heart failure after myocardial infarction (MI). Rabbits with heart failure induced by MI and sham-operated animals were randomized to orally receive apocynin, an inhibitor of NADPH oxidase (15 mg per day) or placebo for 4 weeks. Left ventricular (LV) dimension and function were assessed by echocardiography and hemodynamics. Myocardial NADPH oxidase activity was measured by superoxide dismutase-inhibitable cytochrome c reduction assay, NADPH oxidase subunit p47phox expression by Western blot and immunofluorescence analysis, myocardial oxidative stress evaluated by 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (4-HNE) using immunohistochemistry, and myocyte apoptosis by TUNEL assay. MI rabbits exhibited LV dilatation and systolic dysfunction measured by LV fractional shortening and the maximal rate of LV pressure rise (dP/dt). These changes were associated with increases in NADPH oxidase activity, p47phox protein expression, 8-OHdG expression, 4-HNE expression, myocyte apoptosis, and Bax protein and a decrease in Bcl-2 protein. Apocynin reduced NADPH oxidase activity, p47phox protein, oxidative stress, myocyte apoptosis, and Bax protein, increased Bcl-2 protein, and ameliorated LV dilatation and dysfunction after MI. The results suggest that inhibition of NADPH oxidase may represent an attractive therapeutic approach to treat heart failure.
Collapse
|
|
18 |
107 |
10
|
Zheng JS, Yang XQ, Lookingland KJ, Fink GD, Hesslinger C, Kapatos G, Kovesdi I, Chen AF. Gene transfer of human guanosine 5'-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension. Circulation 2003; 108:1238-45. [PMID: 12925450 DOI: 10.1161/01.cir.0000089082.40285.c3] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We recently reported that arterial superoxide (O2-) is augmented by increased endothelin-1 (ET-1) in deoxycorticosterone acetate (DOCA)-salt hypertension, a model of low renin hypertension. Tetrahydrobiopterin (BH4), a potent reducing molecule with antioxidant properties and an essential cofactor for endothelial nitric oxide synthase, protects against O2--induced vascular dysfunction. However, the interaction between O2- and BH4 on endothelial function and the underlying mechanisms are unknown. METHODS AND RESULTS The present study tested the hypothesis that BH4 deficiency due to ET-1-induced O2- leads to impaired endothelium-dependent relaxation and that gene transfer of human guanosine 5'-triphosphate (GTP) cyclohydrolase I (GTPCH I), the first and rate-limiting enzyme for BH4 biosynthesis, reverses such deficiency and endothelial dysfunction in carotid arteries of DOCA-salt rats. There were significantly increased arterial O2- levels and decreased GTPCH I activity and BH4 levels in DOCA-salt compared with sham rats. Treatment of arteries of DOCA-salt rats with the selective ETA receptor antagonist ABT-627, NADPH oxidase inhibitor apocynin, or superoxide dismutase (SOD) mimetic tempol abolished O2- and restored BH4 levels. Basal arterial NO release and endothelium-dependent relaxations were impaired in DOCA-salt rats, conditions that were improved by apocynin or tempol treatment. Gene transfer of GTPCH I restored arterial GTPCH I activity and BH4 levels, resulting in reduced O2- and improved endothelium-dependent relaxation and basal NO release in DOCA-salt rats. CONCLUSIONS These results indicate that a BH4 deficiency resulting from ET-1-induced O2- via an ETA/NADPH oxidase pathway leads to endothelial dysfunction, and gene transfer of GTPCH I reverses the BH4 deficiency and endothelial dysfunction by reducing O2- in low renin mineralocorticoid hypertension.
Collapse
|
|
22 |
105 |
11
|
Dore GJ, Cooper DA, Barrett C, Goh LE, Thakrar B, Atkins M. Dual efficacy of lamivudine treatment in human immunodeficiency virus/hepatitis B virus-coinfected persons in a randomized, controlled study (CAESAR). The CAESAR Coordinating Committee. J Infect Dis 1999; 180:607-13. [PMID: 10438346 DOI: 10.1086/314942] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The efficacy and safety of lamivudine in persons coinfected with human immunodeficiency virus (HIV) type 1 and hepatitis B virus (HBV) were examined in the CAESAR study, a randomized placebo-controlled trial assessing the addition of lamivudine (150 mg 2x/day) or lamivudine (150 mg 2x/day) plus loviride (100 mg 3x/day) to zidovudine-containing background antiretroviral treatment. Baseline hepatitis B surface antigen (HBsAg) results were available for 1790 study subjects, of whom 122 (6.8%) tested positive. Retrospective analyses for serial HBV DNA, HBsAg, and hepatitis B e antigen (HBeAg) were performed on stored sera from 118 HBsAg-positive subjects. HBV DNA and HBeAg were present in 83% and 63%, respectively. At weeks 12 and 52, median log10 HBV DNA change was -2.0 and -2.7, respectively, in the lamivudine arms, compared with no reduction among placebo recipients (P<.001). A trend to lower alanine transferase level, and delayed progression of HIV-1 disease (relative hazard, 0.26; 95% confidence interval, 0.08-0.80) were also seen in the lamivudine arms, compared with the placebo group.
Collapse
|
Clinical Trial |
26 |
102 |
12
|
Ghosh A, Langley MR, Harischandra DS, Neal ML, Jin H, Anantharam V, Joseph J, Brenza T, Narasimhan B, Kanthasamy A, Kalyanaraman B, Kanthasamy AG. Mitoapocynin Treatment Protects Against Neuroinflammation and Dopaminergic Neurodegeneration in a Preclinical Animal Model of Parkinson's Disease. J Neuroimmune Pharmacol 2016; 11:259-78. [PMID: 26838361 PMCID: PMC4995106 DOI: 10.1007/s11481-016-9650-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Mitochondrial dysfunction, oxidative stress and neuroinflammation have been implicated as key mediators contributing to the progressive degeneration of dopaminergic neurons in Parkinson's disease (PD). Currently, we lack a pharmacological agent that can intervene in all key pathological mechanisms, which would offer better neuroprotective efficacy than a compound that targets a single degenerative mechanism. Herein, we investigated whether mito-apocynin (Mito-Apo), a newly-synthesized and orally available derivative of apocynin that targets mitochondria, protects against oxidative damage, glial-mediated inflammation and nigrostriatal neurodegeneration in cellular and animal models of PD. Mito-Apo treatment in primary mesencephalic cultures significantly attenuated the 1-methyl-4-phenylpyridinium (MPP(+))-induced loss of tyrosine hydroxylase (TH)-positive neuronal cells and neurites. Mito-Apo also diminished MPP(+)-induced increases in glial cell activation and inducible nitric oxide synthase (iNOS) expression. Additionally, Mito-Apo decreased nitrotyrosine (3-NT) and 4-hydroxynonenol (4-HNE) levels in primary mesencephalic cultures. Importantly, we assessed the neuroprotective property of Mito-Apo in the MPTP mouse model of PD, wherein it restored the behavioral performance of MPTP-treated mice. Immunohistological analysis of nigral dopaminergic neurons and monoamine measurement further confirmed the neuroprotective effect of Mito-Apo against MPTP-induced nigrostriatal dopaminergic neuronal loss. Mito-Apo showed excellent brain bioavailability and also markedly attenuated MPTP-induced oxidative markers in the substantia nigra (SN). Furthermore, oral administration of Mito-Apo significantly suppressed MPTP-induced glial cell activation, upregulation of proinflammatory cytokines, iNOS and gp91phox in IBA1-positive cells of SN. Collectively, these results demonstrate that the novel mitochondria-targeted compound Mito-Apo exhibits profound neuroprotective effects in cellular and pre-clinical animal models of PD by attenuating oxidative damage and neuroinflammatory processes.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
77 |
13
|
Peters EA, Hiltermann JT, Stolk J. Effect of apocynin on ozone-induced airway hyperresponsiveness to methacholine in asthmatics. Free Radic Biol Med 2001; 31:1442-7. [PMID: 11728816 DOI: 10.1016/s0891-5849(01)00725-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Apocynin is an inhibitor of NADPH oxidase present in inflammatory cells such as eosinophils and neutrophils. We investigated the effect of inhaled apocynin on ozone-induced bronchial hyperresponsiveness in vivo. Seven mild atopic asthmatics participated in a placebo-controlled, cross-over study with two exposures to O(3) at 2-week intervals. Apocynin (3 ml of 0.5 mg/ml) was inhaled 2 times before and 6 times after O(3) exposure at hourly intervals. At 36 h before and 16 h after O(3) exposure, methacholine inhalation challenge tests (Mch) were performed, and PC(20) and maximal % fall from baseline (MFEV(1)) were calculated from dose-response curves. O(3)-induced change in PC(20) (Delta PC(20)) after placebo treatment was -1.94 +/- 0.39 DD (mean +/- SEM doubling dose Mch) (p =.001) and apocynin was -0.6 +/- 0.33 DD (p =.17). The difference between apocynin and placebo treatment was 1.3 DD +/- 0.42 (p =.02). O(3)-induced Delta MFEV(1) was 11.9 +/- 1.5% (p =.008) during placebo inhalation and 3.85 +/- 1.8% during apocynin (p =.47). Apocynin reduced the Delta MFEV(1) by 8.05% compared to placebo (p =.025). We conclude that apocynin markedly reduced O(3)-induced hyperreactivity for Mch as well as maximal airway narrowing. The results suggest that apocynin may have a role in preventing ozone-induced exacerbations of asthma.
Collapse
|
Clinical Trial |
24 |
76 |
14
|
Nizamutdinova IT, Jin YC, Kim JS, Yean MH, Kang SS, Kim YS, Lee JH, Seo HG, Kim HJ, Chang KC. Paeonol and paeoniflorin, the main active principles of Paeonia albiflora, protect the heart from myocardial ischemia/reperfusion injury in rats. PLANTA MEDICA 2008; 74:14-18. [PMID: 18203054 DOI: 10.1055/s-2007-993775] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The aim of this study was to investigate the effects of paeoniflorin (PF) and paeonol (PN), the main active compounds of the Paeonia albiflora Pallas, on myocardial ischemia and reperfusion (I/R)-induced injury in Sprague-Dawley rats IN VIVO. Under anesthesia, the rats were subjected to 25 min of ischemia by ligation of the left anterior descending coronary artery (LAD) followed by 6 h (Western blot analysis) or 24 h (hemodynamics and infarct size) of reperfusion. When the infarct size was measured as the percentage of the area at risk, both PF (25.0 % +/- 7.0 %) and PN (24.1 % +/- 5.5 %) significantly (P < 0.05) reduced it compared to I/R control (54.8 % +/- 2.6 %). Administration of 10 mg/kg PF or PN 1 h prior to I/R injury also resulted in a significant improvement of the hemodynamic parameters. Furthermore, both PF and PN decreased the caspase-3 and Bax expressions but up-regulated Bcl-2 in the left ventricles. The results show that both PF and PN reduced myocardial damage in rat through protection from apoptosis, suggesting that Paeonia albiflora Pallas might be useful in treating myocardial infarction.
Collapse
|
|
17 |
75 |
15
|
Tang LL, Ye K, Yang XF, Zheng JS. Apocynin Attenuates Cerebral Infarction after Transient Focal Ischaemia in Rats. J Int Med Res 2016; 35:517-22. [PMID: 17697529 DOI: 10.1177/147323000703500411] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigated whether inhibition of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase attenuates cerebral infarction after transient focal ischaemia in rats. Focal ischaemia (1.5 h) was produced in male Sprague-Dawley rats (250 − 280 g) by middle cerebral artery occlusion. Some rats also received treatment with 50 mg/kg apocynin, a NADPH oxidase inhibitor, by intraperitoneal injection 30 min prior to reperfusion. Two hours after reperfusion, brains were harvested to measure NADPH oxidase activity and superoxide levels. After 24 h, the remaining brains were harvested to investigate infarct size. NADPH oxidase activity and superoxide level were all augmented 2 h after reperfusion compared with controls. Apocynin treatment significantly reduced NADPH oxidase activity and superoxide levels. Cerebral infarct size was significantly smaller in the apocynin-treated group compared with those undergoing ischaemia/reperfusion alone. These results indicate that inhibition of NADPH oxidase attenuates cerebral infarction after transient focal ischaemia in rats, suggesting that inhibition of NADPH oxidase may provide a therapeutic strategy for ischaemic stroke.
Collapse
MESH Headings
- Acetophenones/therapeutic use
- Animals
- Brain Chemistry
- Disease Models, Animal
- Enzyme Inhibitors/therapeutic use
- Infarction, Middle Cerebral Artery/etiology
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/prevention & control
- Injections, Intraperitoneal
- Ischemic Attack, Transient/complications
- Ischemic Attack, Transient/metabolism
- Ischemic Attack, Transient/pathology
- Male
- NADPH Oxidases/antagonists & inhibitors
- NADPH Oxidases/metabolism
- Rats
- Rats, Sprague-Dawley
- Reperfusion Injury/etiology
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- Superoxides/metabolism
Collapse
|
|
9 |
75 |
16
|
Li H, Dai M, Jia W. Paeonol attenuates high-fat-diet-induced atherosclerosis in rabbits by anti-inflammatory activity. PLANTA MEDICA 2009; 75:7-11. [PMID: 19003727 DOI: 10.1055/s-0028-1088332] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cortex Moutan (Paeonia suffruticosa Andrews, Ranunculaceae) has several uses in traditional medicine, such as analgesic, antipyretic, and anti-inflammatory applications and use in the prevention of thromboembolic diseases. Paeonol, a main active component in Cortex Moutan, possesses various pharmacological activities, particularly an anti-atherosclerosis effect. However, so far there have been no reports evaluating the anti-inflammatory action of paeonol in atherosclerosis therapy. The purpose of this study was to investigate the association of the therapeutic effect of paeonol on atherosclerotic rabbits with its anti-inflammatory action. The atherosclerotic model was developed in 24 rabbits fed a high-fat diet for 12 weeks. Twelve rabbits on the high-fat diet then were administered with paeonol (p.o) for a subsequent 6 weeks at the doses of 75 mg/kg and 150 mg/kg. Histological analysis showed significant improvement in atherosclerosis plaque in the paeonol groups. Moreover, the blood levels of TNF- alpha, IL-1 beta, and CRP and the translocation of NF- kappaB to the nucleus were significantly suppressed in paeonol groups, as was the inhibition of lipid peroxidation. In conclusion, these findings suggest that the anti-inflammatory action of paeonol may contribute to its anti-atherosclerosis effect.
Collapse
|
|
16 |
73 |
17
|
McClung JM, Van Gammeren D, Whidden MA, Falk DJ, Kavazis AN, Hudson MB, Gayan-Ramirez G, Decramer M, DeRuisseau KC, Powers SK. Apocynin attenuates diaphragm oxidative stress and protease activation during prolonged mechanical ventilation. Crit Care Med 2009; 37:1373-9. [PMID: 19242334 PMCID: PMC2909189 DOI: 10.1097/ccm.0b013e31819cef63] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate whether apocynin protects the diaphragm from wasting and oxidative stress during mechanical ventilation (MV). DESIGN Prospective, randomized, controlled study. SETTING Research laboratory. SUBJECTS Adult female Sprague-Dawley rats. INTERVENTIONS Rats were randomly assigned to one of five experimental groups: 1) acutely anesthetized control, 2) spontaneous breathing control, 3) spontaneously breathing control with administration of the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, 4) mechanically ventilated, and 5) mechanically ventilated with apocynin. MEASUREMENTS AND MAIN RESULTS Apocynin attenuated MV-induced diaphragmatic oxidative stress, contractile dysfunction, and type I, type IIa, and type IIb/IIx myofiber atrophy. The apocynin-induced attenuation of MV-induced diaphragmatic atrophy and contractile dysfunction occurred in conjunction with a reduction in the small increase in nicotinamide adenine dinucleotide phosphate oxidase activity as well as the preservation of total glutathione levels, glutathione peroxidase protein abundance, and a decrease in the activation of the cysteine proteases, calpain-1 and caspase-3. Interestingly, independent of MV, apocynin increased diaphragmatic levels of calpastatin, an endogenous calpain inhibitor. Furthermore, treatment of skeletal muscle cells in culture (C2C12 myotubes) with apocynin resulted in an increase in both calpastatin mRNA levels and protein abundance. CONCLUSIONS Our results suggest that the protective effects of apocynin on the diaphragm during prolonged MV seem to be linked to both its functions as an antioxidant and role in cellular signaling regulating the cysteine protease inhibitor calpastatin.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
73 |
18
|
Zhang Y, Chan MMK, Andrews MC, Mori TA, Croft KD, McKenzie KUS, Schyvens CG, Whitworth JA. Apocynin but not allopurinol prevents and reverses adrenocorticotropic hormone-induced hypertension in the rat. Am J Hypertens 2005; 18:910-6. [PMID: 16053986 DOI: 10.1016/j.amjhyper.2005.02.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 01/16/2005] [Accepted: 02/01/2005] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Adrenocorticotropic hormone (ACTH)-induced hypertension in the rat is accompanied by increased oxidative stress. This study examines the enzymatic source of reactive oxygen species in ACTH-hypertension. METHODS Male Sprague-Dawley rats were divided into 10 groups of 10-20 rats per group. The NAD(P)H oxidase inhibitor apocynin (1.5 mmol/L in drinking water) or the xanthine oxidase inhibitor allopurinol (200 mg/kg/day via food) were administered daily. After 4 days, rats were co-administered ACTH (0.2 mg/kg/day) or saline by subcutaneous injection daily for 11 days (prevention study). In a reversal study, ACTH/saline was administered for 13 days and from day 8, apocynin or allopurinol was added for 5 days. Systolic blood pressure (SBP) was measured by the tail-cuff method and oxidative stress using plasma F2-isoprostane concentrations. Results were expressed as mean+/-SEM. RESULTS ACTH increased SBP (P<.001) but apocynin or allopurinol alone had no effect. Apocynin (but not allopurinol) co-treatment prevented (142+/-3 ACTH, 120+/-4 mm Hg apocynin+ACTH, P'<0.001) and reversed ACTH-induced hypertension (133+/-4 to 118+/-5 mm Hg, P<.05). Plasma F2-isoprostane concentrations were increased in ACTH-treated rats compared with saline (11.9+/-1.0 vs 8.2+/-0.8 nmol/L, P<.01), and apocynin attenuated the ACTH-induced rise in plasma F2-isoprostane concentrations. Serum urate concentrations were undetectable in 75% of rats treated with allopurinol and were not affected by ACTH. CONCLUSIONS Apocynin but not allopurinol prevented and reversed ACTH-induced hypertension in the rat. These results suggest superoxide production through NAD(P)H oxidase plays a role in ACTH-induced hypertension.
Collapse
|
|
20 |
70 |
19
|
Juneja M, Kobelt D, Walther W, Voss C, Smith J, Specker E, Neuenschwander M, Gohlke BO, Dahlmann M, Radetzki S, Preissner R, von Kries JP, Schlag PM, Stein U. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1. PLoS Biol 2017; 15:e2000784. [PMID: 28570591 PMCID: PMC5453412 DOI: 10.1371/journal.pbio.2000784] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
MACC1 (Metastasis Associated in Colon Cancer 1) is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC). However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.
Collapse
|
Journal Article |
8 |
65 |
20
|
Yamamoto E, Kataoka K, Shintaku H, Yamashita T, Tokutomi Y, Dong YF, Matsuba S, Ichijo H, Ogawa H, Kim-Mitsuyama S. Novel mechanism and role of angiotensin II induced vascular endothelial injury in hypertensive diastolic heart failure. Arterioscler Thromb Vasc Biol 2007; 27:2569-75. [PMID: 17932313 DOI: 10.1161/atvbaha.107.153692] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The mechanism and role of angiotensin II-induced vascular endothelial injury is unclear. We examined the molecular mechanism of angiotensin (AII)-induced vascular endothelial injury and its significance for hypertensive diastolic heart failure. METHODS AND RESULTS We compared the effect of valsartan and amlodipine on Dahl salt-sensitive hypertensive rats (DS rats). Valsartan improved vascular endothelial dysfunction of DS rats more than amlodipine, by inhibiting endothelial apoptosis and eNOS uncoupling more. Moreover, valsartan inhibited vascular apoptosis signal-regulating kinase 1 (ASK1) more than amlodipine. Thus, AT1 receptor contributed to vascular endothelial apoptosis, eNOS uncoupling, and ASK1 activation of DS rats. Using ASK1(-/-) mice, we examined the causative role of ASK1 in endothelial apoptosis and eNOS uncoupling. AII infusion in wild-type mice markedly caused vascular endothelial apoptosis and eNOS uncoupling accompanied by vascular endothelial dysfunction, whereas these effects of AII were absent in ASK1(-/-) mice. Therefore, ASK1 participated in AII-induced vascular endothelial apoptosis and eNOS uncoupling. Using tetrahydrobiopterin, we found that eNOS uncoupling was involved in vascular endothelial dysfunction in DS rats with established diastolic heart failure. CONCLUSIONS AII-induced vascular endothelial apoptosis and eNOS uncoupling were mediated by ASK1 and contributed to vascular injury in diastolic heart failure of salt-sensitive hypertension.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Acetophenones/therapeutic use
- Amlodipine/pharmacology
- Amlodipine/therapeutic use
- Angiotensin II/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin II Type 1 Receptor Blockers/therapeutic use
- Animals
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Apoptosis/drug effects
- Biopterins/analogs & derivatives
- Biopterins/pharmacology
- Biopterins/therapeutic use
- Blood Pressure
- Calcium Channel Blockers/pharmacology
- Calcium Channel Blockers/therapeutic use
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Heart Failure, Diastolic/drug therapy
- Heart Failure, Diastolic/etiology
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/pathology
- Heart Failure, Diastolic/physiopathology
- Hydralazine/pharmacology
- Hydralazine/therapeutic use
- Hypertension/complications
- Hypertension/drug therapy
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- MAP Kinase Kinase Kinase 5/antagonists & inhibitors
- MAP Kinase Kinase Kinase 5/genetics
- MAP Kinase Kinase Kinase 5/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NADPH Oxidases/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Rats
- Rats, Inbred Dahl
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- Signal Transduction
- Sodium Chloride, Dietary/administration & dosage
- Superoxides/metabolism
- Tetrazoles/pharmacology
- Tetrazoles/therapeutic use
- Time Factors
- Valine/analogs & derivatives
- Valine/pharmacology
- Valine/therapeutic use
- Valsartan
- Vasodilation
Collapse
|
Comparative Study |
18 |
61 |
21
|
Ji MH, Qiu LL, Tang H, Ju LS, Sun XR, Zhang H, Jia M, Zuo ZY, Shen JC, Yang JJ. Sepsis-induced selective parvalbumin interneuron phenotype loss and cognitive impairments may be mediated by NADPH oxidase 2 activation in mice. J Neuroinflammation 2015; 12:182. [PMID: 26416717 PMCID: PMC4587802 DOI: 10.1186/s12974-015-0401-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/17/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction caused by many pathological events, including neuroinflammation and oxidative stress damage. Increasing evidence suggests that parvalbumin (PV) interneurons play a key role in the cognitive process, whereas the dysfunction of these interneurons has been implicated in a number of major psychiatric disorders. Here, we aimed to investigate whether enhanced inflammation and oxidative stress-mediated PV interneuron phenotype loss plays a role in sepsis-induced cognitive impairments. METHODS Male C57BL/6 mice were subjected to cecal ligation and puncture or sham operation. For the interventional study, the animals were chronically treated with a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, apocynin, at 5 mg/kg. The mice were euthanized at the indicated time points, and the brain tissues were harvested for determination of the PV, membrane subunit of NADPH oxidase gp91(phox), and markers of oxidative stress (4-hydroxynonenal and malondialdehyde) and inflammation (tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, and IL-10). A separate cohort of animals was used to evaluate the behavioral alterations by the open field and fear conditioning tests. Primary hippocampal neuronal cultures were used to investigate the mechanisms underlying the dysfunction of PV interneurons. RESULTS Sepsis resulted in cognitive impairments, which was accompanied by selective phenotype loss of PV interneurons and increased gp91(phox), 4-hydroxynonenal, malondialdehyde, IL-1β, and IL-6 expressions. Notably, these abnormalities could be rescued by apocynin treatment. CONCLUSION Selective phenotype loss of PV interneurons, as a result of NADPH oxidase 2 (Nox2) activation, might partly contribute to cognitive impairments in a mouse model of SAE.
Collapse
|
research-article |
10 |
60 |
22
|
Lafeber FP, Beukelman CJ, van den Worm E, van Roy JL, Vianen ME, van Roon JA, van Dijk H, Bijlsma JW. Apocynin, a plant-derived, cartilage-saving drug, might be useful in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 1999; 38:1088-93. [PMID: 10556260 DOI: 10.1093/rheumatology/38.11.1088] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate whether apocynin, 1-(4-hydroxy-3-methoxyphenyl)ethanone, is able to diminish inflammation-induced cartilage destruction in rheumatoid arthritis (RA), studied in a human in vitro model. METHODS Apocynin was added to cultures of RA peripheral blood mononuclear cells (PBMNC). Cartilage-destructive activity was determined by addition of culture supernatant to tissue samples of human articular cartilage. In addition, the proliferation of PBMNC, their production of tumour necrosis factor alpha (TN-Falpha), interleukin (IL)-1 and IL-10, and T-cell production of interferon gamma (IFN-gamma) and IL-4, as measures for T1 and T2 cell activity, were determined. RESULTS Apocynin was able to counteract RA PBMNC-induced inhibition of cartilage matrix proteoglycan synthesis, while no effect on inflammation-enhanced proteoglycan release was found. The effect was accompanied by a decrease in IL-1 and TNF-alpha production by the MNC. No effect on T-cell proliferation was found, but the production of IFN-gamma, IL-4 and T-cell-derived IL-10 was strongly diminished. Most important, apocynin did not show any direct adverse effects on chondrocyte metabolism; on the contrary, it diminished the release of proteoglycans from the cartilage matrix. CONCLUSION Apocynin in vitro inhibits inflammation-mediated cartilage destruction without having adverse effects on cartilage. The latter may be an advantage of apocynin over many other non-steroidal anti-inflammatory drugs. Therefore, apocynin might have an added beneficial effect in protecting RA patients from joint destruction.
Collapse
|
|
26 |
56 |
23
|
Miller V, de Béthune MP, Kober A, Stürmer M, Hertogs K, Pauwels R, Stoffels P, Staszewski S. Patterns of resistance and cross-resistance to human immunodeficiency virus type 1 reverse transcriptase inhibitors in patients treated with the nonnucleoside reverse transcriptase inhibitor loviride. Antimicrob Agents Chemother 1998; 42:3123-9. [PMID: 9835502 PMCID: PMC106010 DOI: 10.1128/aac.42.12.3123] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) strains resistant to nonnucleoside reverse transcriptase inhibitors (NNRTIs) may easily be selected for in vitro and in vivo under a suboptimal therapy regimen. Although cross-resistance is extensive within this class of compounds, newer NNRTIs were reported to retain activity against laboratory strains containing defined resistance-associated mutations. We have characterized HIV-1 resistance to loviride and the extent of cross-resistance to nevirapine, delavirdine, efavirenz, HBY-097, and tivirapine in a set of 24 clinical samples from patients treated with long-term loviride monotherapy by using a recombinant virus assay. Genotypic changes associated with resistance were analyzed by population sequencing. Overall, phenotypic resistance to loviride ranged from 0.04 to 3.47 log10-fold. Resistance was observed in samples from patients who had discontinued loviride for up to 27 months. Cross-resistance to the other compounds was extensive; however, fold resistance to efavirenz was significantly lower than fold resistance to nevirapine. No genotypic changes were detected in three samples; these were sensitive to all of the NNRTIs tested. The most common genotypic change was the K103N substitution. The range of phenotypic resistance in samples containing the K103N substitution could not be predicted from a genotypic analysis of known NNRTI resistance-associated mutations. The Y181C substitution was detected in one isolate which was resistant to loviride and delavirdine but sensitive to efavirenz, HBY-097, and tivirapine. Our data indicate that the available newer NNRTIs which retain activity against some HIV-1 strains selected by other compounds of this class in vitro may have compromised clinical efficacy in some patients pretreated with NNRTI.
Collapse
|
research-article |
27 |
50 |
24
|
Lo W, Bravo T, Jadhav V, Zhang JH, Tang J. NADPH oxidase inhibition improves neurological outcomes in surgically-induced brain injury. Neurosci Lett 2007; 414:228-32. [PMID: 17317004 PMCID: PMC1857328 DOI: 10.1016/j.neulet.2006.12.055] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
Neurosurgical procedures can result in brain injury by various means including direct trauma, hemorrhage, retractor stretch, and electrocautery. This surgically-induced brain injury (SBI) can cause post-operative complications such as brain edema. By creating a mouse model of SBI, we tested whether NADPH oxidase, an important reactive oxygen species producing enzyme, is involved in SBI using transgenic mice lacking gp91phox subunit of NADPH oxidase (gp91phox KO) and apocynin, a specific inhibitor of NADPH oxidase. Neurological function and brain edema were evaluated at 24 h post-SBI in gp91phox KO and wild-type littermates grouped into SBI and sham-surgery groups. Alternatively, mice were grouped into vehicle- and apocynin-treated (5 mg/kg, i.p. 30 min before SBI) groups. Oxidative stress indicated by lipid peroxidation (LPO) was measured at 3 and 24 h post-SBI. The gp91phox KO mice, but not the apocynin-treated mice showed significantly improved neurological scores. Brain edema was observed in both gp91phox KO and wild-type groups after SBI; however, there was no significant difference between these two groups. Brain edema was also not affected by apocynin-pretreatment. LPO levels were significantly higher in SBI group in both gp91phox KO and wild-type groups as compared to sham group. A trend, although without statistical significance, was noted towards attenuation of LPO in the gp91phox KO animals as compared to wild-type group. LPO levels were significantly attenuated at 3 h post-SBI by apocynin-pretreatment but not at 24 h post-SBI. These results suggest that chronic and acute inhibition of NADPH oxidase activity does not reduce brain edema after SBI. Long-term inhibition of NADPH oxidase, however improves neurological functions after SBI.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
50 |
25
|
Walker DH, Feng HM, Popov VL. Rickettsial phospholipase A2 as a pathogenic mechanism in a model of cell injury by typhus and spotted fever group rickettsiae. Am J Trop Med Hyg 2001; 65:936-42. [PMID: 11792002 DOI: 10.4269/ajtmh.2001.65.936] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Phospholipase A2 activity by typhus group rickettsiae causes hemolysis in vitro. Rickettsial phospholipase A2 has been proposed to mediate entry into the host cell, escape from the phagosome, and cause injury to host cells by both typhus and spotted fever group rickettsiae. In a rickettsial contact-associated cytotoxicity model, the interaction of Rickettsia prowazekii or R. conorii with Vero cells caused temperature-dependent release of 51Cr from the cells. Treatment of rickettsiae, but not the cells, with a phospholipase A2 inhibitor (bromophenacyl bromide) or with antibody to king cobra venom inhibited cell injury. Rickettsial treatment with bromophenacyl bromide inhibited the release of free fatty acids from the host cell. Neither the inhibitor nor antivenom impaired rickettsial active transport of L-lysine. Thus, host cell injury was mediated by a rickettsial phospholipase A2-dependent mechanism.
Collapse
|
|
24 |
49 |