1
|
Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981; 391:85-100. [PMID: 6270629 DOI: 10.1007/bf00656997] [Citation(s) in RCA: 14007] [Impact Index Per Article: 318.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The extracellular patch clamp method, which first allowed the detection of single channel currents in biological membranes, has been further refined to enable higher current resolution, direct membrane patch potential control, and physical isolation of membrane patches. 2. A description of a convenient method for the fabrication of patch recording pipettes is given together with procedures followed to achieve giga-seals i.e. pipette-membrane seals with resistances of 10(9) - 10(11) omega. 3. The basic patch clamp recording circuit, and designs for improved frequency response are described along with the present limitations in recording the currents from single channels. 4. Procedures for preparation and recording from three representative cell types are given. Some properties of single acetylcholine-activated channels in muscle membrane are described to illustrate the improved current and time resolution achieved with giga-seals. 5. A description is given of the various ways that patches of membrane can be physically isolated from cells. This isolation enables the recording of single channel currents with well-defined solutions on both sides of the membrane. Two types of isolated cell-free patch configurations can be formed: an inside-out patch with its cytoplasmic membrane face exposed to the bath solution, and an outside-out patch with its extracellular membrane face exposed to the bath solution. 6. The application of the method for the recording of ionic currents and internal dialysis of small cells is considered. Single channel resolution can be achieved when recording from whole cells, if the cell diameter is small (less than 20 micrometer). 7. The wide range of cell types amenable to giga-seal formation is discussed.
Collapse
|
|
44 |
14007 |
2
|
Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288:373-6. [PMID: 6253831 DOI: 10.1038/288373a0] [Citation(s) in RCA: 8064] [Impact Index Per Article: 179.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite its very potent vasodilating action in vivo, acetylcholine (ACh) does not always produce relaxation of isolated preparations of blood vessels in vitro. For example, in the helical strip of the rabbit descending thoracic aorta, the only reported response to ACh has been graded contractions, occurring at concentrations above 0.1 muM and mediated by muscarinic receptors. Recently, we observed that in a ring preparation from the rabbit thoracic aorta, ACh produced marked relaxation at concentrations lower than those required to produce contraction (confirming an earlier report by Jelliffe). In investigating this apparent discrepancy, we discovered that the loss of relaxation of ACh in the case of the strip was the result of unintentional rubbing of its intimal surface against foreign surfaces during its preparation. If care was taken to avoid rubbing of the intimal surface during preparation, the tissue, whether ring, transverse strip or helical strip, always exhibited relaxation to ACh, and the possibility was considered that rubbing of the intimal surface had removed endothelial cells. We demonstrate here that relaxation of isolated preparations of rabbit thoracic aorta and other blood vessels by ACh requires the presence of endothelial cells, and that ACh, acting on muscarinic receptors of these cells, stimulates release of a substance(s) that causes relaxation of the vascular smooth muscle. We propose that this may be one of the principal mechanisms for ACh-induced vasodilation in vivo. Preliminary reports on some aspects of the work have been reported elsewhere.
Collapse
|
|
45 |
8064 |
3
|
|
research-article |
41 |
2829 |
4
|
Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421:384-8. [PMID: 12508119 DOI: 10.1038/nature01339] [Citation(s) in RCA: 2439] [Impact Index Per Article: 110.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Accepted: 12/02/2002] [Indexed: 02/06/2023]
Abstract
Excessive inflammation and tumour-necrosis factor (TNF) synthesis cause morbidity and mortality in diverse human diseases including endotoxaemia, sepsis, rheumatoid arthritis and inflammatory bowel disease. Highly conserved, endogenous mechanisms normally regulate the magnitude of innate immune responses and prevent excessive inflammation. The nervous system, through the vagus nerve, can inhibit significantly and rapidly the release of macrophage TNF, and attenuate systemic inflammatory responses. This physiological mechanism, termed the 'cholinergic anti-inflammatory pathway' has major implications in immunology and in therapeutics; however, the identity of the essential macrophage acetylcholine-mediated (cholinergic) receptor that responds to vagus nerve signals was previously unknown. Here we report that the nicotinic acetylcholine receptor alpha7 subunit is required for acetylcholine inhibition of macrophage TNF release. Electrical stimulation of the vagus nerve inhibits TNF synthesis in wild-type mice, but fails to inhibit TNF synthesis in alpha7-deficient mice. Thus, the nicotinic acetylcholine receptor alpha7 subunit is essential for inhibiting cytokine synthesis by the cholinergic anti-inflammatory pathway.
Collapse
|
|
22 |
2439 |
5
|
Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97:1916-23. [PMID: 8621776 PMCID: PMC507261 DOI: 10.1172/jci118623] [Citation(s) in RCA: 1808] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We tested the hypothesis that angiotensin II-induced hypertension is associated with an increase in vascular .O2- production, and characterized the oxidase involved in this process. Infusion of angiotensin II (0.7 mg/kg per d) increased systolic blood pressure and doubled vascular .O2- production (assessed by lucigenin chemiluminescence), predominantly from the vascular media. NE infusion (2.75 mg/kg per d) produced a similar degree of hypertension, but did not increase vascular .O2- production. Studies using various enzyme inhibitors and vascular homogenates suggested that the predominant source of .O2- activated by angiotensin II infusion is an NADH/NADPH-dependent, membrane-bound oxidase. Angiotensin II-, but not NE-, induced hypertension was associated with impaired relaxations to acetylcholine, the calcium ionophore A23187, and nitroglycerin. These relaxations were variably corrected by treatment of vessels with liposome-encapsulated superoxide dismutase. When Losartan was administered concomitantly with angiotensin II, vascular .O2- production and relaxations were normalized, demonstrating a role for the angiotensin type-1 receptor in these processes. We conclude that forms of hypertension associated with elevated circulating levels of angiotensin II may have unique vascular effects not shared by other forms of hypertension because they increase vascular smooth muscle .O2- production via NADH/NADPH oxidase activation.
Collapse
|
research-article |
29 |
1808 |
6
|
Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986; 315:1046-51. [PMID: 3093861 DOI: 10.1056/nejm198610233151702] [Citation(s) in RCA: 1708] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acetylcholine is believed to dilate normal blood vessels by promoting the release of a vasorelaxant substance from the endothelium (endothelium-derived relaxing factor). By contrast, if the endothelium is removed experimentally, acetylcholine constricts blood vessels. We tested the hypothesis that muscarinic cholinergic vasodilation is impaired in coronary atherosclerosis. Graded concentrations of acetylcholine and, for comparison, the nonendothelial-dependent vasodilator nitroglycerin were infused into the left anterior descending artery of eight patients with advanced coronary stenoses (greater than 50 percent narrowing), four subjects with angiographically normal coronary arteries, and six patients with mild coronary atherosclerosis (less than 20 percent narrowing). Vascular responses were evaluated by quantitative angiography. In several segments each of four normal coronary arteries, acetylcholine caused a dose-dependent dilation from a control diameter of 1.94 +/- 0.16 mm to 2.16 +/- 0.15 mm with the maximal acetylcholine dose (P less than 0.01). In contrast, all eight of the arteries with advanced stenoses showed dose-dependent constriction, from 1.05 +/- 0.05 to 0.32 +/- 0.16 mm at the highest concentration of acetylcholine (P less than 0.01), with temporary occlusion in five. Five of six vessels with minimal disease also constricted in response to acetylcholine. All vessels dilated in response to nitroglycerin, however. We conclude that paradoxical vasoconstriction induced by acetylcholine occurs early as well as late in the course of coronary atherosclerosis. Our preliminary findings suggest that the abnormal vascular response to acetylcholine may represent a defect in endothelial vasodilator function, and may be important in the pathogenesis of coronary vasospasm.
Collapse
|
|
39 |
1708 |
7
|
Panza JA, Quyyumi AA, Brush JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323:22-7. [PMID: 2355955 DOI: 10.1056/nejm199007053230105] [Citation(s) in RCA: 1689] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Endothelium regulates vascular tone by influencing the contractile activity of vascular smooth muscle. This regulatory effect of the endothelium on blood vessels has been shown to be impaired in atherosclerotic arteries in humans and animals and in animal models of hypertension. METHODS To determine whether patients with essential hypertension have an endothelium-dependent abnormality in vascular relaxation, we studied the response of the forearm vasculature to acetylcholine (an endothelium-dependent vasodilator) and sodium nitroprusside (a direct dilator of smooth muscle) in 18 hypertensive patients (mean age [+/- SD], 50.7 +/- 10 years; 10 men and 8 women) two weeks after the withdrawal of antihypertensive medications and in 18 normal controls (mean age, 49.9 +/- 9; 9 men and 9 women). The drugs were infused at increasing concentrations into the brachial artery, and the response in forearm blood flow was measured by strain-gauge plethysmography. RESULTS The basal forearm blood flow was similar in the patients and controls (mean +/- SD, 3.4 +/- 1.3 and 3.7 +/- 0.8 ml per minute per 100 ml of forearm tissue, respectively; P not significant). The responses of blood flow and vascular resistance to acetylcholine were significantly reduced in the hypertensive patients (P less than 0.0001); maximal forearm flow was 9.1 +/- 5 ml per minute per 100 ml in the patients and 20.0 +/- 8 ml per minute per 100 ml in the controls (P less than 0.0002). However, there were no significant differences between groups in the responses of blood flow and vascular resistance to sodium nitroprusside. Because the vasodilator effect of acetylcholine might also be due to presynaptic inhibition of the release of norepinephrine by adrenergic nerve terminals, the effect of acetylcholine was assessed during phentolamine-induced alpha-adrenergic blockade. Under these conditions, it was also evident that the responses to acetylcholine were significantly blunted in the hypertensive patients (P less than 0.03). CONCLUSIONS Endothelium-mediated vasodilation is impaired in patients with essential hypertension. This defect may play an important part in the functional abnormalities of resistance vessels that are observed in hypertensive patients.
Collapse
|
|
35 |
1689 |
8
|
|
Review |
42 |
1632 |
9
|
Horn R, Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 1988; 92:145-59. [PMID: 2459299 PMCID: PMC2228899 DOI: 10.1085/jgp.92.2.145] [Citation(s) in RCA: 1456] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A new method is described as an alternative to whole-cell recording in order to prevent "wash-out" of the muscarinic response to acetylcholine (ACh) in rat lacrimal gland cells. The membrane of a cell-attached patch is permeabilized by nystatin in the patch pipette, thus providing electrical continuity between the pipette and the cytoplasm of the cell without the loss or alteration of cytoplasmic compounds necessary for the maintenance of the response to ACh. With normal whole-cell recording in these cells, the response to ACh, seen as the activation of Ca-activated K and Cl currents, lasts for approximately 5 min. With the nystatin method, the response is not diminished after 1 h. Nystatin, applied extracellularly, is shown to cause a rapid and reversible increase of membrane conductance to cations. In the absence of wash-out, we were able to obtain dose-response curves for the effect of ACh on Ca-activated K currents. An increase of [ACh] caused an increase in the K current, with apparent saturation at concentrations above approximately 1 microM ACh. The delay between ACh application and the activation of K current was inversely related to [ACh] and reached a minimum value of 0.7-1.0 s at high [ACh].
Collapse
|
research-article |
37 |
1456 |
10
|
Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976; 260:799-802. [PMID: 1083489 DOI: 10.1038/260799a0] [Citation(s) in RCA: 1315] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
49 |
1315 |
11
|
|
research-article |
68 |
1277 |
12
|
Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science 1985; 227:194-6. [PMID: 3966153 DOI: 10.1126/science.3966153] [Citation(s) in RCA: 1235] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intracellular current administration evokes rapid, graded, and bidirectional mechanical responses of isolated outer hair cells from the mammalian inner ear. The cells become shorter in response to depolarizing and longer in response to hyperpolarizing currents in the synaptic end of the cell. The cells respond with either an increase or decrease in length to transcellular alternating current stimulation. The direction of the movement with transcellular stimuli appears to be frequency dependent. Iontophoretic application of acetylcholine to the synaptic end of the cell decreases its length. The microarchitecture of the organ of Corti permits length changes of outer hair cells in a manner that could significantly influence the mechanics of the cochlear partition and thereby contribute to the exquisite sensitivity of mammalian hearing.
Collapse
|
|
40 |
1235 |
13
|
Rees DD, Palmer RM, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A 1989; 86:3375-8. [PMID: 2497467 PMCID: PMC287135 DOI: 10.1073/pnas.86.9.3375] [Citation(s) in RCA: 1204] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of endothelium-derived nitric oxide in the regulation of blood pressure in the anesthetized rabbit was studied with N omega-monomethyl-L-arginine (L-NMMA), a specific inhibitor of its formation from L-arginine. L-NMMA (3-100 mg.kg-1), but not its D-enantiomer, induced a dose-dependent long-lasting (15-90 min) increase in mean systemic arterial blood pressure. L-NMMA (100 mg.kg-1) also inhibited significantly the hypotensive action of acetylcholine, without affecting that of glyceryl trinitrate. Both these actions of L-NMMA were reversed by L-arginine (300 mg.kg-1), but not by D-arginine (300 mg.kg-1), indomethacin (1 mg.kg-1), prazosin (0.3 mg.kg-1), or by vagotomy. The effects of L-NMMA in vivo were associated with a significant inhibition of the release of nitric oxide from perfused aortic segments ex vivo. This inhibition was reversed by infusing L-arginine through the aortic segments. These results indicate that nitric oxide formation from L-arginine by the vascular endothelium plays a role in the regulation of blood pressure and in the hypotensive actions of acetylcholine.
Collapse
|
research-article |
36 |
1204 |
14
|
Abstract
NG monomethyl-L-arginine (L-NMMA), a specific inhibitor of the synthesis of endothelium-derived nitric oxide (NO), was infused into the brachial arteries of healthy volunteers to study the role of NO in the control of forearm blood flow. L-NMMA caused a 50% fall in basal blood flow and attenuated the dilator response to infused acetylcholine but not that to glyceryl trinitrate. These results indicate that the dilator action of endothelium-derived NO contributes to the control of basal and stimulated regional blood flow in man. Impairment of production of NO might account for the abnormalities in vascular reactivity that characterise a wide variety of disease states.
Collapse
|
Clinical Trial |
36 |
1104 |
15
|
Yu AJ, Dayan P. Uncertainty, neuromodulation, and attention. Neuron 2005; 46:681-92. [PMID: 15944135 DOI: 10.1016/j.neuron.2005.04.026] [Citation(s) in RCA: 1061] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 03/16/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
Uncertainty in various forms plagues our interactions with the environment. In a Bayesian statistical framework, optimal inference and prediction, based on unreliable observations in changing contexts, require the representation and manipulation of different forms of uncertainty. We propose that the neuromodulators acetylcholine and norepinephrine play a major role in the brain's implementation of these uncertainty computations. Acetylcholine signals expected uncertainty, coming from known unreliability of predictive cues within a context. Norepinephrine signals unexpected uncertainty, as when unsignaled context switches produce strongly unexpected observations. These uncertainty signals interact to enable optimal inference and learning in noisy and changeable environments. This formulation is consistent with a wealth of physiological, pharmacological, and behavioral data implicating acetylcholine and norepinephrine in specific aspects of a range of cognitive processes. Moreover, the model suggests a class of attentional cueing tasks that involve both neuromodulators and shows how their interactions may be part-antagonistic, part-synergistic.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
1061 |
16
|
Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 1983; 79:565-75. [PMID: 6317114 PMCID: PMC2044888 DOI: 10.1111/j.1476-5381.1983.tb11031.x] [Citation(s) in RCA: 1024] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The interaction of two dissociative anaesthetics, ketamine and phencyclidine, with the responses of spinal neurones to the electrophoretic administration of amino acids and acetylcholine was studied in decerebrate or pentobarbitone-anaesthetized cats and rats. Both ketamine and phencyclidine selectively blocked excitation by N-methyl-aspartate (NMA) with little effect on excitation by quisqualate and kainate. Ketamine reduced responses to L-aspartate somewhat more than those of L-glutamate; the sensitivity of responses to these two putative transmitters was between that to NMA on one hand and that to quisqualate or kainate on the other. On Renshaw cells, ketamine and phencyclidine reduced responses to acetylcholine less than those to NMA but more than those to quisqualate or kainate. Dorsal root-evoked synaptic excitation of Renshaw cells was reduced to a greater extent than that following ventral root excitation. Intravenous ketamine, 2.5-20 mg/kg, and phencyclidine, 0.2-0.5 mg/kg, also selectively blocked excitation of neurones by NMA. Ketamine showed no consistent or selective effect on inhibition of spinal neurones by electrophoretically administered glycine or gamma-aminobutyricacid (GABA). The results suggest that reduction of synaptic excitation mediated via NMA receptors contributes to the anaesthetic/analgesic properties of these two dissociative anaesthetics.
Collapse
|
research-article |
42 |
1024 |
17
|
|
review-article |
57 |
993 |
18
|
Robbins TW. The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl) 2002; 163:362-80. [PMID: 12373437 DOI: 10.1007/s00213-002-1154-7] [Citation(s) in RCA: 970] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Accepted: 05/08/2002] [Indexed: 10/27/2022]
Abstract
RATIONALE The developmental history and application of the 5-choice serial reaction time task (5CSRTT) for measuring effects of drugs and other manipulations on attentional performance (and stimulus control) in rats is reviewed. OBJECTIVES The 5CSRTT has been used for measuring effects of systemic drug treatments and also central manipulations such as neurochemical lesions on various aspects of attentional control, including sustained, selective and divided attention--and is relevant to the definition of neural systems of attention and applications to human disorders such as attention deficit/hyperactivity disorder (ADHD) and Alzheimer's disease. METHODS The 5CSRTT is implemented in a specially designed operant chamber with multiple response locations ('nine-hole box') using food reinforcers to maintain performance on baseline sessions (about 100 trials) at criterion levels of accuracy and trials completed. The 5CSRTT can be used for measuring various aspects of attentional control over performance with its main measures of accuracy, premature responding, correct response latencies and latency to collect earned food pellets. RESULTS The data reviewed include studies mainly of systemic and intra-cerebral effects of adrenoceptor, dopamine receptor, serotoninergic receptor and cholinergic receptor agents. These are compared with investigations of effects of selective chemical neurotoxins and excitotoxins applied to discrete parts of the forebrain, in order to define the neural and neurochemical substrates of attentional function. Furthermore, these results are integrated with findings from in vivo microdialysis in freely moving rats or metabolic studies. CONCLUSIONS The monoaminergic and cholinergic systems appear to play separable roles in different aspects of performance controlled by the 5CSRTT, in neural systems centred on the prefrontal cortex, cingulate cortex and striatum. These conclusions are considered in the methodological and theoretical context of other psychopharmacological studies of attention in animals and humans.
Collapse
|
Review |
23 |
970 |
19
|
De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 2002; 166:98-104. [PMID: 12091178 DOI: 10.1164/rccm.200109-016oc] [Citation(s) in RCA: 955] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microvascular blood flow alterations are frequent in animal models of sepsis and may impair tissue oxygenation. We hypothesized that alterations of the microcirculation are present in patients with sepsis. We used an orthogonal polarization spectral imaging technique to investigate the sublingual microcirculation in 10 healthy volunteers, 16 patients before cardiac surgery, 10 acutely ill patients without sepsis (intensive care unit control subjects), and 50 patients with severe sepsis. The effects of topical application of acetylcholine (10(-2) M) were tested in 11 patients with sepsis. In each subject, five to seven sublingual areas were recorded and analyzed semiquantitatively. Data were analyzed with nonparametric tests and are presented as medians (25th-75th percentiles). No significant difference in microvascular blood flow was observed between healthy volunteers and patients before cardiac surgery or intensive care unit control subjects. The density of all vessels was significantly reduced in patients with severe sepsis (4.5 [4.2-5.2] versus 5.4 [5.4-6.3]/mm in volunteers, p < 0.01). The proportion of perfused small (< 20 microm) vessels was reduced in patients with sepsis (48 [33-61] versus 90 [89-92]% in volunteers, p < 0.001). These alterations were more severe in nonsurvivors. The topical application of acetylcholine totally reversed these alterations. In conclusion, microvascular blood flow alterations are frequent in patients with sepsis and are more severe in patients with a worse outcome.
Collapse
|
|
23 |
955 |
20
|
Treasure CB, Klein JL, Weintraub WS, Talley JD, Stillabower ME, Kosinski AS, Zhang J, Boccuzzi SJ, Cedarholm JC, Alexander RW. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med 1995; 332:481-7. [PMID: 7830728 DOI: 10.1056/nejm199502233320801] [Citation(s) in RCA: 946] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Impaired endothelium-mediated relaxation contributes to vasospasm and myocardial ischemia in patients with coronary artery disease. We hypothesized that cholesterol-lowering therapy with the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor lovastatin could improve endothelium-mediated responses in patients with coronary atherosclerosis. METHODS In a randomized, double-blind, placebo-controlled trial, we studied coronary endothelial responses in 23 patients randomly assigned to either lovastatin (40 mg twice daily; 11 patients) or placebo (12 patients) plus a lipid-lowering diet (American Heart Association Step 1 diet). Patients were studied 12 days after randomization and again at 5 1/2 months. These patients had total cholesterol levels ranging from 160 to 300 mg per deciliter (4.1 to 7.8 mmol per liter) and were undergoing coronary angioplasty. At the initial and follow-up studies, patients received serial intracoronary infusions (in a coronary artery not undergoing angioplasty) of acetylcholine to assess endothelium-mediated vasodilatation. The responses of the coronary vessels were analyzed with quantitative angiography. RESULTS The patients in the placebo and lovastatin groups had similar responses to acetylcholine at a mean of 12 days of therapy (expressed as the percentage of change in diameter in response to acetylcholine doses of 10(-9) M, 10(-8) M, 10(-7) M, and 10(-6) M). In the placebo group, the respective mean (+/- SE) changes were 1 +/- 2, 0 +/- 2, -2 +/- 4, and -19 +/- 4 percent; in the lovastatin group, they were -2 +/- 2, -4 +/- 4, -12 +/- 5, and -16 +/- 7 percent (P = 0.32). (Coronary-artery constriction is reflected by negative numbers). The responses to acetylcholine in the placebo group after a mean of 5.5 months of therapy were -3 +/- 3, -1 +/- 2, -8 +/- 4, and -18 +/- 5 percent, respectively; there was significant improvement in the lovastatin group, which had responses of 3 +/- 3, 3 +/- 3, 0 +/- 2, and 0 +/- 3 percent (P = 0.004). CONCLUSIONS Cholesterol lowering with lovastatin significantly improved endothelium-mediated responses in the coronary arteries of patients with atherosclerosis. Such improvement in the local regulation of coronary arterial tone could potentially relieve ischemic symptoms and signal the stabilization of the atherosclerotic plaque.
Collapse
|
Clinical Trial |
30 |
946 |
21
|
Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 1989; 245:177-80. [PMID: 2501869 DOI: 10.1126/science.2501869] [Citation(s) in RCA: 918] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vasodilators are used clinically for the treatment of hypertension and heart failure. The effects of some vasodilators seem to be mediated by membrane hyperpolarization. The molecular basis of this hyperpolarization has been investigated by examining the properties of single K+ channels in arterial smooth muscle cells. The presence of adenosine triphosphate (ATP)-sensitive K+ channels in these cells was demonstrated at the single channel level. These channels were opened by the hyperpolarizing vasodilator cromakalim and inhibited by the ATP-sensitive K+ channel blocker glibenclamide. Furthermore, in arterial rings the vasorelaxing actions of the drugs diazoxide, cromakalim, and pinacidil and the hyperpolarizing actions of vasoactive intestinal polypeptide and acetylcholine were blocked by inhibitors of the ATP-sensitive K+ channels, suggesting that all these agents may act through a common pathway in smooth muscle by opening ATP-sensitive K+ channels.
Collapse
|
|
36 |
918 |
22
|
Anderson CR, Stevens CF. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol 1973; 235:655-91. [PMID: 4543940 PMCID: PMC1350786 DOI: 10.1113/jphysiol.1973.sp010410] [Citation(s) in RCA: 892] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
1. Acetylcholine produced end-plate current (e.p.c.) noise is shown to be the results of statistical fluctuations in the ionic conductance of voltage clamped end-plates of Rana pipiens.2. These e.p.c. fluctuations are characterized by their e.p.c. spectra which conform to a relation predicted from a simple model of end-plate channel gating behaviour.3. The rate constant of channel closing alpha is determined from e.p.c. spectra and is found to depend on membrane potential V according to the relation alpha = Be(AV) (B = 0.17 msec(-1)+/-0.04 S.E., A = 0.0058 mV(-1)+/-0.0009 S.E. at 8 degrees C) and to vary with temperature T with a Q(10) = 2.77, at -70 mV. A and B in this expression both vary with T and therefore produce a membrane potential dependent Q(10) for alpha.4. Nerve-evoked e.p.c.s and spontaneous miniature e.p.c.s decay exponentially in time with a rate constant which depends exponentially on V. The magnitude and voltage dependence of this decay constant is exactly that found from e.p.c. spectra for the channel closing rate alpha.5. The conductance gamma of a single open end-plate channel has been estimated from e.p.c. spectra and is found not to be detectibly dependent on membrane potential, temperature and mean end-plate current. gamma = 0.32+/-0.0045 (S.E.) x 10(-10) mhos. Some variation in values for gamma occurs from muscle to muscle.6. It is concluded that the relaxation kinetics of open ACh sensitive ionic channels is the rate limiting step in the decay of synaptic current and that this channel closing has a single time constant. The relaxation rate is independent of how it is estimated (ACh produced e.p.c. fluctuations, e.p.c., m.e.p.c.), and is consistent with the hypothesis that individual ionic channels open rapidly to a specific conductance which remains constant for an exponentially distributed duration.7. The voltage and temperature dependence of the channel closing rate constant agree with the predictions of a simple dipole-conformation change model.
Collapse
|
research-article |
52 |
892 |
23
|
Abstract
1. When a steady dose of acetylcholine (ACh) is applied to an end-plate, the resulting depolarization is accompanied by a significant increase in voltage noise.2. The characteristic properties of this ACh noise (amplitude and time course) are examined under various experimental conditions. The voltage noise is analysed on the assumption that it arises from statistical fluctuations in reaction rate, and in the frequency of the elementary current pulses (;shot effects') produced by the action of ACh molecules.3. The elementary ACh current pulse (amplitude approximately 10(-11) A), arises from a conductance change of the order of 10(-10) Omega(-1) which lasts for approximately 1 ms (at 20 degrees C), and produces a minute depolarization, of the order of 0.3 muV. It is associated with a net charge transfer of nearly 10(-14) C, equivalent to approximately 5 x 10(4) univalent ions.4. At low temperature, and during chronic denervation, the duration of the elementary current pulse increases, and the elementary voltage change becomes correspondingly larger.5. Curare has little or no effect on the characteristics of the elementary event.6. A comparative study of ACh and carbachol actions shows that carbachol produces considerably briefer, and therefore less effective, current pulses than ACh.
Collapse
|
research-article |
53 |
849 |
24
|
Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, Schoene N, Schuler G. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 2000; 342:454-60. [PMID: 10675425 DOI: 10.1056/nejm200002173420702] [Citation(s) in RCA: 817] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Studies of the cardioprotective effects of exercise training in patients with coronary artery disease have yielded contradictory results. Exercise training has been associated with improvement in myocardial perfusion even in patients who have progression of coronary atherosclerosis. We therefore conducted a prospective study of the effect of exercise training on endothelial function in patients with coronary artery disease. METHODS We randomly assigned 19 patients with coronary endothelial dysfunction, indicated by abnormal acetylcholine-induced vasoconstriction, to an exercise-training group (10 patients) or a control group (9 patients). To reduce confounding, patients with coronary risk factors that could be influenced by exercise training (such as diabetes, hypertension, hypercholesterolemia, and smoking) were excluded. In an initial study and after four weeks, the changes in vascular diameter in response to the intracoronary infusion of increasing doses of acetylcholine (0.072, 0.72, and 7.2 microg per minute) were assessed. The mean peak flow velocity was measured by Doppler velocimetry, and the diameter of epicardial coronary vessels was measured by quantitative coronary angiography. RESULTS In the initial study, the two groups had similar vasoconstrictive responses to acetylcholine. After four weeks of exercise training, coronary-artery constriction in response to acetylcholine at a dose of 7.2 microg per minute was reduced by 54 percent (from a mean [+/-SE] decrease in the luminal diameter of 0.41+/-0.05 mm in the initial study to a decrease of 0.19+/-0.07 mm at four weeks; P<0.05 for the comparison with the change in the control group). In the exercise-training group, the increases in mean peak flow velocity in response to 0.072, 0.72, and 7.2 microg of acetylcholine per minute were 12+/-7, 36+/-11, and 78+/-16 percent, respectively, in the initial study. After four weeks of exercise, the increases in response to acetylcholine were 27+/-7, 73+/-19, and 142+/-28 percent (P<0.01 for the comparison with the control group). Coronary blood-flow reserve (the ratio of the mean peak flow velocity after adenosine infusion to the resting velocity) increased by 29 percent after four weeks of exercise (from 2.8+/-0.2 in the initial study to 3.6+/-0.2 after four weeks; P<0.01 for the comparison with the control group). CONCLUSIONS Exercise training improves endothelium-dependent vasodilatation both in epicardial coronary vessels and in resistance vessels in patients with coronary artery disease.
Collapse
|
Clinical Trial |
25 |
817 |
25
|
Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 1998; 396:269-72. [PMID: 9834033 DOI: 10.1038/24388] [Citation(s) in RCA: 806] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In arteries, muscarinic agonists such as acetylcholine release an unidentified, endothelium-derived hyperpolarizing factor (EDHF) which is neither prostacyclin nor nitric oxide. Here we show that EDHF-induced hyperpolarization of smooth muscle and relaxation of small resistance arteries are inhibited by ouabain plus Ba2+; ouabain is a blocker of Na+/K+ ATPase and Ba2+ blocks inwardly rectifying K+ channels. Small increases in the amount of extracellular K+ mimic these effects of EDHF in a ouabain- and Ba2+-sensitive, but endothelium-independent, manner. Acetylcholine hyperpolarizes endothelial cells and increases the K+ concentration in the myoendothelial space; these effects are abolished by charbdotoxin plus apamin. Hyperpolarization of smooth muscle by EDHF is also abolished by this toxin combination, but these toxins do not affect the hyperpolarizaiton of smooth muscle by added K+. These data show that EDHF is K+ that effluxes through charybdotoxin- and apamin-sensitive K+ channels on endothelial cells. The resulting increase in myoendothelial K+ concentration hyperpolarizes and relaxes adjacent smooth-muscle cells by activating Ba2+-sensitive K+ channels and Na+/K+ ATPase. These results show that fluctuations in K+ levels originating within the blood vessel itself are important in regulating mammalian blood pressure and flow.
Collapse
|
|
27 |
806 |