1
|
Smits TH, Röthlisberger M, Witholt B, van Beilen JB. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1999; 1:307-17. [PMID: 11207749 DOI: 10.1046/j.1462-2920.1999.00037.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed highly degenerate oligonucleotides for polymerase chain reaction (PCR) amplification of genes related to the Pseudomonas oleovorans GPo1 and Acinetobacter sp. ADP1 alkane hydroxylases, based on a number of highly conserved sequence motifs. In all Gram-negative and in two out of three Gram-positive strains able to grow on medium- (C6-C11) or long-chain n-alkanes (C12-C16), PCR products of the expected size were obtained. The PCR fragments were cloned and sequenced and found to encode peptides with 43.2-93.8% sequence identity to the corresponding fragment of the P. oleovorans GPo1 alkane hydroxylase. Strains that were unable to grow on n-alkanes did not yield PCR products with homology to alkane hydroxylase genes. The alkane hydroxylase genes of Acinetobacter calcoaceticus EB104 and Pseudomonas putida P1 were cloned using the PCR products as probes. The two genes allow an alkane hydroxylase-negative mutant of Acinetobacter sp. ADP1 and an Escherichia coli recombinant containing all P. oleovorans alk genes except alkB, respectively, to grow on n-alkanes, showing that the cloned genes do indeed encode alkane hydroxylases.
Collapse
MESH Headings
- Acinetobacter calcoaceticus/enzymology
- Acinetobacter calcoaceticus/genetics
- Alkanes/metabolism
- Amino Acid Sequence
- Base Sequence
- Blotting, Southern
- Cloning, Molecular
- Cytochrome P-450 CYP4A
- Cytochrome P-450 Enzyme System/chemistry
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- DNA Primers
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Ribosomal/analysis
- DNA, Ribosomal/genetics
- Genes, Bacterial
- Genes, rRNA
- Gram-Negative Bacteria/enzymology
- Gram-Negative Bacteria/genetics
- Gram-Negative Bacteria/growth & development
- Gram-Positive Bacteria/enzymology
- Gram-Positive Bacteria/genetics
- Gram-Positive Bacteria/growth & development
- Mixed Function Oxygenases/chemistry
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Molecular Sequence Data
- Pseudomonas putida/enzymology
- Pseudomonas putida/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Alignment
- Sequence Analysis, DNA
Collapse
|
|
26 |
162 |
2
|
Harayama S, Rekik M, Bairoch A, Neidle EL, Ornston LN. Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases. J Bacteriol 1991; 173:7540-8. [PMID: 1938949 PMCID: PMC212521 DOI: 10.1128/jb.173.23.7540-7548.1991] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The xylXYZ DNA region is carried on the TOL pWW0 plasmid in Pseudomonas putida and encodes a benzoate dioxygenase with broad substrate specificity. The DNA sequence of the region is presented and compared with benABC, the chromosomal region encoding the benzoate dioxygenase of Acinetobacter calcoaceticus. Corresponding genes from the two biological sources share common ancestry: comparison of aligned XylX-BenA, XylY-BenB, and XylZ-BenC amino acid sequences revealed respective identities of 58.3, 61.3, and 53%. The aligned genes have diverged to assume G+C contents that differ by 14.0 to 14.9%. Usage of the unusual arginine codons AGA and AGG appears to have been selected in the P. putida xylX gene as it diverged from the ancestor it shared with A. calcoaceticus benA. Homologous A. calcoaceticus and P. putida genes exhibit different patterns of DNA sequence repetition, and analysis of one such pattern suggests that mutations creating different DNA slippage structures made a significant contribution to the evolutionary divergence of xylX.
Collapse
|
research-article |
34 |
115 |
3
|
Kalscheuer R, Luftmann H, Steinbüchel A. Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 2004; 70:7119-25. [PMID: 15574908 PMCID: PMC535189 DOI: 10.1128/aem.70.12.7119-7125.2004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 07/18/2004] [Indexed: 02/02/2023] Open
Abstract
The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT) is the key enzyme in storage lipid accumulation in the gram-negative bacterium Acinetobacter calcoaceticus ADP1, mediating wax ester, and to a lesser extent, triacylglycerol (TAG) biosynthesis. Saccharomyces cerevisiae accumulates TAGs and steryl esters as storage lipids. Four genes encoding a DGAT (Dga1p), a phospholipid:diacylglycerol acyltransferase (Lro1p) and two acyl-coenzyme A:sterol acyltransferases (ASATs) (Are1p and Are2p) are involved in the final esterification steps in TAG and steryl ester biosynthesis in this yeast. In the quadruple mutant strain S. cerevisiae H1246, the disruption of DGA1, LRO1, ARE1, and ARE2 leads to an inability to synthesize storage lipids. Heterologous expression of WS/DGAT from A. calcoaceticus ADP1 in S. cerevisiae H1246 restored TAG but not steryl ester biosynthesis, although high levels of ASAT activity could be demonstrated for WS/DGAT expressed in Escherichia coli XL1-Blue in radiometric in vitro assays with cholesterol and ergosterol as substrates. In addition to TAG synthesis, heterologous expression of WS/DGAT in S. cerevisiae H1246 resulted also in the accumulation of fatty acid ethyl esters as well as fatty acid isoamyl esters. In vitro studies confirmed that WS/DGAT is capable of utilizing a broad range of alcohols as substrates comprising long-chain fatty alcohols like hexadecanol as well as short-chain alcohols like ethanol or isoamyl alcohol. This study demonstrated the highly unspecific acyltransferase activity of WS/DGAT from A. calcoaceticus ADP1, indicating the broad biocatalytic potential of this enzyme for biotechnological production of a large variety of lipids in vivo in prokaryotic as well as eukaryotic expression hosts.
Collapse
|
research-article |
21 |
106 |
4
|
Yuhashi N, Tomiyama M, Okuda J, Igarashi S, Ikebukuro K, Sode K. Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase. Biosens Bioelectron 2005; 20:2145-50. [PMID: 15741089 DOI: 10.1016/j.bios.2004.08.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 08/05/2004] [Accepted: 08/12/2004] [Indexed: 10/26/2022]
Abstract
Glucose dehydrogenase harboring pyrroloquinoline quinone as the prosthetic group (PQQGDH) from Acinetobacter calcoaceticus is an ideal enzyme for the anode of biofuel cell, because of its oxygen insensitivity and high catalytic efficiency. However, the application of PQQGDH for the bioanode is inherently limited because of its instability. Using Ser415Cys mutant whose stability was greatly improved, we constructed the biofuel cell system employing the engineered PQQGDH as the bioanode enzyme and bilirubin oxidase (BOD) as the biocathode, and compared the stability of the biofuel cell with that employing wild-type PQQGDH. The maximum power density was 17.6 microW/cm2 at an external optimal load of 200 k omega. Using Ser415Cys mutant, the lifetime of the biofuel cell system was greatly extended to 152 h, more than six times as that of the biofuel cell employing the wild-type.
Collapse
|
|
20 |
78 |
5
|
DiMarco AA, Averhoff B, Ornston LN. Identification of the transcriptional activator pobR and characterization of its role in the expression of pobA, the structural gene for p-hydroxybenzoate hydroxylase in Acinetobacter calcoaceticus. J Bacteriol 1993; 175:4499-506. [PMID: 8331077 PMCID: PMC204891 DOI: 10.1128/jb.175.14.4499-4506.1993] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have identified pobR, a gene encoding a transcriptional activator that regulates expression of pobA, the structural gene for p-hydroxybenzoate hydroxylase (PobA) in Acinetobacter calcoaceticus ADP1. Inducible expression of cloned pobA in Escherichia coli depended upon the presence of a functional pobR gene, and mutations within pobR prevented pobA expression in A. calcoaceticus. A pobA-lacZ operon fusion was used to demonstrate that pobA expression in A. calcoaceticus is enhanced up to 400-fold by the inducer p-hydroxybenzoate. Inducer concentrations as low as 10(-7) M were sufficient to elicit partial induction. Some structurally related analogs of p-hydroxybenzoate, unable to cause induction by themselves, were effective anti-inducers. The nucleotide sequence of pobR was determined, and the activator gene was shown to be transcribed divergently from pobA; the genes are separated by 134 DNA base pairs. The deduced amino acid sequence yielded a polypeptide of M(r) = 30,764. Analysis of this sequence revealed at the NH2 terminus a stretch of residues with high potential for forming a helix-turn-helix structure that could serve as a DNA-binding domain. A conservative amino acid substitution (Arg-61-->His-61) in this region inactivated PobR. The primary structure of PobR appears to be evolutionarily distinct from the four major families of NH2-terminal helix-turn-helix containing bacterial regulatory proteins that have been identified thus far.
Collapse
|
research-article |
32 |
73 |
6
|
Oubrie A, Rozeboom HJ, Kalk KH, Duine JA, Dijkstra BW. The 1.7 A crystal structure of the apo form of the soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus reveals a novel internal conserved sequence repeat. J Mol Biol 1999; 289:319-33. [PMID: 10366508 DOI: 10.1006/jmbi.1999.2766] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a dimeric apo form of the soluble quinoprotein glucose dehydrogenase (s-GDH) from Acinetobacter calcoaceticus has been solved by multiple isomorphous replacement followed by density modification, and was subsequently refined at 1. 72 A resolution to a final crystallographic R-factor of 16.5% and free R-factor of 20.8% [corrected]. The s-GDH monomer has a beta-propeller fold consisting of six four-stranded anti-parallel beta-sheets aligned around a pseudo 6-fold symmetry axis. The enzyme binds three calcium ions per monomer, two of which are located in the dimer interface. The third is bound in the putative active site, where it may bind and functionalize the pyrroloquinoline quinone (PQQ) cofactor. A data base search unexpectedly showed that four uncharacterized protein sequences are homologous to s-GDH with many residues in the putative active site absolutely conserved. This indicates that these homologs may have a similar structure and that they may catalyze similar PQQ-dependent reactions.A structure-based sequence alignment of the six four-stranded beta-sheets in s-GDH's beta-propeller fold shows an internally conserved sequence repeat that gives rise to two distinct conserved structural motifs. The first structural motif is found at the corner of the short beta-turn between the inner two beta-strands of the beta-sheets, where an Asp side-chain points back into the beta-sheet to form a hydrogen-bond with the OH/NH of a Tyr/Trp side-chain in the same beta-sheet. The second motif involves an Arg/Lys side-chain in the C beta-strand of one beta-sheet, which forms a bidentate salt-bridge with an Asp/Glu in the CD loop of the next beta-sheet. These intra and inter-beta-sheet hydrogen-bonds are likely to contribute to the stability of the s-GDH beta-propeller fold.
Collapse
|
Comparative Study |
26 |
73 |
7
|
Ehrt S, Schirmer F, Hillen W. Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB8250. Mol Microbiol 1995; 18:13-20. [PMID: 8596453 DOI: 10.1111/j.1365-2958.1995.mmi_18010013.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have mutated Acinetobacter calcoaceticus NCIB-8250 to growth deficiency on phenol as sole carbon source and isolated genes with similarity to phenol hydroxylase and catechol 1,2-dioxygenase by complementation. Sequence analysis reveals the presence of six open reading frames (ORFs) with similarities to a Pseudomonas multicomponent phenol hydroxylase which are followed by an ORF with similarity to catA from A. calcoaceticus ADP1. Transformation of these genes to ADP1 confers the ability to grow at the expense of phenol as sole carbon source. Primer extension analysis indicates phenol-inducible transcription from an RpoN-dependent promoter sharing sequence similarity with the sigma 54 consensus promoter sequence, except that the -12 box is GG instead of GC. A catA::lacZ transcriptional fusion shows the same induction profile for beta-galactosidase expression as transcription from the sigma 54-dependent promoter. This result suggests that catA is cotranscribed in the same operon with the phenol hydroxylase-encoding genes and is consistent with the fact that no apparent additional promoter is found for catA by sequence analysis or primer extension. Catechol 1,2-dioxygenase activity is induced in NCIB8250 by benzoate, whereas beta-galactosidase expression from the catA::lacZ fusion is not. This observation leads to the hypothesis that two differentially regulated catA genes should be present in that strain.
Collapse
MESH Headings
- Acinetobacter calcoaceticus/enzymology
- Acinetobacter calcoaceticus/genetics
- Amino Acid Sequence
- Base Sequence
- Catechol 1,2-Dioxygenase
- Cloning, Molecular
- Dioxygenases
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genetic Complementation Test
- Mixed Function Oxygenases/biosynthesis
- Mixed Function Oxygenases/genetics
- Molecular Sequence Data
- Mutation
- Operon
- Oxygenases/biosynthesis
- Oxygenases/genetics
- Phenol
- Phenols/metabolism
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- Recombinant Fusion Proteins/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Species Specificity
- Transcription, Genetic
Collapse
|
Comparative Study |
30 |
70 |
8
|
Neidle E, Hartnett C, Ornston LN, Bairoch A, Rekik M, Harayama S. cis-diol dehydrogenases encoded by the TOL pWW0 plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:113-20. [PMID: 1740120 DOI: 10.1111/j.1432-1033.1992.tb16612.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the aerobic degradation of benzoate by bacteria, benzoate is first dihydroxylated by a ring-hydroxylating dioxygenase to form a cis-diol (1,2-dihydroxycyclohexa-3,4-diene carboxylate) which is subsequently transformed to a catechol by an NAD(+)-dependent cis-diol dehydrogenase. The structural gene for this dehydrogenase, encoded on TOL plasmid pWW0 of Pseudomonas putida (xylL) and that encoded on the chromosome of Acinetobacter calcoaceticus (benD), were sequenced. They encode polypeptides of about 28 kDa in size. These proteins are similar to each other, exhibiting 58% sequence identity. They are also similar to other proteins of at least 20 different functions, which are members of the short-chain alcohol dehydrogenase family. The alignment of these proteins suggest two amino acids, lysine and tyrosine, as catalytically important residues.
Collapse
|
|
33 |
69 |
9
|
Olsthoorn AJ, Duine JA. Production, characterization, and reconstitution of recombinant quinoprotein glucose dehydrogenase (soluble type; EC 1.1.99.17) apoenzyme of Acinetobacter calcoaceticus. Arch Biochem Biophys 1996; 336:42-8. [PMID: 8951033 DOI: 10.1006/abbi.1996.0530] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Soluble, periplasmic quinoprotein glucose dehydrogenase of Acinetobacter calcoaceticus (sGDH; EC 1.1.99.17) was produced in good yield in the apoenzyme form (without the cofactor pyrroloquinoline quinone, PQQ) by an Escherichia coli recombinant strain provided with a plasmid containing the gene under control of a lac promoter. Structural analysis of the purified apoenzyme revealed that the E. coli strain used produces the correct mature protein. Titration of the apoenzyme with PQQ in the presence of Ca2+ showed that a linear relation exists between the amount of added PQQ and activity observed, and that the subunit and PQQ associate in a molar ratio of 1:1. Based on spectral and enzymatic criteria, it is concluded that the present holoenzyme preparation has a better quality than the previously described preparations of authentic holoenzyme. As isolated here, the recombinant apoenzyme was in the dimeric form. Partial monomerization occurred upon gel filtration in a buffer with chelator and the process could be reversed with Ca2+. PQQ binds to the dimer in the presence of chelator, not to the monomer. However, the PQQ-containing dimer was not active and showed an unusual absorption spectrum which was slowly converted into a PQQH2-like spectrum when glucose was added. Full restoration of activity was achieved upon addition of Ca2+ and the spectra were immediately converted into those of normal holoenzyme in the oxidized and reduced form, respectively. Addition of chelator to holoenzyme did not lead to inactivation or monomerization. It is concluded, therefore, that Ca2+ has a dual role in this enzyme, being required for dimerization of the subunits as well as for functionalization of the bound PQQ, and that it is more firmly attached to the holoenzyme than to the apoenzyme.
Collapse
|
|
29 |
61 |
10
|
Kok RG, van Thor JJ, Nugteren-Roodzant IM, Brouwer MB, Egmond MR, Nudel CB, Vosman B, Hellingwerf KJ. Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene. Mol Microbiol 1995; 15:803-18. [PMID: 7596283 DOI: 10.1111/j.1365-2958.1995.tb02351.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The extracellular lipase from Acinetobacter calcoaceticus BD413 was purified to homogeneity, via hydrophobic-interaction fast performance liquid chromatography (FPLC), from cultures grown in mineral medium with hexadecane as the sole carbon source. The enzyme has an apparent molecular mass of 32 kDa on SDS-polyacrylamide gels and hydrolyses long acyl chain p-nitrophenol (pNP) esters, like pNP palmitate (pNPP), with optimal activity between pH 7.8 and 8.8. Additionally, the enzyme shows activity towards triglycerides such as olive oil and tributyrin and towards egg-yolk emulsions. The N-terminal amino acid sequence of the mature protein was determined, and via reverse genetics the structural lipase gene was cloned from a gene library of A. calcoaceticus DNA in Escherichia coli phage M13. Sequence analysis of a 2.1 kb chromosomal DNA fragment revealed one complete open reading frame, lipA, encoding a mature protein with a predicted molecular mass of 32.1 kDa. This protein shows high similarity to known lipases, especially Pseudomonas lipases, that are exported in a two-step secretion mechanism and require a lipase-specific chaperone. The identification of an export signal sequence at the N-terminus of the mature lipase suggests that the lipase of Acinetobacter is also exported via a two-step translocation mechanism. However, no chaperone-encoding gene was found downstream of lipA, unlike the situation in Pseudomonas. Analysis of an A. calcoaceticus mutant showing reduced lipase production revealed that a periplasmic disulphide oxidoreductase is involved in processing of the lipase. Via sequence alignments, based upon the crystal structure of the closely related Pseudomonas glumae lipase, a model has been made of the secondary-structure elements in AcLipA. The active site serine of AcLipA was changed to an alanine, via site-directed mutagenesis, resulting in production of an inactive extracellular lipase.
Collapse
|
|
30 |
61 |
11
|
Elbahloul Y, Krehenbrink M, Reichelt R, Steinbüchel A. Physiological conditions conducive to high cyanophycin content in biomass of Acinetobacter calcoaceticus strain ADP1. Appl Environ Microbiol 2005; 71:858-66. [PMID: 15691941 PMCID: PMC546767 DOI: 10.1128/aem.71.2.858-866.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of the inorganic medium components, the initial pH, the incubation temperature, the oxygen supply, the carbon-to-nitrogen ratio, and chloramphenicol on the synthesis of cyanophycin (CGP) by Acinetobacter calcoaceticus strain ADP1 were studied in a mineral salts medium containing sodium glutamate and ammonium sulfate as carbon and nitrogen sources, respectively. Variation of all these factors resulted in maximum CGP contents of only about 3.5% (wt/wt) of the cell dry matter (CDM), and phosphate depletion triggered CGP accumulation most substantially. However, addition of arginine to the medium as the sole carbon source for growth promoted CGP accumulation most strikingly. This effect was systematically studied, and an optimized phosphate-limited medium containing 75 mM arginine and 10 mM ammonium sulfate yielded a CGP content of 41.4% (wt/wt) of the CDM at 30 degrees C. The CGP content of the cells was further increased to 46.0% (wt/wt) of the CDM by adding 2.5 microg of chloramphenicol per ml of medium in the accumulation phase. These contents are by far the highest CGP contents of bacterial cells ever reported. CGP was easily isolated from the cells by using an acid extraction method, and this CGP contained about equimolar amounts of aspartic acid and arginine and no detectable lysine; the molecular masses ranged from 21 to 29 kDa, and the average molecular mass was about 25 kDa. Transmission electron micrographs of thin sections of cells revealed large CGP granules that frequently had an irregular shape with protuberances at the surface and often severely deformed the cells. A cphI::OmegaKm mutant of strain ADP1 with a disrupted putative cyanophycinase gene accumulated significantly less CGP than the wild type accumulated, although the cells expressed cyanophycin synthetase at about the same high level. It is possible that the intact CphI protein is involved in the release of CGP primer molecules from initially synthesized CGP. The resulting lower concentration of primer molecules could explain the observed low rate of accumulation at similar specific activities.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
56 |
12
|
DiMarco AA, Ornston LN. Regulation of p-hydroxybenzoate hydroxylase synthesis by PobR bound to an operator in Acinetobacter calcoaceticus. J Bacteriol 1994; 176:4277-84. [PMID: 8021213 PMCID: PMC205639 DOI: 10.1128/jb.176.14.4277-4284.1994] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PobR is a transcriptional activator required for the expression of pobA, the structural gene for p-hydroxybenzoate hydroxylase. The pobA and pobR genes are divergently transcribed and separated by 134 bp in the Acinetobacter calcoaceticus chromosome. Primer extension analysis revealed that the pobA transcript begins 22 bp upstream from the structural gene and the pobR transcript begins 69 bp upstream from the regulatory gene. This arrangement requires superimposition of the -10 base pair and -35 base pair RNA polymerase-binding sites for the respective genes. Expression of a pobR-lacZ fusion was found to be repressed three- to fourfold by pobR when the functional gene was carried in trans on a plasmid. The pobR gene was placed under control of a lac promoter in an expression vector, and the recombinant plasmid inducibly expressed high levels of PobR in Escherichia coli. Cell extracts containing this protein were used to conduct gel mobility shift analyses. PobR binds specifically to DNA in the pobA-pobR intergenic region, and this binding does not appear to be influenced by p-hydroxybenzoate, the inducer of pobA expression. DNase I footprinting indicates that the DNA-binding site for PobR extends from about 10 bp to about 45 bp downstream from the site of the beginning of the pobR transcript. Within this putative operator is a region of inverted symmetry. Evidently, interaction of the inducer with the PobR-operator complex triggers elevated expression of pobA, beginning at a position separated by 55 bp of DNA. The general mechanisms by which PobR exerts transcriptional control resemble those that typify the LysR family of transcriptional activators, a group from which PobR is evolutionarily remote.
Collapse
|
research-article |
31 |
56 |
13
|
DiMarco AA, Averhoff BA, Kim EE, Ornston LN. Evolutionary divergence of pobA, the structural gene encoding p-hydroxybenzoate hydroxylase in an Acinetobacter calcoaceticus strain well-suited for genetic analysis. Gene X 1993; 125:25-33. [PMID: 8449410 DOI: 10.1016/0378-1119(93)90741-k] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The pobA gene encoding p-hydroxybenzoate hydroxylase (PobA) from Acinetobacter calcoaceticus has been developed as a genetic tool for the analysis of structure-function relationships in this enzyme. By exploiting the favorable genetic system of A. calcoaceticus strain ADP1, it is possible both to select and to map mutations which disturb PobA activity; characterization and sequence determination of mutants derived in this manner may complement site-directed studies with the homologous Pseudomonas aeruginosa gene. We have determined the nucleotide (nt) sequence of A. calcoaceticus pobA and performed a systematic comparison of the deduced amino acid (aa) sequence with that of the PobA enzyme from Pseudomonas fluorescens, for which the three-dimensional structure is known. Despite a 26% difference in the G+C content of the homologous genes, constraints against structural divergence of the proteins were revealed by an overall identity of 62.4% in the aligned aa sequences of PobA. Clusters of identical sequence occur at previously identified sites of ligand binding and at regions associated with subunit-subunit interaction. Based on the conservation of specific residues involved in flavin binding, we have assembled a consensus sequence for nicotinamide-flavoprotein monooxygenases which differs from that of the oxidoreductase class of flavoproteins. In addition to the conserved regions shared by the two PobA homologs, there are isolated pockets of divergence. The nt sequence divergence in one such region within the A. calcoaceticus gene can be attributed to the acquisition of short nt sequence repetitions.
Collapse
|
|
32 |
51 |
14
|
Doukyu N, Toyoda K, Aono R. Indigo production by Escherichia coli carrying the phenol hydroxylase gene from Acinetobacter sp strain ST-550 in a water-organic solvent two-phase system. Appl Microbiol Biotechnol 2003; 60:720-5. [PMID: 12664152 DOI: 10.1007/s00253-002-1187-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Revised: 10/23/2002] [Accepted: 10/31/2002] [Indexed: 11/28/2022]
Abstract
Acinetobacter sp. strain ST-550 produces indigo from indole in the presence of a large volume of diphenylmethane and a high level of indole. Particular proteins increased remarkably in strain ST-550 grown in the two-phase culture system for indigo production. One of the proteins showed a N-terminal amino acid sequence that was identical to that of the largest subunit of phenol hydroxylase (MopN) from A. calcoaceticus NCBI8250. The indigo-producing activity was strongly induced when ST-550 was grown with phenol as a sole carbon source. Genes coding for the multicomponent phenol hydroxylase were cloned, based on the homology with mopKLMOP from A. calcoaceticus NCBI8250. Escherichia coli carrying the genes produced indigo from indole. E. coli JA300 and its cyclohexane-resistant mutant, OST3410, carrying the hydroxylase genes and the NADH regeneration system were grown in the two-phase culture system for indigo production. The OST3410 recombinant produced 52 microg indigo ml(-1) of medium in the presence of diphenylmethane. This productivity was 4.3-fold higher than that of the JA300 recombinant.
Collapse
|
Comparative Study |
22 |
49 |
15
|
Vollmer MD, Fischer P, Knackmuss HJ, Schlömann M. Inability of muconate cycloisomerases to cause dehalogenation during conversion of 2-chloro-cis,cis-muconate. J Bacteriol 1994; 176:4366-75. [PMID: 8021223 PMCID: PMC205650 DOI: 10.1128/jb.176.14.4366-4375.1994] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The conversion of 2-chloro-cis,cis-muconate by muconate cycloisomerase from Pseudomonas putida PRS2000 yielded two products which by nuclear magnetic resonance spectroscopy were identified as 2-chloro- and 5-chloromuconolactone. High-pressure liquid chromatography analyses showed the same compounds to be formed also by muconate cycloisomerases from Acinetobacter calcoaceticus ADP1 and Pseudomonas sp. strain B13. During 2-chloro-cis,cis-muconate turnover by the enzyme from P. putida, 2-chloromuconolactone initially was the major product. After prolonged incubation, however, 5-chloromuconolactone dominated in the resulting equilibrium. In contrast to previous assumptions, both chloromuconolactones were found to be stable at physiological pH. Since the chloromuconate cycloisomerases of Pseudomonas sp. strain B13 and Alcaligenes eutrophus JMP134 have been shown previously to produce the trans-dienelactone (trans-4-carboxymethylene-but-2-en-4-olide) from 2-chloro-cis,cis-muconate, they must have evolved the capability to cleave the carbon-chlorine bond during their divergence from normal muconate cycloisomerases.
Collapse
|
research-article |
31 |
47 |
16
|
Kataoka M, Honda K, Shimizu S. 3,4-Dihydrocoumarin hydrolase with haloperoxidase activity from Acinetobacter calcoaceticus F46. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3-10. [PMID: 10601844 DOI: 10.1046/j.1432-1327.2000.00889.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel lactonohydrolase, an enzyme that catalyzes the hydrolysis of 3,4-dihydrocoumarin, was purified 375-fold to apparent homogeneity, with a 22.7% overall recovery, from Acinetobacter calcoaceticus F46, which was isolated as a fluorene-assimilating micro-organism. The molecular mass of the native enzyme, as estimated by high-performance gel-permeation chromatography, is 56 kDa, and the subunit molecular mass is 30 kDa. The enzyme specifically hydrolyzes 3,4-dihydrocoumarin, and the Km and Vmax for 3,4-dihydrocoumarin are 0.806 mM and 4760 U.mg-1, respectively. The N-terminal and internal amino acid sequences of the enzyme show high similarity to those of bacterial non-heme haloperoxidases. The enzyme exhibits brominating activity with monochlorodimedon in the presence of H2O2 and 3, 4-dihydrocoumarin or an organic acid, such as acetate and n-butyrate.
Collapse
|
|
25 |
46 |
17
|
Gurbiel RJ, Doan PE, Gassner GT, Macke TJ, Case DA, Ohnishi T, Fee JA, Ballou DP, Hoffman BM. Active site structure of Rieske-type proteins: electron nuclear double resonance studies of isotopically labeled phthalate dioxygenase from Pseudomonas cepacia and Rieske protein from Rhodobacter capsulatus and molecular modeling studies of a Rieske center. Biochemistry 1996; 35:7834-45. [PMID: 8672484 DOI: 10.1021/bi960380u] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Continuous wave electron nuclear double resonance (CW ENDOR) spectra of [delta-15N,epsilon(-14)N]histidine-labeled phthalate dioxygenase (PDO) from Pseudomonas cepacia were recorded and found to be virtually identical to those previously recorded from [delta,epsilon-15N2]histidine-labeled protein [Gurbiel, R. J., Batie, C. J., Sivaraja, M., True, A. E., Fee, J. A., Hoffman, B. M., & Ballou, D. P. (1989) Biochemistry 28, 4861-4871]. Thus, the two histidine residues, previously shown to ligate one of the irons in the cluster [cf. Gurbiel et al. 1989)], both coordinate the metal at the N(delta) position of their imidazole rings. Pulsed ENDOR studies showed that the "remote", noncoordinating nitrogen of the histidine imidazole ring could be observed from the Rieske protein in a sample of Rhodobacter capsulatus cytochrome bc1 complex uniformly labeled with 15N but not in a sample of PDO labeled with [delta-15N,epsilon-14N]histidine, but this atom was easily observed with a sample of Rh. capsulatus cytochrome bc1 complex that had been uniformly labeled with 15N; this confirmed the conclusion from the CW ENDOR studies that ligation is exclusively via N(delta) for both ligands in the PDO center. Modifications in the algorithms previously used to simulate 14N ENDOR spectra permitted us to compute spectra without any constraints on the relative orientation of hyperfine and quadrupole tensors. This new algorithm was used to analyze current and previously published spectra, and slightly different values for the N-Fe-N angle and imidazole ring rotation angles are presented [cf. Gurbiel et al. (1989) Gurbiel, R. J., Ohnishi, T., Robertson, D. E., Daldal, F., and Hoffman, B. M. (1991) Biochemistry 30, 11579-11584]. This analysis has permitted us to refine the proposed structure of the [2Fe-2S] Rieske-type cluster and rationalize some of the properties of these novel centers. Although the spectra of cytochrome bc1 complex from Rh. capsulatus are of somewhat lower resolution than those obtained with samples of PDO, our analysis nevertheless permits the conclusion that the geometry of the cluster is essentially the same for all Rieske and Rieske-type proteins. Structural constraints inferred from the spectroscopic results permitted us to apply the principles of distance geometry to arrive at possible three-dimensional models of the active site structure of Rieske protein from Rh. capsulatus. Results from this test case indicate that similar procedures should be generally useful in metalloprotein systems. We also recorded the pulsed and CW ENDOR spectra of 57Fe-labeled PDO, and the resulting data were used to derive the full hyperfine tensors for both Fe(III) and Fe(II) ions, including their orientations relative to the g tensor. The A tensor of the ferric ion is nominally isotropic, while the A tensor of the ferrous ion is axial, having A(parallel) > A(perpendicular); both tensors are coincident with the observed g tensor, with A(parallel) of the ferrous ion lying along the maximum g-value, g1. These results were examined using refinements of existing theories of spin-coupling in [2Fe-2S]+ clusters, and it is concluded that current theories are not adequate to fully describe the experimental results.
Collapse
|
Comparative Study |
29 |
45 |
18
|
Obara M, Nakae T. Mechanisms of resistance to beta-lactam antibiotics in Acinetobacter calcoaceticus. J Antimicrob Chemother 1991; 28:791-800. [PMID: 1816177 DOI: 10.1093/jac/28.6.791] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Examination of 12 strains of Acinetobacter calcoaceticus revealed that the strains expressed different constitutive levels of beta-lactamase. Mutants resistant to cefoxitin, cefoperazone or ceftazidime were selected from a strain producing a low level of beta-lactamase. All the mutants showed no change in expression of beta-lactamase, but produced penicillin-binding proteins with altered expression and/or affinity for beta-lactams. In addition, the outer membrane of the mutants showed decreased permeability (40-80% that of the parent strain) towards small hydrophilic solutes, together with diminished production of a 46.5 kDa porin protein. It was concluded that the enhanced resistance to beta-lactams in the A. calcoaceticus mutants was the result of interplay between the altered penicillin binding proteins and the reduced outer membrane permeability.
Collapse
|
Comparative Study |
34 |
44 |
19
|
Pratuangdejkul J, Dharmsthiti S. Purification and characterization of lipase from psychrophilic Acinetobacter calcoaceticus LP009. Microbiol Res 2000; 155:95-100. [PMID: 10950191 DOI: 10.1016/s0944-5013(00)80043-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A lipase-producing bacterium, Acinetobacter calcoacetius LP009, was isolated from raw milk. The optimum conditions for growth and lipase production by A. calcoaceticus LP009 were 15 degrees C with shaking at 200 rpm in LB supplemented with 1.0% (v/v) Tween 80. The crude lipase was purified to homogeneous state by ultrafiltration and gel filtration chromatography on Sephadex G-100. Its molecular weight determined by SDS-PAGE was 23 kDa and it exhibited maximum activity at pH 7.0 and 50 degrees C. It was stable over the pH range of 4.0 to 8.0 and at temperatures lower than 45 degrees C. It was a metalloenzyme that is positionally non-specific and had the ability to improve fat hydrolysis in soybean meal and in premixed animals feed.
Collapse
|
|
25 |
41 |
20
|
Elsemore DA, Ornston LN. Unusual ancestry of dehydratases associated with quinate catabolism in Acinetobacter calcoaceticus. J Bacteriol 1995; 177:5971-8. [PMID: 7592351 PMCID: PMC177426 DOI: 10.1128/jb.177.20.5971-5978.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Catabolism of quinate to protocatechuate requires the consecutive action of quinate dehydrogenase (QuiA), dehydroquinate dehydratase (QuiB), and dehydroshikimate dehyratase (QuiC), Genes for catabolism of protocatechuate are encoded by the pca operon in the Acinetobacter calcoaceticus chromosome. Observations reported here demonstrate that A. calcoaceticus qui genes are clustered in the order quiBCXA directly downstream from the pca operon. Sequence comparisons indicate that quiX encodes a porin, but the specific function of this protein has not been clearly established. Properties of mutants created by insertion of omega elements show that quiBC is expressed as part of a single transcript, but there is also an independent transcriptional initiation site directly upstream of quiA. The deduced amino acid sequence of QuiC does not resemble any other known sequence. A. calcoaceticus QuiB is most directly related to a family of enzymes with identical catalytic activity and biosynthetic AroD function in coliform bacteria. Evolution of A. calcoaceticus quiB appears to have been accompanied by fusion of a leader sequence for transport of the encoded protein into the inner membrane, and the location of reactions catalyzed by the mature enzyme may account for the failure of A. calcoaceticus aroD to achieve effective complementation of null mutations in quiB. Analysis of a genetic site where a DNA segment encoding a leader sequence was transposed adds to evidence suggesting horizontal transfer of nucleotide sequences within genes during evolution.
Collapse
|
research-article |
30 |
40 |
21
|
Southall SM, Doel JJ, Richardson DJ, Oubrie A. Soluble Aldose Sugar Dehydrogenase from Escherichia coli. J Biol Chem 2006; 281:30650-9. [PMID: 16864586 DOI: 10.1074/jbc.m601783200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A water-soluble aldose sugar dehydrogenase (Asd) has been purified for the first time from Escherichia coli. The enzyme is able to act upon a broad range of aldose sugars, encompassing hexoses, pentoses, disaccharides, and trisaccharides, and is able to oxidize glucose to gluconolactone with subsequent hydrolysis to gluconic acid. The enzyme shows the ability to bind pyrroloquinoline quinone (PQQ) in the presence of Ca2+ in a manner that is proportional to its catalytic activity. The x-ray structure has been determined in the apo-form and as the PQQ-bound active holoenzyme. The beta-propeller fold of this protein is conserved between E. coli Asd and Acinetobacter calcoaceticus soluble glucose dehydrogenase (sGdh), with major structural differences lying in loop and surface-exposed regions. Many of the residues involved in binding the cofactor are conserved between the two enzymes, but significant differences exist in residues likely to contact substrates. PQQ is bound in a large cleft in the protein surface and is uniquely solvent-accessible compared with other PQQ enzymes. The exposed and charged nature of the active site and the activity profile of this enzyme indicate possible factors that underlie a low affinity for glucose but generic broad substrate specificity for aldose sugars. These structural and catalytic properties of the enzymes have led us to propose that E. coli Asd provides a prototype structure for a new subgroup of PQQ-dependent soluble dehydrogenases that is distinct from the A. calcoaceticus sGdh subgroup.
Collapse
|
|
19 |
39 |
22
|
Williams PA, Shaw LE. mucK, a gene in Acinetobacter calcoaceticus ADP1 (BD413), encodes the ability to grow on exogenous cis,cis-muconate as the sole carbon source. J Bacteriol 1997; 179:5935-42. [PMID: 9294455 PMCID: PMC179487 DOI: 10.1128/jb.179.18.5935-5942.1997] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Benzyl alcohol, benzaldehyde, benzoate, and anthranilate are metabolized via catechol, cis,cis-muconate, and the beta-ketoadipate pathway in Acinetobacter calcoaceticus ADP1 (BD413). Mutant strain ISA25 with a deletion spanning catBCIJF and unable to metabolize muconate further will not grow in the presence of an aromatic precursor of muconate. Growth on fumarate as the sole carbon source with added benzyl alcohol or benzaldehyde selected spontaneous mutants of ISA25. After repair of the cat deletion by natural transformation with linearized plasmid pPAN4 (catBCIJF) 10 mutants were unable to grow on benzoate of cis,cis-muconate but could still grow on anthranilate. Transformation with wild-type chromosomal DNA demonstrated the presence of two unlinked mutations in each strain, one in the benABCD region, encoding the conversion of benzoate to catechol, and the other in a gene determining the ability to grow on exogenous cis,cis-muconate. The wild-type gene, named mucK, was cloned into pUC18, and its nucleotide sequence was determined. It encodes a 413-residue protein of M(r) = 45,252 which is a member of a superfamily of membrane transport proteins and which is within a subgroup involved in the uptake of organic acids. Five of the mutant alleles were cloned, and the mutations were determined by nucleotide sequencing. All the mutations were in the mucK coding region and consisted of three deletions, one duplication, and a substitution. Insertional inactivation of mucK resulted in the loss of the ability to utilize exogenous muconate. The location of mucK on the chromosome appeared to be unique for genes associated with the benzoate branch of the beta-ketoadipate pathway in being close to the pca-qui-pob gene cluster (for p-hydroxybenzoate utilization) and distant from the functionally related ben-cat cluster. Downstream of mucK and transcribed in the same direction is an open reading frame encoding a protein of 570 residues (M(r) = 63,002) which shows considerable homology with a mammalian electron transport protein; its insertional inactivation had no detectable phenotypic effect.
Collapse
|
research-article |
28 |
39 |
23
|
Kok RG, van Thor JJ, Nugteren-Roodzant IM, Vosman B, Hellingwerf KJ. Characterization of lipase-deficient mutants of Acinetobacter calcoaceticus BD413: identification of a periplasmic lipase chaperone essential for the production of extracellular lipase. J Bacteriol 1995; 177:3295-307. [PMID: 7768830 PMCID: PMC177023 DOI: 10.1128/jb.177.11.3295-3307.1995] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acinetobacter calcoaceticus BD413 produces an extracellular lipase, which is encoded by the lipA gene. Five lipase-deficient mutants have been generated via random insertion mutagenesis. Phenotypic characterization of these mutants revealed the presence of as many as four lipolytic enzymes in A. calcoaceticus. Biochemical evidence classified four of the mutants as export mutants, which presumably are defective in translocation of the lipase across the outer membrane. The additional mutant, designated AAC302, displays a LipA- phenotype, and yet the mutation in this strain was localized 0.84 kbp upstream of lipA. Sequence analysis of this region revealed an open reading frame, designated lipB, that is disrupted in AAC302. The protein encoded by this open reading frame shows extensive similarity to a chaperone-like helper protein of several pseudomonads, required for the production of extracellular lipase. Via complementation of AAC302 with a functional extrachromosomal copy of lipA, it could be determined that LipB is essential for lipase production. As shown by the use of a translational LipB-PhoA fusion construct, the C-terminal part of LipB of A. calcoaceticus BD413 is located outside the cytoplasm. Sequence analysis further strongly suggests that A. calcoaceticus LipB is N terminally anchored in the cytoplasmic membrane. Therefore, analogous to the situation in Pseudomonas species, however, lipB in A. calcoaceticus is located upstream of the structural lipase gene. lipB and lipA form a bicistronic operon, and the two genes are cotranscribed from an Escherichia coli sigma 70-type promoter. The reversed order of genes, in comparison with the situation in Pseudomonas species, suggests that LipA and LipB are produced in equimolar amounts. Therefore, the helper protein presumably does not only have a catalytic function, e.g., in folding of the lipase, but is also likely to act as a lipase-specific chaperone. A detailed model of the export route of the lipase of A. calcoaceticus BD413 is proposed.
Collapse
|
research-article |
30 |
37 |
24
|
Abstract
PQQ glucose dehydrogenase from Acinetobacter calcoaceticus (GDH-B) is one of the most industrially attractive enzymes, as a sensor constituent for glucose sensing, because of its high catalytic activity and insensitivity to oxygen. We attempted to engineer GDH-B to enable electron transfer to the electrode in the absence of artificial electron mediator by mimicking the domain structure of the quinohemoprotein ethanol dehydrogenase (QH-EDH) from Comamonas testosteroni, which is composed of a PQQ-containing catalytic domain and a cytochrome c domain. We genetically fused the cytochrome c domain of QH-EDH to the C-terminal of GDH-B. The constructed fusion protein showed not only intra-molecular electron transfer, between PQQ and heme of the cytochrome c domain, but also electron transfer from heme to the electrode, thereby allowing the construction of a direct electron transfer-type glucose sensor.
Collapse
|
Journal Article |
21 |
36 |
25
|
Kok RG, Nudel CB, Gonzalez RH, Nugteren-Roodzant IM, Hellingwerf KJ. Physiological factors affecting production of extracellular lipase (LipA) in Acinetobacter calcoaceticus BD413: fatty acid repression of lipA expression and degradation of LipA. J Bacteriol 1996; 178:6025-35. [PMID: 8830702 PMCID: PMC178462 DOI: 10.1128/jb.178.20.6025-6035.1996] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The extracellular lipase (LipA) produced by Acinetobacter calcoaceticus BD413 is required for growth of the organism on triolein, since mutant strains that lack an active lipase fail to grow with triolein as the sole carbon source. Surprisingly, extracellular lipase activity and expression of the structural lipase gene (lipA), the latter measured through lacZ as a transcriptional reporter, are extremely low in triolein cultures of LipA+ strains. The explanation for this interesting paradox lies in the effect of fatty acids on the expression of lipA. We found that long-chain fatty acids, especially, strongly repress the expression of lipA, thereby negatively influencing the production of lipase. We propose the involvement of a fatty acyl-responsive DNA-binding protein in regulation of expression of the A. calcoaceticus lipBA operon. The potential biological significance of the observed physiological competition between expression and repression of lipA in the triolein medium is discussed. Activity of the extracellular lipase is also negatively affected by proteolytic degradation, as shown in in vitro stability experiments and by Western blotting (immunoblotting) of concentrated supernatants of stationary-phase cultures. In fact, the relatively high levels of extracellular lipase produced in the early stationary phase in media which contain hexadecane are due only to enhanced stability of the extracellular enzyme under those conditions. The rapid extracellular degradation of LipA of A. calcoaceticus BD413 by an endogenous protease is remarkable and suggests that proteolytic degradation of the enzyme is another important factor in regulating the level of active extracellular lipase.
Collapse
|
research-article |
29 |
34 |