1
|
Schupp M, Janke J, Clasen R, Unger T, Kintscher U. Angiotensin Type 1 Receptor Blockers Induce Peroxisome Proliferator–Activated Receptor-γ Activity. Circulation 2004; 109:2054-7. [PMID: 15117841 DOI: 10.1161/01.cir.0000127955.36250.65] [Citation(s) in RCA: 555] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background—
Angiotensin type 1 receptor (AT
1
R) blockers (ARB) have been shown to reduce the incidence of type 2 diabetes mellitus by an unknown molecular mechanism. The peroxisome proliferator–activated receptor-γ (PPARγ) is the central regulator of insulin and glucose metabolism improving insulin sensitivity. We investigated the regulation of PPARγ function by ARBs.
Methods and Results—
The ARBs irbesartan and telmisartan (10 μmol/L) potently enhanced PPARγ-dependent 3T3-L1 adipocyte differentiation associated with a significant increase in mRNA expression of the adipogenic marker gene adipose protein 2 (aP2), as measured by quantitative real-time polymerase chain reaction (irbesartan: 3.3±0.1-fold induction; telmisartan: 3.1±0.3-fold induction; both
P
<0.01). Telmisartan showed a more pronounced induction of aP2 expression in lower, pharmacologically relevant concentrations compared with the other ARBs. The ARB losartan enhanced aP2 expression only at high concentrations (losartan 100 μmol/L: 3.6±0.3-fold induction;
P
<0.01), whereas eprosartan up to 100 μmol/L had no significant effects. In transcription reporter assays, irbesartan and telmisartan (10 μmol/L) markedly induced transcriptional activity of PPARγ by 3.4±0.9-fold and 2.6±0.6-fold (
P
<0.05), respectively, compared with 5.2±1.1-fold stimulation by the PPARγ ligand pioglitazone (10 μmol/L). Irbesartan and telmisartan also induced PPARγ activity in an AT
1
R-deficient cell model (PC12W), demonstrating that these ARBs stimulate PPARγ activity independent of their AT
1
R blocking actions.
Conclusions—
The present study demonstrates that a specific subset of ARBs induces PPARγ activity, thereby promoting PPARγ-dependent differentiation in adipocytes. The activation of PPARγ demonstrates new pleiotropic actions of certain ARBs, providing a potential mechanism for their insulin-sensitizing/antidiabetic effects.
Collapse
|
|
21 |
555 |
2
|
Talalay P, De Long MJ, Prochaska HJ. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc Natl Acad Sci U S A 1988; 85:8261-5. [PMID: 3141925 PMCID: PMC282409 DOI: 10.1073/pnas.85.21.8261] [Citation(s) in RCA: 408] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Carcinogenesis is blocked by an extraordinary variety of agents belonging to many different classes--e.g., phenolic antioxidants, azo dyes, polycyclic aromatics, flavonoids, coumarins, cinnamates, indoles, isothiocyanates, 1,2-dithiol-3-thiones, and thiocarbamates. The only known common property of these anticarcinogens is their ability to elevate in animal cells the activities of enzymes that inactivate the reactive electrophilic forms of carcinogens. Structure-activity studies on the induction of quinone reductase [NAD(P)H:(quinone-acceptor) oxidoreductase, EC 1.6.99.2] and glutathione S-transferases have revealed that many anti-carcinogenic enzyme inducers contain a distinctive and hitherto unrecognized chemical feature (or acquire this feature after metabolism) that regulates the synthesis of these protective enzymes. The inducers are Michael reaction acceptors characterized by olefinic (or acetylenic) bonds that are rendered electrophilic (positively charged) by conjugation with electron-withdrawing substrates. The potency of inducers parallels their efficiency in Michael reactions. Many inducers are also substrates for glutathione S-transferases, which is further evidence for their electrophilicity. These generalizations have not only provided mechanistic insight into the perplexing question of how such seemingly unrelated anticarcinogens induce chemoprotective enzymes, but also have led to the prediction of the structures of inducers with potential chemoprotective activity.
Collapse
|
research-article |
37 |
408 |
3
|
Lapalombella R, Sun Q, Williams K, Tangeman L, Jha S, Zhong Y, Goettl V, Mahoney E, Berglund C, Gupta S, Farmer A, Mani R, Johnson AJ, Lucas D, Mo X, Daelemans D, Sandanayaka V, Shechter S, McCauley D, Shacham S, Kauffman M, Chook YM, Byrd JC. Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood 2012; 120:4621-34. [PMID: 23034282 PMCID: PMC3512237 DOI: 10.1182/blood-2012-05-429506] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/23/2012] [Indexed: 02/08/2023] Open
Abstract
The nuclear export protein XPO1 is overexpressed in cancer, leading to the cytoplasmic mislocalization of multiple tumor suppressor proteins. Existing XPO1-targeting agents lack selectivity and have been associated with significant toxicity. Small molecule selective inhibitors of nuclear export (SINEs) were designed that specifically inhibit XPO1. Genetic experiments and X-ray structures demonstrate that SINE covalently bind to a cysteine residue in the cargo-binding groove of XPO1, thereby inhibiting nuclear export of cargo proteins. The clinical relevance of SINEs was explored in chronic lymphocytic leukemia (CLL), a disease associated with recurrent XPO1 mutations. Evidence is presented that SINEs can restore normal regulation to the majority of the dysregulated pathways in CLL both in vitro and in vivo and induce apoptosis of CLL cells with a favorable therapeutic index, with enhanced killing of genomically high-risk CLL cells that are typically unresponsive to traditional therapies. More importantly, SINE slows disease progression, and improves overall survival in the Eμ-TCL1-SCID mouse model of CLL with minimal weight loss or other toxicities. Together, these findings demonstrate that XPO1 is a valid target in CLL with minimal effects on normal cells and provide a basis for the development of SINEs in CLL and related hematologic malignancies.
Collapse
MESH Headings
- Acrylates/chemistry
- Acrylates/metabolism
- Acrylates/pharmacology
- Active Transport, Cell Nucleus/drug effects
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cells, Cultured
- Crystallography, X-Ray
- Humans
- Immunoblotting
- Interleukin-10/metabolism
- Interleukin-6/metabolism
- Karyopherins/chemistry
- Karyopherins/genetics
- Karyopherins/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mice
- Mice, SCID
- Mice, Transgenic
- Microscopy, Confocal
- Models, Molecular
- Molecular Structure
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- Triazoles/chemistry
- Triazoles/metabolism
- Triazoles/pharmacology
- Exportin 1 Protein
Collapse
|
Research Support, N.I.H., Extramural |
13 |
244 |
4
|
Schell JC, Wisidagama DR, Bensard C, Zhao H, Wei P, Tanner J, Flores A, Mohlman J, Sorensen LK, Earl CS, Olson KA, Miao R, Waller TC, Delker D, Kanth P, Jiang L, DeBerardinis RJ, Bronner MP, Li DY, Cox JE, Christofk HR, Lowry WE, Thummel CS, Rutter J. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat Cell Biol 2017; 19:1027-1036. [PMID: 28812582 PMCID: PMC6137334 DOI: 10.1038/ncb3593] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells.
Collapse
|
research-article |
8 |
233 |
5
|
Wang KK, Nath R, Posner A, Raser KJ, Buroker-Kilgore M, Hajimohammadreza I, Probert A W, Marcoux FW, Ye Q, Takano E, Hatanaka M, Maki M, Caner H, Collins JL, Fergus A, Lee KS, Lunney EA, Hays SJ, Yuen P. An alpha-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective. Proc Natl Acad Sci U S A 1996; 93:6687-92. [PMID: 8692879 PMCID: PMC39087 DOI: 10.1073/pnas.93.13.6687] [Citation(s) in RCA: 225] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Overactivation of calcium-activated neutral protease (calpain) has been implicated in the pathophysiology of several degenerative conditions, including stroke, myocardial ischemia, neuromuscular degeneration, and cataract formation. Alpha-mercaptoacrylate derivatives (exemplified by PD150606), with potent and selective inhibitory actions against calpain, have been identified. PD150606 exhibits the following characteristics: (i) Ki values for mu- and m-calpains of 0.21 microM and 0.37 microM, respectively, (ii) high specificity for calpains relative to other proteases, (iii) uncompetitive inhibition with respect to substrate, and (iv) it does not shield calpain against inactivation by the active-site inhibitor trans-(epoxysuccinyl)-L-leucyl-amido-3-methylbutane, suggesting a nonactive site action for PD150606. The recombinant calcium-binding domain from each of the large or small subunits of mu-calpain was found to interact with PD150606. In low micromolar range, PD15O6O6 inhibited calpain activity in two intact cell systems. The neuroprotective effects of this class of compound were also demonstrated by the ability of PD150606 to attenuate hypoxic/hypoglycemic injury to cerebrocortical neurons in culture and excitotoxic injury to Purkinje cells in cerebellar slices.
Collapse
|
research-article |
29 |
225 |
6
|
Boyland E, Chasseaud LF. The effect of some carbonyl compounds on rat liver glutathione levels. Biochem Pharmacol 1970; 19:1526-8. [PMID: 5513938 DOI: 10.1016/0006-2952(70)90075-4] [Citation(s) in RCA: 221] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
|
55 |
221 |
7
|
Schupp M, Clemenz M, Gineste R, Witt H, Janke J, Helleboid S, Hennuyer N, Ruiz P, Unger T, Staels B, Kintscher U. Molecular characterization of new selective peroxisome proliferator-activated receptor gamma modulators with angiotensin receptor blocking activity. Diabetes 2005; 54:3442-52. [PMID: 16306360 DOI: 10.2337/diabetes.54.12.3442] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Selective peroxisome proliferator-activated receptor (PPAR) gamma modulation is a new pharmacological approach that, based on selective receptor-cofactor interactions and target gene regulation, should result in potent insulin sensitization in the absence of PPARgamma-mediated adverse effects. Here, we characterize two angiotensin receptor blockers (ARBs), telmisartan and irbesartan, as new selective PPAR modulators (SPPARMs). Analysis of PPARgamma protein conformation using protease protection showed that telmisartan directly interacts with the receptor, producing a distinct conformational change compared with a glitazone. Glutathione S-transferase pull-down and fluorescence resonance energy transfer assays revealed selective cofactor binding by the ARBs compared with glitazones with an attenuated release of the nuclear receptor corepressor and absence of transcriptional intermediary factor 2 recruitment by ARBs. Consistently, selective cofactor binding resulted in differential gene expression profiles in adipocytes (ARB versus glitazone treated) assessed by oligo microarray analysis. Finally, telmisartan improved insulin sensitivity in diet-induced obese mice in the absence of weight gain. The present study identifies two ARBs as new SPPARMs. SPPARM activity by ARBs could retain the metabolic efficacy of PPARgamma activation with reduction in adverse effects exerting in parallel AT1 receptor blockade. This may provide a new therapeutic option for better cardiovascular risk management in metabolic diseases and may initiate the development of new classes of drugs combining potent antihypertensive and antidiabetic actions.
Collapse
|
|
20 |
212 |
8
|
Aimee F, John S, Abby K, David J, Matilde M, Melina G, Daniel B, White Andrew C, Jessica Z, Nick G, Thomas G, Pankaj S, Denis E, Hilary C, Jared R, Heather C, Lowry William E. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat Cell Biol 2017; 19:1017-1026. [PMID: 28812580 PMCID: PMC5657543 DOI: 10.1038/ncb3575] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Although normally dormant, hair follicle stem cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier 1 (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allows them to remain dormant and yet quickly respond to appropriate proliferative stimuli.
Collapse
|
research-article |
8 |
198 |
9
|
Lee K, Klein-Szanto AJ, Kruh GD. Analysis of the MRP4 drug resistance profile in transfected NIH3T3 cells. J Natl Cancer Inst 2000; 92:1934-40. [PMID: 11106685 DOI: 10.1093/jnci/92.23.1934] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Multidrug resistance-associated protein (MRP) 1 and canalicular multispecific organic anion transporter (cMOAT or MRP2) are adenosine triphosphate-binding cassette transporters that confer resistance to anticancer agents. In addition to these two transporters, there are at least four other human MRP subfamily members (MRP3 through MRP6). We and others reported previously that MRP3 is capable of conferring resistance to certain anticancer agents. In this study, we investigated whether MRP4 (MOAT-B), whose transcript accumulates to the highest levels in prostate tissue, has the capacity to confer drug resistance. METHODS MRP4-transfected NIH3T3 cells were generated, and their drug sensitivity was analyzed. The subcellular localization of MRP4 was assessed by immunohistochemical analysis in transfected cells and in prostate tissue. Statistical tests were two-sided. RESULTS MRP4 was detected as a 170-kd protein that was localized in the plasma membrane and cytoplasm of transfected cells. The MRP4 transfectants displayed 5.5-fold increased resistance to methotrexate in short-term drug-exposure assays (P=.022) and exhibited decreased cellular accumulation of this agent at 4 hours (P=.006) and 24 hours (P<.001). In continuous-exposure assays, however, the MRP4 transfectants did not display increased resistance for either methotrexate or natural product cytotoxic agents (anthracyclines, etoposide, vinca alkaloids, and paclitaxel [Taxol]). However, the transfectants did show increased resistance (2.3-fold) for the anti-acquired immunodeficiency syndrome nucleoside analogue 9-(2-phosphonylmethoxyethyl)adenine (PMEA) (P=.022) in continuous-exposure assays. Consistent with MRP4's plasma membrane localization in transfected cells, analysis of prostate tissue showed that MRP4 protein was localized primarily in the basolateral plasma membranes of tubuloacinar cells. CONCLUSIONS These results indicate that MRP4 confers resistance to short-term methotrexate and continuous PMEA treatment. Given its structure, drug resistance profile and subcellular localization, MRP4 probably functions as an amphipathic anion efflux pump whose substrate range includes glutamate and phosphate conjugates.
Collapse
MESH Headings
- 3T3 Cells
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/physiology
- Acrylates/pharmacology
- Animals
- Anion Transport Proteins
- Antibiotics, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/pharmacology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents, Phytogenic/pharmacology
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Cloning, Molecular
- DNA, Complementary/genetics
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor
- Humans
- Immunoblotting
- Immunohistochemistry
- Male
- Methotrexate/pharmacology
- Mice
- Polymers/pharmacology
- Prostate/metabolism
- Transfection
Collapse
|
|
25 |
175 |
10
|
Ranganathan P, Yu X, Na C, Santhanam R, Shacham S, Kauffman M, Walker A, Klisovic R, Blum W, Caligiuri M, Croce CM, Marcucci G, Garzon R. Preclinical activity of a novel CRM1 inhibitor in acute myeloid leukemia. Blood 2012; 120:1765-73. [PMID: 22677130 PMCID: PMC3433086 DOI: 10.1182/blood-2012-04-423160] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/01/2012] [Indexed: 12/12/2022] Open
Abstract
Chromosome maintenance protein 1 (CRM1) is a nuclear export receptor involved in the active transport of tumor suppressors (e.g., p53 and nucleophosmin) whose function is altered in cancer because of increased expression and overactive transport. Blocking CRM1-mediated nuclear export of such proteins is a novel therapeutic strategy to restore tumor suppressor function. Orally bioavailable selective inhibitors of nuclear export (SINE) that irreversibly bind to CRM1 and block the function of this protein have been recently developed. Here we investigated the antileukemic activity of KPT-SINE (KPT-185 and KPT-276) in vitro and in vivo in acute myeloid leukemia (AML). KPT-185 displayed potent antiproliferative properties at submicromolar concentrations (IC50 values; 100-500 nM), induced apoptosis (average 5-fold increase), cell-cycle arrest, and myeloid differentiation in AML cell lines and patient blasts. A strong down-regulation of the oncogene FLT3 after KPT treatment in both FLT3-ITD and wild-type cell lines was observed. Finally, using the FLT3-ITD-positive MV4-11 xenograft murine model, we show that treatment of mice with oral KPT-276 (analog of KPT-185 for in vivo studies) significantly prolongs survival of leukemic mice (P < .01). In summary, KPT-SINE are highly potent in vitro and in vivo in AML. The preclinical results reported here support clinical trials of KPT-SINE in AML.
Collapse
MESH Headings
- Acrylamides/pharmacology
- Acrylates/pharmacology
- Acute Disease
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Drug Evaluation, Preclinical
- Female
- Humans
- Kaplan-Meier Estimate
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/metabolism
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Middle Aged
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Thiazoles/pharmacology
- Triazoles/pharmacology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
- Young Adult
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Exportin 1 Protein
Collapse
|
Research Support, N.I.H., Extramural |
13 |
166 |
11
|
|
|
55 |
165 |
12
|
Dimmock JR, Padmanilayam MP, Puthucode RN, Nazarali AJ, Motaganahalli NL, Zello GA, Quail JW, Oloo EO, Kraatz HB, Prisciak JS, Allen TM, Santos CL, Balzarini J, De Clercq E, Manavathu EK. A conformational and structure-activity relationship study of cytotoxic 3,5-bis(arylidene)-4-piperidones and related N-acryloyl analogues. J Med Chem 2001; 44:586-93. [PMID: 11170648 DOI: 10.1021/jm0002580] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 3,5-bis(arylidene)-4-piperidones 1 and related N-acryloyl analogues 2 were prepared as candidate cytotoxic agents with a view to discerning those structural features which contributed to bioactivity. A number of the compounds were markedly cytotoxic toward murine P388 and L1210 leukemic cells and also to human Molt 4/C8 and CEM neoplasms. Approximately 40% of the IC50 values generated were lower than the figures obtained for melphalan. In virtually all cases, the N-acyl compounds were significantly more bioactive than the analogues 1. In general, structure-activity relationships revealed that the cytotoxicity of series 1 was correlated positively with the size of the aryl substituents, while in series 2, a -sigma relationship was established. In particular, various angles and interatomic distances were obtained by molecular modeling, and the presence of an acryloyl group on the piperidyl nitrogen atom in series 2 affected the relative locations of the two aryl rings. This observation, along with some differences in distances between various atoms in series 1 and 2, may have contributed to the disparity in cytotoxicity between 1 and 2. The results obtained by X-ray crystallography of representative compounds were mainly in accordance with the observations noted by molecular modeling. Selected compounds interfered with the biosynthesis of DNA, RNA, and protein in murine L1210 cells, while others were shown to cause apoptosis in the human Jurkat leukemic cell line. This study has revealed the potential of these molecules for development as cytotoxic and anticancer agents.
Collapse
|
|
24 |
165 |
13
|
Ohse T, Inagi R, Tanaka T, Ota T, Miyata T, Kojima I, Ingelfinger JR, Ogawa S, Fujita T, Nangaku M. Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney Int 2006; 70:1447-55. [PMID: 16955111 DOI: 10.1038/sj.ki.5001704] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic proteinuria appears to be a key factor in tubulointerstitial damage. Recent studies have emphasized a pathogenic role of endoplasmic reticulum (ER) stress which is induced by the accumulation of misfolded proteins in ER, extracellular stress, etc. In the present study, we investigated ER stress and ER stress-induced apoptosis in proximal tubular cells (PTCs). Immortalized rat PTCs (IRPTCs) were cultured with bovine serum albumin (BSA). The viability of IRPTCs decreased proportionately with BSA overload in a time-dependent manner. Quantitative real-time polymerase chain reaction analysis revealed that 40 mg/ml BSA increases mRNA of ER stress markers by 7.7- and 4.6-fold (glucose-regulated protein 78 (GRP78) and oxygen-regulated protein 150 (ORP150), respectively) as compared to control. The increased expression of ORP150 and GRP78 in IRPTCs with albumin overload was detected by Western blot and immunofluorescence study. These in vitro observations were supported by in vivo studies, which demonstrated that ER stress proteins were upregulated at PTCs in experimental proteinuric rats. Furthermore, increased ER stress-induced apoptosis and activation of caspase-12 were observed in IRPTCs with albumin overload and kidneys of experimental proteinuric rats. We confirmed that apoptotic cell death was attenuated by co-incubation with caspase-3 inhibitor or calpain inhibitors. These results indicate that the ER stress-induced apoptosis pathway contributed to the insult of tubular cells by proteinuria. In conclusion, renal tubular cells exposed to high protein load suffer from ER stress. ER stress may subsequently lead to tubular damage by activation of caspase-12.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
163 |
14
|
Beeh KM, Kornmann O, Buhl R, Culpitt SV, Giembycz MA, Barnes PJ. Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest 2003; 123:1240-7. [PMID: 12684317 DOI: 10.1378/chest.123.4.1240] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES Neutrophilic inflammation is a major feature of COPD. Several factors in bronchial secretions have been identified as chemoattractants for neutrophils. The present study was designed to assess the contribution of interleukin (IL)-8 and leukotriene B(4) (LTB(4)) to neutrophil chemotaxis evoked by sputum obtained from patients with established COPD. DESIGN Sputum supernatant of 20 patients with COPD was used as chemoattractant in a 96-well chemotaxis chamber, with subsequent quantification of migrated cells by a luminescence assay. The contribution of IL-8 and LTB(4) to chemotaxis was determined by addition of a neutralizing antibody and a selective receptor antagonist, respectively. MEASUREMENTS AND RESULTS COPD sputum caused neutrophil chemotaxis in a concentration-dependent manner, with a maximum response evoked with a 10-fold dilution of the original sample. Pretreatment of sputum or neutrophils with either an anti-IL-8 antibody or the LTB(4) antagonist, SB 201146, led to a concentration-dependent inhibition of sputum-induced neutrophil chemotaxis, with a maximum suppression (mean +/- SEM) of 29.2 +/- 4.9% (p < 0.001) from baseline by 100 ng/mL of anti-IL-8 antibody, and 45.6 +/- 7% (p < 0.02) by 10 micro mol/L of SB 201146. The combination of the anti-IL-8 antibody and SB 201146 inhibited neutrophil chemotaxis, but this was not significantly greater than the effect of SB 201146 or anti-IL-8 alone. CONCLUSIONS These data confirm the importance of IL-8 and LTB(4) as chemoattractants for neutrophils in bronchial secretions from patients with COPD, and suggest that specific inhibitors may have therapeutic potential in COPD.
Collapse
|
|
22 |
158 |
15
|
An WG, Hwang SG, Trepel JB, Blagosklonny MV. Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 2000; 14:1276-83. [PMID: 10914553 DOI: 10.1038/sj.leu.2401812] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inhibitors of proteases are currently emerging as a potential anti-cancer modality. Nonselective protease inhibitors are cytotoxic to leukemia and cancer cell lines and we found that this cytotoxicity is correlated with their potency as inhibitors of the proteasome but not as inhibitors of calpain and cathepsin. Highly selective inhibitors of the proteasome were more cytotoxic and fast-acting than less selective inhibitors (PS341>>ALLN>>ALLM). Induction of wt p53 correlated with inhibition of the proteasome and antiproliferative effect in MCF7, a breast cancer cell line, which was resistant to apoptosis caused by proteasome inhibitors. In contrast, inhibitors of the proteasome induced apoptosis in four leukemia cell lines lacking wt p53. The order of sensitivity of leukemia cells was: Jurkat>HL60> or =U937>>K562. The highly selective proteasome inhibitor PS-341 induced cell death with an IC50 as low as 5 nM in apoptosis-prone leukemia cells. Cell death was preceded by p21WAF1/CIP1 accumulation, an alternative marker of proteasome inhibition, and by cleavage of PARP and Rb proteins and nuclear fragmentation. Inhibition of caspases abrogated PARP cleavage and nuclear fragmentation and delayed, but did not completely prevent cell death caused by PS-341. Reintroduction of wt p53 into p53-null PC3 prostate carcinoma cells did not increase their sensitivity to proteasome inhibitors. Likewise, comparison of parental and p21-deficient cells demonstrated that p21WAF1/CIP1 was dispensable for proteasome inhibitor-induced cytotoxicity. We conclude that accumulation of wt p53 and induction of apoptosis are independent markers of proteasome inhibition.
Collapse
|
Comparative Study |
25 |
152 |
16
|
Okano T, Nishiyama S, Shinohara I, Akaike T, Sakurai Y, Kataoka K, Tsuruta T. Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1981; 15:393-402. [PMID: 7348273 DOI: 10.1002/jbm.820150310] [Citation(s) in RCA: 144] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ABA-type block copolymers composed of 2-hydroxyethyl methacrylate (HEMA), a hydrophilic monomer, and styrene (St), a hydrophobic monomer, were synthesized by the coupling reaction of telechelic oligomers used as prepolymers. These block copolymers may be represented as microphase-separated structures. It is therefore possible to change the balance between hydrophilicity and hydrophobicity in the level of an assembled order of macromolecules. In response to the relative composition of the copolymers, three typical morphological patterns were observed in electron microscopic photographs: dispersed domains of continuous St chains in the region of HEMA chains, alternate HEMA and St lamellae and finally, dispersed phases of continuous HEMA chains in the region of St chains. The effect of the hydrophilic and hydrophobic microdomains of the copolymers on the mode of interaction between polymers and platelets was studied by the microsphere column method. In the case of homopolymers and random copolymers, a significant degree of platelet adhesion and aggregation was observed. However, the degree of platelet adhesion and deformation was suppressed on the surfaces of the block copolymers containing 0.608 and 0.347 mole fractions of HEMA whose microdomains were hydrophilic-hydrophobic lamellae and isolated hydrophilic islands in hydrophobic areas, respectively. These results show that the microphase-separated structures were antithrombogenic and prevented platelet adhesion and deformation. On the basis of the results obtained, the interaction between platelets and polymer surfaces was described in terms of the effect of hydrophilic and hydrophobic microdomains.
Collapse
|
|
44 |
144 |
17
|
Johnson AR, Caudill CL, Tumbleston JR, Bloomquist CJ, Moga KA, Ermoshkin A, Shirvanyants D, Mecham SJ, Luft JC, DeSimone JM. Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production. PLoS One 2016; 11:e0162518. [PMID: 27607247 PMCID: PMC5015976 DOI: 10.1371/journal.pone.0162518] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
Microneedles, arrays of micron-sized needles that painlessly puncture the skin, enable transdermal delivery of medications that are difficult to deliver using more traditional routes. Many important design parameters, such as microneedle size, shape, spacing, and composition, are known to influence efficacy, but are notoriously difficult to alter due to the complex nature of microfabrication techniques. Herein, we utilize a novel additive manufacturing (“3D printing”) technique called Continuous Liquid Interface Production (CLIP) to rapidly prototype sharp microneedles with tuneable geometries (size, shape, aspect ratio, spacing). This technology allows for mold-independent, one-step manufacturing of microneedle arrays of virtually any design in less than 10 minutes per patch. Square pyramidal CLIP microneedles composed of trimethylolpropane triacrylate, polyacrylic acid and photopolymerizable derivatives of polyethylene glycol and polycaprolactone were fabricated to demonstrate the range of materials that can be utilized within this platform for encapsulating and controlling the release of therapeutics. These CLIP microneedles effectively pierced murine skin ex vivo and released the fluorescent drug surrogate rhodamine.
Collapse
|
Journal Article |
9 |
143 |
18
|
Sun Q, Carrasco YP, Hu Y, Guo X, Mirzaei H, MacMillan J, Chook YM. Nuclear export inhibition through covalent conjugation and hydrolysis of Leptomycin B by CRM1. Proc Natl Acad Sci U S A 2013; 110:1303-8. [PMID: 23297231 PMCID: PMC3557022 DOI: 10.1073/pnas.1217203110] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The polyketide natural product Leptomycin B inhibits nuclear export mediated by the karyopherin protein chromosomal region maintenance 1 (CRM1). Here, we present 1.8- to 2.0-Å-resolution crystal structures of CRM1 bound to Leptomycin B and related inhibitors Anguinomycin A and Ratjadone A. Structural and complementary chemical analyses reveal an unexpected mechanism of inhibition involving covalent conjugation and CRM1-mediated hydrolysis of the natural products' lactone rings. Furthermore, mutagenesis reveals the mechanism of hydrolysis by CRM1. The nuclear export signal (NES)-binding groove of CRM1 is able to drive a chemical reaction in addition to binding protein cargoes for transport through the nuclear pore complex.
Collapse
MESH Headings
- Acrylates/chemistry
- Acrylates/pharmacology
- Active Transport, Cell Nucleus/drug effects
- Amino Acid Substitution
- Crystallography, X-Ray
- Fatty Acids, Unsaturated/chemistry
- Fatty Acids, Unsaturated/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Humans
- Hydrolysis
- Karyopherins/antagonists & inhibitors
- Karyopherins/chemistry
- Karyopherins/genetics
- Karyopherins/metabolism
- Models, Anatomic
- Mutagenesis, Site-Directed
- Nuclear Export Signals/genetics
- Protein Conformation
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Static Electricity
- Triazoles/chemistry
- Triazoles/pharmacology
- Exportin 1 Protein
Collapse
|
Research Support, N.I.H., Extramural |
12 |
142 |
19
|
Baraban M, Koudelka S, Lyons DA. Ca 2+ activity signatures of myelin sheath formation and growth in vivo. Nat Neurosci 2018; 21:19-23. [PMID: 29230058 PMCID: PMC5742537 DOI: 10.1038/s41593-017-0040-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/05/2017] [Indexed: 12/19/2022]
Abstract
During myelination, individual oligodendrocytes initially over-produce short myelin sheaths, which are either retracted or stabilized. By live-imaging oligodendrocyte Ca2+ activity in vivo, we find that high-amplitude, long-duration Ca2+ transients in sheaths prefigure retractions, mediated by calpain. Following stabilization, myelin sheaths grow along axons, and we find that higher-frequency Ca2+ transient activity in sheaths precedes faster elongation. Our data implicate local Ca2+ signaling in regulating distinct stages of myelination.
Collapse
|
research-article |
7 |
139 |
20
|
|
|
51 |
136 |
21
|
Widholm JM. Cultured Nicotiana tabacum cells with an altered anthranilate synthetase which is less sensitive to feedback inhibition. BIOCHIMICA ET BIOPHYSICA ACTA 1972; 261:52-8. [PMID: 4536832 DOI: 10.1016/0304-4165(72)90312-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
|
53 |
136 |
22
|
Lee E, Robertson T, Smith J, Kilfeather S. Leukotriene receptor antagonists and synthesis inhibitors reverse survival in eosinophils of asthmatic individuals. Am J Respir Crit Care Med 2000; 161:1881-6. [PMID: 10852761 DOI: 10.1164/ajrccm.161.6.9907054] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Eosinophilia is a feature of airway inflammation associated with asthma. Leukotriene antagonists provide therapeutic benefit in asthma, but their potential antiinflammatory actions have not been fully explored. We have examined the role of eosinophil-derived cysteinyl leukotrienes in the maintenance of eosinophil survival, and the involvement of leukotrienes in the paracrine stimulation of eosinophil survival by mast cells and lymphocytes. We obtained eosinophils and autologous lymphocytes from peripheral blood of asthmatic subjects. Leukotriene (LT)-B(4), LTC(4) and LTD(4), granulocyte-macrophage colony-stimulating factor (GM-CSF), and fibronectin promoted eosinophil survival. LTD(4) (10(-)(6) M) was as effective as GM-CSF (5 ng/ml) and fibronectin (400 ng/ml) in promoting survival. Lymphocytes and conditioned medium from a human mast cell line (HMC-1) induced eosinophil survival. Blockade of cysteinyl leukotriene receptors with SKF 104353 (pobilukast, 3 nM), and inhibition of 5-lipoxygenase (5-LO) with BW A4C (1 microM) and of 5-LO activating protein with MK 886 (1 microM), all increased basal rates of eosinophil apoptosis and reversed GM-CSF-induced eosinophil survival. Fifty percent reversal of GM-CSF- induced survival was achieved with SKF 104353 at 0.3 nM. The potency of SKF 104353 was two orders of magnitude greater than that of the LTB(4) receptor antagonist SB 201146. Mast cell- and lymphocyte-induced eosinophil survival were completely reversed by SB 201146, SKF 104353, BW A4C, and MK 886. These findings provide evidence for the involvement of an autocrine cysteinyl leukotriene pathway that supports eosinophil survival in response to a range of survival stimuli. They also suggest that LTB(4) could act as a paracrine stimulus of eosinophil survival.
Collapse
|
|
25 |
132 |
23
|
van Kats JP, Schalekamp MA, Verdouw PD, Duncker DJ, Danser AH. Intrarenal angiotensin II: interstitial and cellular levels and site of production. Kidney Int 2001; 60:2311-7. [PMID: 11737604 DOI: 10.1046/j.1523-1755.2001.00049.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Both local production and angiotensin II subtype 1 (AT1) receptor-mediated uptake from the circulation contribute to the high levels of angiotensin (Ang) II in the kidney. It is largely unknown where Ang II is produced in the kidney and how much of it originates from the circulation. METHODS The concentrations of endogenous and 125I-labeled Ang I and II were measured in renal tissue and in blood from pigs receiving systemic infusions of 125I-Ang I. Pigs were either untreated or treated with the angiotensin converting enzyme (ACE) inhibitor captopril or the AT1 receptor antagonist eprosartan. RESULTS 125I-Ang I was undetectable in renal tissue but the steady-state concentrations of 125I-Ang II in cortical and medullary tissue were four and two times the concentration in arterial blood plasma, respectively. The tissue concentrations of endogenous Ang II were 100 and 60 times higher than in arterial plasma. Eprosartan reduced 125I-Ang II accumulation by 90%, but did not lower tissue Ang II. Captopril did not alter either 125I-Ang II accumulation or tissue Ang II. CONCLUSIONS The bulk of Ang II in the kidney is cell-associated. The high tissue/blood concentration ratio of endogenous Ang II may depend on the same mechanism as demonstrated for 125I-Ang II, that is, AT1 receptor-mediated binding to cells and endocytosis. If so, the results indicate that most renal AT1 receptors are exposed to locally generated Ang II rather than Ang II from the circulation. We propose the existence of a low-Ang II vascular system-related interstitial compartment that is separate from tubular fluid, where, according to micropuncture studies, Ang II levels might be high.
Collapse
|
|
24 |
132 |
24
|
Bottenberg P, Cleymaet R, de Muynck C, Remon JP, Coomans D, Michotte Y, Slop D. Development and testing of bioadhesive, fluoride-containing slow-release tablets for oral use. J Pharm Pharmacol 1991; 43:457-64. [PMID: 1682457 DOI: 10.1111/j.2042-7158.1991.tb03514.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The bioadhesive characteristics of tablets for oral use made from modified starch, polyacrylic acid (PAA), polyethylene glycol (PEG) and sodium carboxymethylcellulose (CMC) were investigated. Adhesion force and energy were determined in-vitro and maximal adhesion time was evaluated in-vivo in human subjects. In-vitro, PAA showed the best bioadhesive properties, followed by modified maize starch and PEG with a mol. wt of 300,000-400,000 daltons. The presence of 0.1 mg of fluoride as NaF did not lead to significant differences in adhesion force and energy for the same formulation. The in-vivo bioadhesion was not strongly correlated to the in-vitro data. PAA, despite its excellent adhesion, proved to be irritating to the mucosa. PEG with a mol, wt of 200,000 daltons was subject to erosion. CMC showed good bioadhesive properties but the mechanical strength of the tablets was low. Modified maize starch tablets containing 5% (w/w) PAA and PEG with a mol. wt of 300,000 daltons proved to be the most suitable formulations for a fluoride-slow-release tablet with bioadhesive properties. In-vitro, the tablets released all of the fluoride within the 8 h period, with a high initial release. The release rate was related to the water absorption rate of the tablets. The PAA-containing formulations and the CMC formulations had the fastest release. In-vivo, fluoride levels with a minimum of 150 and a maximum of 1000 micrograms mL-1 were maintained for 8 h in the oral cavity. These fluoride levels were sustained significantly longer than those obtained with the administration of fourfold the amount of fluoride in the form of a fluoride-containing toothpaste. The release characteristics in-vivo exhibited a high variation. The use of bioadhesive polymers in oral pharmacotherapy seems promising.
Collapse
|
Comparative Study |
34 |
128 |
25
|
Newbold CJ, López S, Nelson N, Ouda JO, Wallace RJ, Moss AR. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br J Nutr 2005; 94:27-35. [PMID: 16115329 DOI: 10.1079/bjn20051445] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fifteen potential precursors of propionate were tested for their ability to decrease CH4 production by ruminal fluid in vitro. Sodium acrylate and sodium fumarate produced the most consistent effects in batch cultures, with 50 % of the added precursors being fermented to propionate and CH4 production decreasing by between 8 and 17 %, respectively. Additives were more effective when added as free acids, but this also decreased the pH and may have inhibited fibre digestion. Changing the dietary substrate from predominantly grass hay to predominantly concentrate had no influence on the effectiveness of acrylate and fumarate. In an in vitro fermentor (the rumen simulating technique, Rusitec) with a grass hay-concentrate (50:50, w/w) diet as substrate, both compounds were again fermented to propionate (33 and 44 % conversion to propionate, respectively). However, fumarate appeared more effective as a H2 sink compound. It was calculated to capture 44 % of the H2 previously used for CH4 formation compared with a 22 % capture of H2 with acrylate. Fumarate also caused a stimulation in fibre digestion. Thus, sodium fumarate was the preferred propionate precursor for use as a feed ingredient to decrease CH4 emissions from ruminants.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
119 |