1
|
Abstract
Endosomal Toll-like receptors (TLRs) 7 and 9 recognize viral pathogens and induce signals leading to the activation of nuclear factor κB (NF-κB)-dependent proinflammatory cytokines and interferon regulatory factor 7 (IRF7)-dependent type I interferons (IFNs). Recognition of viral nucleic acids by TLR9 requires its cleavage in the endolysosomal compartment. Here, we show that TLR9 signals leading to the activation of type I IFN, but not proinflammatory cytokine genes, require TLR9 trafficking from endosomes to a specialized lysosome-related organelle. Furthermore, we identify adapter protein-3 as the protein complex responsible for the trafficking of TLR9 to this subcellular compartment. Our results reveal an intracellular mechanism for bifurcation of TLR9 signals by selective receptor trafficking within the endosomal system.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
286 |
2
|
Clark RH, Stinchcombe JC, Day A, Blott E, Booth S, Bossi G, Hamblin T, Davies EG, Griffiths GM. Adaptor protein 3–dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat Immunol 2003; 4:1111-20. [PMID: 14566336 DOI: 10.1038/ni1000] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 09/25/2003] [Indexed: 01/08/2023]
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disease characterized by platelet defects and oculocutaneous albinism. Individuals with HPS type 2 (HPS2) lack the cytosolic adaptor protein 3 (AP-3) involved in lysosomal sorting, and are also immunodeficient. Here we characterize an HPS2 mutation and demonstrate that AP-3 deficiency leads to a loss of cytotoxic T lymphocyte (CTL)-mediated cytotoxicity. Although the lysosomal protein CD63 was mislocalized to the plasma membrane, perforin and granzymes were correctly localized to the lytic granules in AP-3-deficient CTLs. However, the lytic granules of AP-3-deficient CTLs were enlarged and were unable to move along microtubules and dock within the secretory domain of the immunological synapse. These data show that AP-3 is essential for polarized secretion from CTLs.
Collapse
|
|
22 |
181 |
3
|
Huttenhower C, Haley EM, Hibbs MA, Dumeaux V, Barrett DR, Coller HA, Troyanskaya OG. Exploring the human genome with functional maps. Genes Dev 2009; 19:1093-106. [PMID: 19246570 PMCID: PMC2694471 DOI: 10.1101/gr.082214.108] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 02/09/2009] [Indexed: 11/24/2022]
Abstract
Human genomic data of many types are readily available, but the complexity and scale of human molecular biology make it difficult to integrate this body of data, understand it from a systems level, and apply it to the study of specific pathways or genetic disorders. An investigator could best explore a particular protein, pathway, or disease if given a functional map summarizing the data and interactions most relevant to his or her area of interest. Using a regularized Bayesian integration system, we provide maps of functional activity and interaction networks in over 200 areas of human cellular biology, each including information from approximately 30,000 genome-scale experiments pertaining to approximately 25,000 human genes. Key to these analyses is the ability to efficiently summarize this large data collection from a variety of biologically informative perspectives: prediction of protein function and functional modules, cross-talk among biological processes, and association of novel genes and pathways with known genetic disorders. In addition to providing maps of each of these areas, we also identify biological processes active in each data set. Experimental investigation of five specific genes, AP3B1, ATP6AP1, BLOC1S1, LAMP2, and RAB11A, has confirmed novel roles for these proteins in the proper initiation of macroautophagy in amino acid-starved human fibroblasts. Our functional maps can be explored using HEFalMp (Human Experimental/Functional Mapper), a web interface allowing interactive visualization and investigation of this large body of information.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
148 |
4
|
Enders A, Zieger B, Schwarz K, Yoshimi A, Speckmann C, Knoepfle EM, Kontny U, Müller C, Nurden A, Rohr J, Henschen M, Pannicke U, Niemeyer C, Nurden P, Ehl S. Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood 2006; 108:81-7. [PMID: 16551969 DOI: 10.1182/blood-2005-11-4413] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Griscelli syndrome (GS) was diagnosed in a 2-year-old patient with oculocutaneous albinism and immunodeficiency, but sequencing of RAB27a revealed only a heterozygous mutation. Due to impaired natural killer (NK) and T-cell cytotoxicity implying a high risk of developing hemophagocytic lymphohistiocytosis (HLH), he was prepared for hematopoietic stem cell transplantation (HSCT). Unexpectedly, a severe bleeding episode occurred that led to the demonstration of disturbed platelet aggregation, reduced plateletdense granules, and impaired platelet degranulation. In combination with neutropenia, this suggested the diagnosis of Hermansky-Pudlak syndrome type II (HPSII) and a novel homozygous mutation in AP3B1 was detected. None of the 3 reported HPSII patients had developed HLH, and our patient seroconverted to Epstein-Barr virus (EBV) without clinical symptoms. HSCT was therefore withheld, and granulocyte-colony-stimulating factor (G-CSF) therapy was initiated and prevented further bacterial infections. At 3 years of age, however, the patient developed, without an obvious trigger, fulminant HLH that was resistant to therapy. This patient shows that careful clinical and molecular diagnosis is essential to differentiate the complex disorders of lysosomal trafficking. HPSII belongs to the group of familial hemophagocytic syndromes and may represent an indication for HSCT.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
140 |
5
|
Newman LS, McKeever MO, Okano HJ, Darnell RB. Beta-NAP, a cerebellar degeneration antigen, is a neuron-specific vesicle coat protein. Cell 1995; 82:773-83. [PMID: 7671305 DOI: 10.1016/0092-8674(95)90474-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have identified a target antigen in autoimmune cerebellar degeneration, beta-NAP, that is closely related to the beta-adaptin and beta-COP coat proteins. Beta-NAP is a nonclathrin-associated phosphoprotein expressed exclusively in neurons, from E12 through adulthood. Beta-NAP is present in the neuronal soma and nerve terminal as soluble and membrane-bound pools and is associated with a discrete set of nerve-terminal vesicles. These results establish beta-NAP as a neuron-specific vesicle coat protein. We propose a model in which beta-NAP mediates vesicle transport between the soma and the axon terminus and suggest that beta-NAP may represent a general class of coat proteins that mediates apical transport in polarized cells.
Collapse
|
|
30 |
131 |
6
|
Styers ML, Salazar G, Love R, Peden AA, Kowalczyk AP, Faundez V. The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol Biol Cell 2004; 15:5369-82. [PMID: 15456899 PMCID: PMC532017 DOI: 10.1091/mbc.e04-03-0272] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytoskeletal networks control organelle subcellular distribution and function. Herein, we describe a previously unsuspected association between intermediate filament proteins and the adaptor complex AP-3. AP-3 and intermediate filament proteins cosedimented and coimmunoprecipitated as a complex free of microtubule and actin binding proteins. Genetic perturbation of the intermediate filament cytoskeleton triggered changes in the subcellular distribution of the adaptor AP-3 and late endocytic/lysosome compartments. Concomitant with these architectural changes, and similarly to AP-3-null mocha cells, fibroblasts lacking vimentin were compromised in their vesicular zinc uptake, their organellar pH, and their total and surface content of AP-3 cargoes. However, the total content and surface levels, as well as the distribution of the transferrin receptor, a membrane protein whose sorting is AP-3 independent, remained unaltered in both AP-3- and vimentin-null cells. Based on the phenotypic convergence between AP-3 and vimentin deficiencies, we predicted and documented a reduced autophagosome content in mocha cells, a phenotype previously reported in cells with disrupted intermediate filament cytoskeletons. Our results reveal a novel role of the intermediate filament cytoskeleton in organelle/adaptor positioning and in regulation of the adaptor complex AP-3.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
125 |
7
|
Benson KF, Li FQ, Person RE, Albani D, Duan Z, Wechsler J, Meade-White K, Williams K, Acland GM, Niemeyer G, Lothrop CD, Horwitz M. Mutations associated with neutropenia in dogs and humans disrupt intracellular transport of neutrophil elastase. Nat Genet 2003; 35:90-6. [PMID: 12897784 DOI: 10.1038/ng1224] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 07/14/2003] [Indexed: 11/10/2022]
Abstract
Cyclic hematopoiesis is a stem cell disease in which the number of neutrophils and other blood cells oscillates in weekly phases. Autosomal dominant mutations of ELA2, encoding the protease neutrophil elastase, found in lysosome-like granules, cause cyclic hematopoiesis and most cases of the pre-leukemic disorder severe congenital neutropenia (SCN; ref. 3) in humans. Over 20 different mutations of neutrophil elastase have been identified, but their consequences are elusive, because they confer no consistent effects on enzymatic activity. The similar autosomal recessive disease of dogs, canine cyclic hematopoiesis, is not caused by mutations in ELA2 (data not shown). Here we show that homozygous mutation of the gene encoding the dog adaptor protein complex 3 (AP3) beta-subunit, directing trans-Golgi export of transmembrane cargo proteins to lysosomes, causes canine cyclic hematopoiesis. C-terminal processing of neutrophil elastase exposes an AP3 interaction signal responsible for redirecting neutrophil elastase trafficking from membranes to granules. Disruption of either neutrophil elastase or AP3 perturbs the intracellular trafficking of neutrophil elastase. Most mutations in ELA2 that cause human cyclic hematopoiesis prevent membrane localization of neutrophil elastase, whereas most mutations in ELA2 that cause SCN lead to exclusive membrane localization.
Collapse
|
|
22 |
123 |
8
|
Feraru E, Paciorek T, Feraru MI, Zwiewka M, De Groodt R, De Rycke R, Kleine-Vehn J, Friml J. The AP-3 β adaptin mediates the biogenesis and function of lytic vacuoles in Arabidopsis. THE PLANT CELL 2010; 22:2812-24. [PMID: 20729380 PMCID: PMC2947184 DOI: 10.1105/tpc.110.075424] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/16/2010] [Accepted: 07/23/2010] [Indexed: 05/18/2023]
Abstract
Plant vacuoles are essential multifunctional organelles largely distinct from similar organelles in other eukaryotes. Embryo protein storage vacuoles and the lytic vacuoles that perform a general degradation function are the best characterized, but little is known about the biogenesis and transition between these vacuolar types. Here, we designed a fluorescent marker-based forward genetic screen in Arabidopsis thaliana and identified a protein affected trafficking2 (pat2) mutant, whose lytic vacuoles display altered morphology and accumulation of proteins. Unlike other mutants affecting the vacuole, pat2 is specifically defective in the biogenesis, identity, and function of lytic vacuoles but shows normal sorting of proteins to storage vacuoles. PAT2 encodes a putative β-subunit of adaptor protein complex 3 (AP-3) that can partially complement the corresponding yeast mutant. Manipulations of the putative AP-3 β adaptin functions suggest a plant-specific role for the evolutionarily conserved AP-3 β in mediating lytic vacuole performance and transition of storage into the lytic vacuoles independently of the main prevacuolar compartment-based trafficking route.
Collapse
|
research-article |
15 |
113 |
9
|
Newell-Litwa K, Seong E, Burmeister M, Faundez V. Neuronal and non-neuronal functions of the AP-3 sorting machinery. J Cell Sci 2007; 120:531-41. [PMID: 17287392 DOI: 10.1242/jcs.03365] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicles selectively exchange lipids, membrane proteins and luminal contents between organelles along the exocytic and endocytic routes. The repertoire of membrane proteins present in these vesicles is crucial for their targeting and function. Vesicle composition is determined at the time of their biogenesis by cytosolic coats. The heterotetrameric protein adaptor protein complex 3 (AP-3), a coat component, participates in the generation of a diverse group of secretory organelles and lysosome-related organelles. Recent work has shed light on the mechanisms that regulate AP-3 and the trafficking pathways controlled by this adaptor. Phenotypic analysis of organisms carrying genetic deficiencies in the AP-3 pathway highlight its role regulating the targeting of lysosomal, melanosomal and synaptic vesicle-specific membrane proteins. Synaptic vesicles from AP-3-deficient mice possess altered levels of neurotransmitter and ion transporters, molecules that ultimately define the type and amount of neurotransmitter stored in these vesicles. These findings reveal a complex picture of how AP-3 functions in multiple tissues, including neuronal tissue, and expose potential links between endocytic sorting mechanisms and the pathogenesis of psychiatric disorders such as schizophrenia.
Collapse
|
Review |
18 |
105 |
10
|
Jung J, Bohn G, Allroth A, Boztug K, Brandes G, Sandrock I, Schäffer AA, Rathinam C, Köllner I, Beger C, Schilke R, Welte K, Grimbacher B, Klein C. Identification of a homozygous deletion in the AP3B1 gene causing Hermansky-Pudlak syndrome, type 2. Blood 2006; 108:362-9. [PMID: 16537806 PMCID: PMC1895843 DOI: 10.1182/blood-2005-11-4377] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We report on the molecular etiology of an unusual clinical phenotype associating congenital neutropenia, thrombocytopenia, developmental delay, and hypopigmentation. Using genetic linkage analysis and targeted gene sequencing, we defined a homozygous genomic deletion in AP3B1, the gene encoding the beta chain of the adaptor protein-3 (AP-3) complex. The mutation leads to in-frame skipping of exon 15 and thus perturbs proper assembly of the heterotetrameric AP-3 complex. Consequently, trafficking of transmembrane lysosomal proteins is aberrant, as shown for CD63. In basal keratinocytes, the incorporated immature melanosomes were rapidly degraded in large phagolysosomes. Despite distinct ultramorphologic changes suggestive of aberrant vesicular maturation, no functional aberrations were detected in neutrophil granulocytes. However, a comprehensive immunologic assessment revealed that natural killer (NK) and NKT-cell numbers were reduced in AP-3-deficient patients. Our findings extend the clinical and molecular phenotype of human AP-3 deficiency (also known as Hermansky-Pudlak syndrome, type 2) and provide further insights into the role of the AP-3 complex for the innate immune system.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
92 |
11
|
Salazar G, Zlatic S, Craige B, Peden AA, Pohl J, Faundez V. Hermansky-Pudlak syndrome protein complexes associate with phosphatidylinositol 4-kinase type II alpha in neuronal and non-neuronal cells. J Biol Chem 2009; 284:1790-802. [PMID: 19010779 PMCID: PMC2615517 DOI: 10.1074/jbc.m805991200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/04/2008] [Indexed: 11/06/2022] Open
Abstract
The Hermansky-Pudlak syndrome is a disorder affecting endosome sorting. Disease is triggered by defects in any of 15 mouse gene products, which are part of five distinct cytosolic molecular complexes: AP-3, homotypic fusion and vacuole protein sorting, and BLOC-1, -2, and -3. To identify molecular associations of these complexes, we used in vivo cross-linking followed by purification of cross-linked AP-3 complexes and mass spectrometric identification of associated proteins. AP-3 was co-isolated with BLOC-1, BLOC-2, and homotypic fusion and vacuole protein sorting complex subunits; clathrin; and phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha). We previously reported that this membrane-anchored enzyme is a regulator of AP-3 recruitment to membranes and a cargo of AP-3 ( Craige, B., Salazar, G., and Faundez, V. (2008) Mol. Biol. Cell 19, 1415-1426 ). Using cells deficient in different Hermansky-Pudlak syndrome complexes, we identified that BLOC-1, but not BLOC-2 or BLOC-3, deficiencies affect PI4KIIalpha inclusion into AP-3 complexes. BLOC-1, PI4KIIalpha, and AP-3 belong to a tripartite complex, and down-regulation of either PI4KIIalpha, BLOC-1, or AP-3 complexes led to similar LAMP1 phenotypes. Our analysis indicates that BLOC-1 complex modulates the association of PI4KIIalpha with AP-3. These results suggest that AP-3 and BLOC-1 act, either in concert or sequentially, to specify sorting of PI4KIIalpha along the endocytic route.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
83 |
12
|
Newell-Litwa K, Salazar G, Smith Y, Faundez V. Roles of BLOC-1 and adaptor protein-3 complexes in cargo sorting to synaptic vesicles. Mol Biol Cell 2009; 20:1441-53. [PMID: 19144828 PMCID: PMC2649275 DOI: 10.1091/mbc.e08-05-0456] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 12/23/2008] [Accepted: 01/06/2009] [Indexed: 11/11/2022] Open
Abstract
Neuronal lysosomes and their biogenesis mechanisms are primarily thought to clear metabolites and proteins whose abnormal accumulation leads to neurodegenerative disease pathology. However, it remains unknown whether lysosomal sorting mechanisms regulate the levels of membrane proteins within synaptic vesicles. Using high-resolution deconvolution microscopy, we identified early endosomal compartments where both selected synaptic vesicle and lysosomal membrane proteins coexist with the adaptor protein complex 3 (AP-3) in neuronal cells. From these early endosomes, both synaptic vesicle membrane proteins and characteristic AP-3 lysosomal cargoes can be similarly sorted to brain synaptic vesicles and PC12 synaptic-like microvesicles. Mouse knockouts for two Hermansky-Pudlak complexes involved in lysosomal biogenesis from early endosomes, the ubiquitous isoform of AP-3 (Ap3b1(-/-)) and muted, defective in the biogenesis of lysosome-related organelles complex 1 (BLOC-1), increased the content of characteristic synaptic vesicle proteins and known AP-3 lysosomal proteins in isolated synaptic vesicle fractions. These phenotypes contrast with those of the mouse knockout for the neuronal AP-3 isoform involved in synaptic vesicle biogenesis (Ap3b2(-/-)), in which the content of select proteins was reduced in synaptic vesicles. Our results demonstrate that lysosomal and lysosome-related organelle biogenesis mechanisms regulate steady-state synaptic vesicle protein composition from shared early endosomes.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
80 |
13
|
Falcón-Pérez JM, Dell'Angelica EC. Zinc transporter 2 (SLC30A2) can suppress the vesicular zinc defect of adaptor protein 3-depleted fibroblasts by promoting zinc accumulation in lysosomes. Exp Cell Res 2007; 313:1473-83. [PMID: 17349999 PMCID: PMC1885236 DOI: 10.1016/j.yexcr.2007.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/26/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
Zinc accumulation in the lumen of cytoplasmic vesicles is one of the mechanisms by which cells can store significant amounts of this essential but potentially toxic biometal. Previous studies had demonstrated reduced vesicular zinc levels in fibroblasts from mutant mice deficient in adaptor protein 3 (AP-3), a complex involved in protein trafficking to late endosomes and lysosomes. We have observed a similar phenotype in the human fibroblastoid cell line, M1, upon small interference RNA-mediated AP-3 knockdown. A survey of the expression and localization of zinc transporter (ZnT) family members identified ZnT2, ZnT3, and ZnT4 as likely mediators of vesicular zinc accumulation in M1 cells. Expression of green fluorescence protein (GFP)-tagged ZnT2 and ZnT3 promoted accumulation of vesicular zinc as visualized using the indicator zinquin. Moreover, GFP-ZnT2 overexpression elicited a significant accumulation of zinc within mature lysosomes, which in untransfected M1 cells contained little or no chelatable zinc, and restored the zinc storage capability of AP-3-deficient cells. These results suggest that ZnT2 can facilitate vesicular zinc accumulation independently of AP-3 function, and validate the M1 fibroblastoid line as a human cell culture system amenable to the study of vesicular zinc regulation using techniques compatible with functional genomic approaches.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
61 |
14
|
Larimore J, Tornieri K, Ryder PV, Gokhale A, Zlatic SA, Craige B, Lee JD, Talbot K, Pare JF, Smith Y, Faundez V. The schizophrenia susceptibility factor dysbindin and its associated complex sort cargoes from cell bodies to the synapse. Mol Biol Cell 2011; 22:4854-67. [PMID: 21998198 PMCID: PMC3237628 DOI: 10.1091/mbc.e11-07-0592] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/08/2011] [Accepted: 10/07/2011] [Indexed: 11/11/2022] Open
Abstract
Dysbindin assembles into the biogenesis of lysosome-related organelles complex 1 (BLOC-1), which interacts with the adaptor protein complex 3 (AP-3), mediating a common endosome-trafficking route. Deficiencies in AP-3 and BLOC-1 affect synaptic vesicle composition. However, whether AP-3-BLOC-1-dependent sorting events that control synapse membrane protein content take place in cell bodies upstream of nerve terminals remains unknown. We tested this hypothesis by analyzing the targeting of phosphatidylinositol-4-kinase type II α (PI4KIIα), a membrane protein present in presynaptic and postsynaptic compartments. PI4KIIα copurified with BLOC-1 and AP-3 in neuronal cells. These interactions translated into a decreased PI4KIIα content in the dentate gyrus of dysbindin-null BLOC-1 deficiency and AP-3-null mice. Reduction of PI4KIIα in the dentate reflects a failure to traffic from the cell body. PI4KIIα was targeted to processes in wild-type primary cultured cortical neurons and PC12 cells but failed to reach neurites in cells lacking either AP-3 or BLOC-1. Similarly, disruption of an AP-3-sorting motif in PI4KIIα impaired its sorting into processes of PC12 and primary cultured cortical neuronal cells. Our findings indicate a novel vesicle transport mechanism requiring BLOC-1 and AP-3 complexes for cargo sorting from neuronal cell bodies to neurites and nerve terminals.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
57 |
15
|
Grabner CP, Price SD, Lysakowski A, Cahill AL, Fox AP. Regulation of large dense-core vesicle volume and neurotransmitter content mediated by adaptor protein 3. Proc Natl Acad Sci U S A 2006; 103:10035-40. [PMID: 16788073 PMCID: PMC1502501 DOI: 10.1073/pnas.0509844103] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Indexed: 11/18/2022] Open
Abstract
Adaptor protein 3 (AP-3) is a vesicle-coat protein that forms a heterotetrameric complex. Two types of AP-3 subunits are found in mammalian cells. Ubiquitous AP-3 subunits are expressed in all tissues of the body, including the brain. In addition, there are neuronal AP-3 subunits that are thought to serve neuron-specific functions such as neurotransmitter release. In this study, we show that overexpression of neuronal AP-3 in mouse chromaffin cells results in a striking decrease in the neurotransmitter content of individual vesicles (quantal size), whereas deletion of all AP-3 produces a dramatic increase in quantal size; these changes were correlated with alterations in dense-core vesicle size. AP-3 appears to localize in the trans-Golgi network and possibly immature secretory vesicles, where it may be involved in the formation of neurosecretory vesicles.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
51 |
16
|
Besteiro S, Tonn D, Tetley L, Coombs GH, Mottram JC. The AP3 adaptor is involved in the transport of membrane proteins to acidocalcisomes of Leishmania. J Cell Sci 2008; 121:561-70. [PMID: 18252798 DOI: 10.1242/jcs.022574] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025] Open
Abstract
Lysosomal function is crucial for the differentiation and infectivity of the parasitic protozoon Leishmania major. To study lysosomal biogenesis, an L. major mutant deficient in the delta subunit of the adaptor protein 3 (AP3 delta) complex was generated. Structure and proteolytic capacity of the lysosomal compartment were apparently unaffected in the AP3-deficient mutant; however, defects were identified in its acidocalcisomes. These are acidic organelles enriched in calcium and phosphorus, conserved from bacteria to eukaryotes, whose function remains enigmatic. The acidocalcisomes of the L. major mutant lacked membrane-bound proton pumps (notably V-H+-PPase), were less acidic than normal acidocalcisomes and devoid of polyphosphate, but contained a soluble pyrophosphatase. The mutant parasites were viable in vitro, but were unable to establish an infection in mice, which indicates a role for AP3 in determining--possibly through an acidocalcisome-related function--the virulence of the parasite. AP3 transport function has been linked previously to lysosome-related organelles such as platelet dense granules, which appear to share several features with acidocalcisomes. Our findings, implicating that AP3 has a role in transport to acidocalcisomes, thus provide further evidence that biogenesis of acidocalcisomes resembles that of lysosome-related organelles, and that both may have conserved origins.
Collapse
|
|
17 |
47 |
17
|
Wenham M, Grieve S, Cummins M, Jones ML, Booth S, Kilner R, Ancliff PJ, Griffiths GM, Mumford AD. Two patients with Hermansky Pudlak syndrome type 2 and novel mutations in AP3B1. Haematologica 2010; 95:333-7. [PMID: 19679886 PMCID: PMC2817039 DOI: 10.3324/haematol.2009.012286] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 12/17/2022] Open
Abstract
Hermansky Pudlak syndrome type 2 (HPS2) is a rare disorder associated with mutations in the Adaptor Protein 3 (AP-3) complex, which is involved in sorting transmembrane proteins to lysosomes and related organelles. We now report 2 unrelated subjects with HPS2 who show a characteristic clinical phenotype of oculocutaneous albinism, platelet and T-lymphocyte dysfunction and neutropenia. The subjects were homozygous for different deletions within AP3B1 (g.del180242-180866, c.del153-156), which encodes the AP-3beta3A subunit, resulting in frame shifts and introduction of nonsense substitutions (p.E693fsX13, p.E52fsX11). In the subject with p.E693fsX13, this resulted in expression of a truncated variant beta3A protein. Cytotoxic T-lymphocyte (CTL) clones from both study subjects showed increased cell-surface expression of CD63 and reduced cytotoxicity. Platelets showed impaired aggregation and reduced uptake of (3)H-serotonin. These findings are consistent with CTL granule and platelet dense granule defects, respectively. This report extends the clinical and laboratory description of HPS2.
Collapse
|
research-article |
15 |
42 |
18
|
Assoum M, Philippe C, Isidor B, Perrin L, Makrythanasis P, Sondheimer N, Paris C, Douglas J, Lesca G, Antonarakis S, Hamamy H, Jouan T, Duffourd Y, Auvin S, Saunier A, Begtrup A, Nowak C, Chatron N, Ville D, Mireskandari K, Milani P, Jonveaux P, Lemeur G, Milh M, Amamoto M, Kato M, Nakashima M, Miyake N, Matsumoto N, Masri A, Thauvin-Robinet C, Rivière JB, Faivre L, Thevenon J. Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic Atrophy. Am J Hum Genet 2016; 99:1368-1376. [PMID: 27889060 DOI: 10.1016/j.ajhg.2016.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 11/30/2022] Open
Abstract
Early-onset epileptic encephalopathy (EOEE) represents a heterogeneous group of severe disorders characterized by seizures, interictal epileptiform activity with a disorganized electroencephalography background, developmental regression or retardation, and onset before 1 year of age. Among a cohort of 57 individuals with epileptic encephalopathy, we ascertained two unrelated affected individuals with EOEE associated with developmental impairment and autosomal-recessive variants in AP3B2 by means of whole-exome sequencing. The targeted sequencing of AP3B2 in 86 unrelated individuals with EOEE led to the identification of an additional family. We gathered five additional families with eight affected individuals through the Matchmaker Exchange initiative by matching autosomal-recessive mutations in AP3B2. Reverse phenotyping of 12 affected individuals from eight families revealed a homogeneous EOEE phenotype characterized by severe developmental delay, poor visual contact with optic atrophy, and postnatal microcephaly. No spasticity, albinism, or hematological symptoms were reported. AP3B2 encodes the neuron-specific subunit of the AP-3 complex. Autosomal-recessive variations of AP3B1, the ubiquitous isoform, cause Hermansky-Pudlak syndrome type 2. The only isoform for the δ subunit of the AP-3 complex is encoded by AP3D1. Autosomal-recessive mutations in AP3D1 cause a severe disorder cumulating the symptoms of the AP3B1 and AP3B2 defects.
Collapse
|
Journal Article |
9 |
39 |
19
|
Wen W, Chen L, Wu H, Sun X, Zhang M, Banfield DK. Identification of the yeast R-SNARE Nyv1p as a novel longin domain-containing protein. Mol Biol Cell 2006; 17:4282-99. [PMID: 16855025 PMCID: PMC1635351 DOI: 10.1091/mbc.e06-02-0128] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Using nuclear magnetic resonance spectroscopy, we establish that the N-terminal domain of the yeast vacuolar R-SNARE Nyv1p adopts a longin-like fold similar to those of Sec22b and Ykt6p. Nyv1p is sorted to the limiting membrane of the vacuole via the adaptor protein (AP)3 adaptin pathway, and we show that its longin domain is sufficient to direct transport to this location. In contrast, we found that the longin domains of Sec22p and Ykt6p were not sufficient to direct their localization. A YXX phi-like adaptin-dependent sorting signal (Y31GTI34) unique to the longin domain of Nyv1p mediates interactions with the AP3 complex in vivo and in vitro. We show that amino acid substitutions to Y31GTI34 (Y31Q;I34Q) resulted in mislocalization of Nyv1p as well as reduced binding of the mutant protein to the AP3 complex. Although the sorting of Nyv1p to the limiting membrane of the vacuole is dependent upon the Y31GTI34 motif, and Y31 in particular, our findings with structure-based amino acid substitutions in the mu chain (Apm3p) of yeast AP3 suggest a mechanistically distinct role for this subunit in the recognition of YXX phi-like sorting signals.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
38 |
20
|
Abstract
Neurotransmission requires the proper organization and rapid recycling of synaptic vesicles. Rapid retrieval has been suggested to occur either by kiss-and-stay or kiss-and-run mechanisms, whereas classical recycling is mediated by clathrin-dependent endocytosis. Molecular coats are key components in the selection of cargos, AP-2 (adaptor protein 2) playing a prominent role in synaptic vesicle endocytosis. Another coat protein, AP-3, has been implicated in synaptic vesicle biogenesis and in the generation of secretory and lysosomal-related organelles. In the present review, we will particularly focus on the recent data concerning the recycling of synaptic vesicles and the function of AP-3 and the v-SNARE (vesicular soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) TI-VAMP (tetanus neurotoxin-insensitive vesicle-associated membrane protein) in these processes. We propose that AP-3 plays an important regulatory role in neurons which contributes to the basal and stimulated exocytosis of synaptic vesicles.
Collapse
|
Review |
18 |
35 |
21
|
Shetty A, Sytnyk V, Leshchyns'ka I, Puchkov D, Haucke V, Schachner M. The neural cell adhesion molecule promotes maturation of the presynaptic endocytotic machinery by switching synaptic vesicle recycling from adaptor protein 3 (AP-3)- to AP-2-dependent mechanisms. J Neurosci 2013; 33:16828-45. [PMID: 24133283 PMCID: PMC6618524 DOI: 10.1523/jneurosci.2192-13.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/27/2013] [Accepted: 09/13/2013] [Indexed: 02/05/2023] Open
Abstract
Newly formed synapses undergo maturation during ontogenetic development via mechanisms that remain poorly understood. We show that maturation of the presynaptic endocytotic machinery in CNS neurons requires substitution of the adaptor protein 3 (AP-3) with AP-2 at the presynaptic plasma membrane. In mature synapses, AP-2 associates with the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes binding of AP-2 over binding of AP-3 to presynaptic membranes, thus favoring the substitution of AP-3 for AP-2 during formation of mature synapses. The presynaptic endocytotic machinery remains immature in adult NCAM-deficient (NCAM-/-) mice accumulating AP-3 instead of AP-2 and its partner protein AP180 in synaptic membranes and vesicles. NCAM deficiency or disruption of the NCAM/AP-2 complex in wild-type (NCAM+/+) neurons by overexpression of AP-2 binding-defective mutant NCAM interferes with efficient retrieval of the synaptic vesicle v-SNARE synaptobrevin 2. Abnormalities in synaptic vesicle endocytosis and recycling may thus contribute to neurological disorders associated with mutations in NCAM.
Collapse
|
research-article |
12 |
35 |
22
|
Sirkis DW, Edwards RH, Asensio CS. Widespread dysregulation of peptide hormone release in mice lacking adaptor protein AP-3. PLoS Genet 2013; 9:e1003812. [PMID: 24086151 PMCID: PMC3784564 DOI: 10.1371/journal.pgen.1003812] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022] Open
Abstract
The regulated secretion of peptide hormones, neural peptides and many growth factors depends on their sorting into large dense core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network, but the mechanisms that sort proteins to this regulated secretory pathway and the cytosolic machinery that produces LDCVs remain poorly understood. Recently, we used an RNAi screen to identify a role for heterotetrameric adaptor protein AP-3 in regulated secretion and in particular, LDCV formation. Indeed, mocha mice lacking AP-3 have a severe neurological and behavioral phenotype, but this has been attributed to a role for AP-3 in the endolysosomal rather than biosynthetic pathway. We therefore used mocha mice to determine whether loss of AP-3 also dysregulates peptide release in vivo. We find that adrenal chromaffin cells from mocha animals show increased constitutive exocytosis of both soluble cargo and LDCV membrane proteins, reducing the response to stimulation. We also observe increased basal release of both insulin and glucagon from pancreatic islet cells of mocha mice, suggesting a global disturbance in the release of peptide hormones. AP-3 exists as both ubiquitous and neuronal isoforms, but the analysis of mice lacking each of these isoforms individually and together shows that loss of both is required to reproduce the effect of the mocha mutation on the regulated pathway. In addition, we show that loss of the related adaptor protein AP-1 has a similar effect on regulated secretion but exacerbates the effect of AP-3 RNAi, suggesting distinct roles for the two adaptors in the regulated secretory pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
29 |
23
|
Kook S, Wang P, Young LR, Schwake M, Saftig P, Weng X, Meng Y, Neculai D, Marks MS, Gonzales L, Beers MF, Guttentag S. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice. J Biol Chem 2016; 291:8414-27. [PMID: 26907692 PMCID: PMC4861416 DOI: 10.1074/jbc.m116.720201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 11/06/2022] Open
Abstract
The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
25 |
24
|
Feng QN, Liang X, Li S, Zhang Y. The ADAPTOR PROTEIN-3 Complex Mediates Pollen Tube Growth by Coordinating Vacuolar Targeting and Organization. PLANT PHYSIOLOGY 2018; 177:216-225. [PMID: 29523712 PMCID: PMC5933126 DOI: 10.1104/pp.17.01722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/27/2018] [Indexed: 05/19/2023]
Abstract
Pollen tube growth is an essential step for successful plant reproduction. Vacuolar trafficking and dynamic organization are important for pollen tube growth; however, the key proteins involved in these processes are not well understood. Here, we report that the ADAPTOR PROTEIN-3 (AP-3) complex and its tonoplast cargo PROTEIN S-ACYL TRANSFERASE10 (PAT10) are critical for pollen tube growth in Arabidopsis (Arabidopsis thaliana). AP-3 is a heterotetrameric protein complex consisting of four subunits, δ, β, µ, and σ. AP-3 regulates tonoplast targeting of several cargoes, such as PAT10. We show that functional loss of any of the four AP-3 subunits reduces plant fertility. In ap-3 mutants, pollen development was normal but pollen tube growth was compromised, leading to reduced male transmission. Functional loss of PAT10 caused a similar reduction in pollen tube growth, suggesting that the tonoplast association of PAT10 mediated by AP-3 is crucial for this process. Indeed, the Ca2+ gradient during pollen tube growth was reduced significantly due to AP-3 loss of function, consistent with the abnormal targeting of CALCINUERIN B-LIKE2 (CBL2) and CBL3, whose tonoplast association depends on PAT10. Furthermore, we show that the pollen tubes of ap-3 mutants have vacuoles with simplified tubules and bulbous structures, indicating that AP-3 affects vacuolar organization. Our results demonstrate a role for AP-3 in plant reproduction and provide insights into the role of vacuoles in polarized cell growth.
Collapse
|
research-article |
7 |
25 |
25
|
Thakur HC, Singh M, Nagel-Steger L, Prumbaum D, Fansa EK, Gremer L, Ezzahoini H, Abts A, Schmitt L, Raunser S, Ahmadian MR, Piekorz RP. Role of centrosomal adaptor proteins of the TACC family in the regulation of microtubule dynamics during mitotic cell division. Biol Chem 2014; 394:1411-23. [PMID: 23787465 DOI: 10.1515/hsz-2013-0184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/18/2013] [Indexed: 02/04/2023]
Abstract
During the mitotic division cycle, cells pass through an extensive microtubule rearrangement process where microtubules forming the mitotic spindle apparatus are dynamically instable. Several centrosomal- and microtubule-associated proteins are involved in the regulation of microtubule dynamics and stability during mitosis. Here, we focus on members of the transforming acidic coiled coil (TACC) family of centrosomal adaptor proteins, in particular TACC3, in which their subcellular localization at the mitotic spindle apparatus is controlled by Aurora-A kinase-mediated phosphorylation. At the effector level, several TACC-binding partners have been identified and characterized in greater detail, in particular, the microtubule polymerase XMAP215/ch-TOG/CKAP5 and clathrin heavy chain (CHC). We summarize the recent progress in the molecular understanding of these TACC3 protein complexes, which are crucial for proper mitotic spindle assembly and dynamics to prevent faulty cell division and aneuploidy. In this regard, the (patho)biological role of TACC3 in development and cancer will be discussed.
Collapse
|
Review |
11 |
24 |