1
|
Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q, Gross SS, Elemento O, Debart F, Kiledjian M, Jaffrey SR. Reversible methylation of m 6A m in the 5' cap controls mRNA stability. Nature 2017; 541:371-375. [PMID: 28002401 PMCID: PMC5513158 DOI: 10.1038/nature21022] [Citation(s) in RCA: 826] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/30/2016] [Indexed: 12/28/2022]
Abstract
Internal bases in mRNA can be subjected to modifications that influence the fate of mRNA in cells. One of the most prevalent modified bases is found at the 5' end of mRNA, at the first encoded nucleotide adjacent to the 7-methylguanosine cap. Here we show that this nucleotide, N6,2'-O-dimethyladenosine (m6Am), is a reversible modification that influences cellular mRNA fate. Using a transcriptome-wide map of m6Am we find that m6Am-initiated transcripts are markedly more stable than mRNAs that begin with other nucleotides. We show that the enhanced stability of m6Am-initiated transcripts is due to resistance to the mRNA-decapping enzyme DCP2. Moreover, we find that m6Am is selectively demethylated by fat mass and obesity-associated protein (FTO). FTO preferentially demethylates m6Am rather than N6-methyladenosine (m6A), and reduces the stability of m6Am mRNAs. Together, these findings show that the methylation status of m6Am in the 5' cap is a dynamic and reversible epitranscriptomic modification that determines mRNA stability.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
826 |
2
|
Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 2011; 474:521-5. [PMID: 21593763 PMCID: PMC3146096 DOI: 10.1038/nature10136] [Citation(s) in RCA: 705] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/21/2011] [Indexed: 12/18/2022]
Abstract
Adenosine receptors and β-adrenoceptors are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins on binding the agonists adenosine or noradrenaline, respectively. GPCRs have similar structures consisting of seven transmembrane helices that contain well-conserved sequence motifs, indicating that they are probably activated by a common mechanism. Recent structures of β-adrenoceptors highlight residues in transmembrane region 5 that initially bind specifically to agonists rather than to antagonists, indicating that these residues have an important role in agonist-induced activation of receptors. Here we present two crystal structures of the thermostabilized human adenosine A(2A) receptor (A(2A)R-GL31) bound to its endogenous agonist adenosine and the synthetic agonist NECA. The structures represent an intermediate conformation between the inactive and active states, because they share all the features of GPCRs that are thought to be in a fully activated state, except that the cytoplasmic end of transmembrane helix 6 partially occludes the G-protein-binding site. The adenine substituent of the agonists binds in a similar fashion to the chemically related region of the inverse agonist ZM241385 (ref. 8). Both agonists contain a ribose group, not found in ZM241385, which extends deep into the ligand-binding pocket where it makes polar interactions with conserved residues in H7 (Ser 277(7.42) and His 278(7.43); superscripts refer to Ballesteros-Weinstein numbering) and non-polar interactions with residues in H3. In contrast, the inverse agonist ZM241385 does not interact with any of these residues and comparison with the agonist-bound structures indicates that ZM241385 sterically prevents the conformational change in H5 and therefore it acts as an inverse agonist. Comparison of the agonist-bound structures of A(2A)R with the agonist-bound structures of β-adrenoceptors indicates that the contraction of the ligand-binding pocket caused by the inward motion of helices 3, 5 and 7 may be a common feature in the activation of all GPCRs.
Collapse
|
research-article |
14 |
705 |
3
|
Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC. Structure of an agonist-bound human A2A adenosine receptor. Science 2011; 332:322-7. [PMID: 21393508 PMCID: PMC3086811 DOI: 10.1126/science.1202793] [Citation(s) in RCA: 679] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Activation of G protein-coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A(2A) adenosine receptor (A(2A)AR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A(2A)AR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A(2A)AR and its ligand. The results define the molecule UK-432097 as a "conformationally selective agonist" capable of receptor stabilization in a specific active-state configuration.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
679 |
4
|
Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed Engl 2006; 45:90-4. [PMID: 16292781 DOI: 10.1002/anie.200502589] [Citation(s) in RCA: 662] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
662 |
5
|
Athanasiadis A, Rich A, Maas S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2004; 2:e391. [PMID: 15534692 PMCID: PMC526178 DOI: 10.1371/journal.pbio.0020391] [Citation(s) in RCA: 594] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 09/13/2004] [Indexed: 01/22/2023] Open
Abstract
RNA editing by adenosine deamination generates RNA and protein diversity through the posttranscriptional modification of single nucleotides in RNA sequences. Few mammalian A-to-I edited genes have been identified despite evidence that many more should exist. Here we identify intramolecular pairs of Alu elements as a major target for editing in the human transcriptome. An experimental demonstration in 43 genes was extended by a broader computational analysis of more than 100,000 human mRNAs. We find that 1,445 human mRNAs (1.4%) are subject to RNA editing at more than 14,500 sites, and our data further suggest that the vast majority of pre-mRNAs (greater than 85%) are targeted in introns by the editing machinery. The editing levels of Alu-containing mRNAs correlate with distance and homology between inverted repeats and vary in different tissues. Alu-mediated RNA duplexes targeted by RNA editing are formed intramolecularly, whereas editing due to intermolecular base-pairing appears to be negligible. We present evidence that these editing events can lead to the posttranscriptional creation or elimination of splice signals affecting alternatively spliced Alu-derived exons. The analysis suggests that modification of repetitive elements is a predominant activity for RNA editing with significant implications for cellular gene expression. A computational analysis of human RNA has identified 1,445 transcripts are edited mainly within non-coding Alu repeats, with the potential effect of regulating alternative splicing
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
594 |
6
|
Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N 6-methyladenosine modification in cancers: current status and perspectives. Cell Res 2018; 28:507-517. [PMID: 29686311 PMCID: PMC5951805 DOI: 10.1038/s41422-018-0034-6] [Citation(s) in RCA: 591] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
N6-methyladenosine (m6A), the most abundant internal modification in eukaryotic messenger RNAs (mRNAs), has been shown to play critical roles in various normal bioprocesses such as tissue development, stem cell self-renewal and differentiation, heat shock or DNA damage response, and maternal-to-zygotic transition. The m6A modification is deposited by the m6A methyltransferase complex (MTC; i.e., writer) composed of METTL3, METTL14 and WTAP, and probably also VIRMA and RBM15, and can be removed by m6A demethylases (i.e., erasers) such as FTO and ALKBH5. The fates of m6A-modified mRNAs rely on the functions of distinct proteins that recognize them (i.e., readers), which may affect the stability, splicing, and/or translation of target mRNAs. Given the functional importance of the m6A modification machinery in normal bioprocesses, it is not surprising that evidence is emerging that dysregulation of m6A modification and the associated proteins also contributes to the initiation, progression, and drug response of cancers. In this review, we focus on recent advances in the study of biological functions and the underlying molecular mechanisms of dysregulated m6A modification and the associated machinery in the pathogenesis and drug response of various types of cancers. In addition, we also discuss possible therapeutic interventions against the dysregulated m6A machinery to treat cancers.
Collapse
|
Review |
7 |
591 |
7
|
Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 2004; 113:274-84. [PMID: 14722619 PMCID: PMC311435 DOI: 10.1172/jci19874] [Citation(s) in RCA: 582] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 11/04/2003] [Indexed: 11/17/2022] Open
Abstract
CBS domains are defined as sequence motifs that occur in several different proteins in all kingdoms of life. Although thought to be regulatory, their exact functions have been unknown. However, their importance was underlined by findings that mutations in conserved residues within them cause a variety of human hereditary diseases, including (with the gene mutated in parentheses): Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase); retinitis pigmentosa (IMP dehydrogenase-1); congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members); and homocystinuria (cystathionine beta-synthase). AMP-activated protein kinase is a sensor of cellular energy status that is activated by AMP and inhibited by ATP, but the location of the regulatory nucleotide-binding sites (which are prime targets for drugs to treat obesity and diabetes) was not characterized. We now show that tandem pairs of CBS domains from AMP-activated protein kinase, IMP dehydrogenase-2, the chloride channel CLC2, and cystathionine beta-synthase bind AMP, ATP, or S-adenosyl methionine,while mutations that cause hereditary diseases impair this binding. This shows that tandem pairs of CBS domains act, in most cases, as sensors of cellular energy status and, as such, represent a newly identified class of binding domain for adenosine derivatives.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
582 |
8
|
Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci U S A 2001; 98:4899-903. [PMID: 11296253 PMCID: PMC33135 DOI: 10.1073/pnas.081082398] [Citation(s) in RCA: 517] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2001] [Indexed: 11/18/2022] Open
Abstract
Analysis of the 2.4-A resolution crystal structure of the large ribosomal subunit from Haloarcula marismortui reveals the existence of an abundant and ubiquitous structural motif that stabilizes RNA tertiary and quaternary structures. This motif is termed the A-minor motif, because it involves the insertion of the smooth, minor groove edges of adenines into the minor groove of neighboring helices, preferentially at C-G base pairs, where they form hydrogen bonds with one or both of the 2' OHs of those pairs. A-minor motifs stabilize contacts between RNA helices, interactions between loops and helices, and the conformations of junctions and tight turns. The interactions between the 3' terminal adenine of tRNAs bound in either the A site or the P site with 23S rRNA are examples of functionally significant A-minor interactions. The A-minor motif is by far the most abundant tertiary structure interaction in the large ribosomal subunit; 186 adenines in 23S and 5S rRNA participate, 68 of which are conserved. It may prove to be the universally most important long-range interaction in large RNA structures.
Collapse
MESH Headings
- Adenosine/chemistry
- Adenosine/genetics
- Adenosine/metabolism
- Base Pairing
- Binding Sites
- Conserved Sequence/genetics
- Haloarcula marismortui/chemistry
- Haloarcula marismortui/genetics
- Hydrogen Bonding
- Models, Molecular
- Mutation/genetics
- Nucleic Acid Conformation
- Protein Subunits
- RNA Stability
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Solvents
- Structure-Activity Relationship
Collapse
|
research-article |
24 |
517 |
9
|
Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MAJ, Sadek P, Sie D, Zini N, Middeldorp JM, Ylstra B, de Menezes RX, Würdinger T, Meijer GA, Pegtel DM. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 2014; 8:1649-1658. [PMID: 25242326 DOI: 10.1016/j.celrep.2014.08.027] [Citation(s) in RCA: 451] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 03/25/2014] [Accepted: 08/13/2014] [Indexed: 01/11/2023] Open
Abstract
Functional biomolecules, including small noncoding RNAs (ncRNAs), are released and transmitted between mammalian cells via extracellular vesicles (EVs), including endosome-derived exosomes. The small RNA composition in cells differs from exosomes, but underlying mechanisms have not been established. We generated small RNA profiles by RNA sequencing (RNA-seq) from a panel of human B cells and their secreted exosomes. A comprehensive bioinformatics and statistical analysis revealed nonrandomly distributed subsets of microRNA (miRNA) species between B cells and exosomes. Unexpectedly, 3' end adenylated miRNAs are relatively enriched in cells, whereas 3' end uridylated isoforms appear overrepresented in exosomes, as validated in naturally occurring EVs isolated from human urine samples. Collectively, our findings suggest that posttranscriptional modifications, notably 3' end adenylation and uridylation, exert opposing effects that may contribute, at least in part, to direct ncRNA sorting into EVs.
Collapse
|
|
11 |
451 |
10
|
van Tran N, Ernst FG, Hawley BR, Zorbas C, Ulryck N, Hackert P, Bohnsack KE, Bohnsack MT, Jaffrey SR, Graille M, Lafontaine DL. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res 2019; 47:7719-7733. [PMID: 31328227 PMCID: PMC6735865 DOI: 10.1093/nar/gkz619] [Citation(s) in RCA: 361] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/14/2019] [Accepted: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
N6-methyladenosine (m6A) has recently been found abundantly on messenger RNA and shown to regulate most steps of mRNA metabolism. Several important m6A methyltransferases have been described functionally and structurally, but the enzymes responsible for installing one m6A residue on each subunit of human ribosomes at functionally important sites have eluded identification for over 30 years. Here, we identify METTL5 as the enzyme responsible for 18S rRNA m6A modification and confirm ZCCHC4 as the 28S rRNA modification enzyme. We show that METTL5 must form a heterodimeric complex with TRMT112, a known methyltransferase activator, to gain metabolic stability in cells. We provide the first atomic resolution structure of METTL5-TRMT112, supporting that its RNA-binding mode differs distinctly from that of other m6A RNA methyltransferases. On the basis of similarities with a DNA methyltransferase, we propose that METTL5-TRMT112 acts by extruding the adenosine to be modified from a double-stranded nucleic acid.
Collapse
MESH Headings
- Adenosine/chemistry
- Adenosine/genetics
- Adenosine/metabolism
- Base Sequence
- Binding Sites
- CRISPR-Associated Protein 9/genetics
- CRISPR-Associated Protein 9/metabolism
- CRISPR-Cas Systems
- Cell Line, Tumor
- Crystallography, X-Ray
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- HCT116 Cells
- Humans
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Stability
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Signal Transduction
- Substrate Specificity
- RNA, Guide, CRISPR-Cas Systems
Collapse
|
research-article |
6 |
361 |
11
|
Roost C, Lynch SR, Batista PJ, Qu K, Chang HY, Kool ET. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J Am Chem Soc 2015; 137:2107-15. [PMID: 25611135 PMCID: PMC4405242 DOI: 10.1021/ja513080v] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N(6)-Methyladenosine (m(6)A) modification is hypothesized to control processes such as RNA degradation, localization, and splicing. However, the molecular mechanisms by which this occurs are unclear. Here, we measured structures of an RNA duplex containing m(6)A in the GGACU consensus, along with an unmodified RNA control, by 2D NMR. The data show that m(6)A-U pairing in the double-stranded context is accompanied by the methylamino group rotating from its energetically preferred syn geometry on the Watson-Crick face to the higher-energy anti conformation, positioning the methyl group in the major groove. Thermodynamic measurements of m(6)A in duplexes reveal that it is destabilizing by 0.5-1.7 kcal/mol. In contrast, we show that m(6)A in unpaired positions base stacks considerably more strongly than the unmodified base, adding substantial stabilization in single-stranded locations. Transcriptome-wide nuclease mapping of methylated RNA secondary structure from human cells reveals a structural transition at methylated adenosines, with a tendency to single-stranded structure adjacent to the modified base.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
327 |
12
|
Chen H, Parkinson JA, Morris RE, Sadler PJ. Highly selective binding of organometallic ruthenium ethylenediamine complexes to nucleic acids: novel recognition mechanisms. J Am Chem Soc 2003; 125:173-86. [PMID: 12515520 DOI: 10.1021/ja027719m] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the recognition of nucleic acid derivatives by organometallic ruthenium(II) arene anticancer complexes of the type [(eta(6)-arene)Ru(II)(en)X] where en = ethylenediamine, arene = biphenyl (Bip), tetrahydroanthracene (THA), dihydroanthracene (DHA), p-cymene (Cym) or benzene (Ben), X = Cl(-) or H(2)O using (1)H, (31)P and (15)N ((15)N-en) NMR spectroscopy. For mononucleosides, [(eta(6)-Bip)Ru(en)](2+) binds only to N7 of guanosine, to N7 and N1 of inosine, and to N3 of thymidine. Binding to N3 of cytidine was weak, and almost no binding to adenosine was observed. The reactivity of the various binding sites of nucleobases toward Ru at neutral pH decreased in the order G(N7) > I(N7) > I(N1), T(N3) > C(N3) > A(N7), A(N1). Therefore, pseudo-octahedral diamino Ru(II) arene complexes are much more highly discriminatory between G and A bases than square-planar Pt(II) complexes. Such site-selectivity appears to be controlled by the en NH(2) groups, which H-bond with exocyclic oxygens but are nonbonding and repulsive toward exocyclic amino groups of the nucleobases. For reactions with mononucleotides, the same pattern of site selectivity was observed, but, in addition, significant amounts of the 5'-phosphate-bound species (40-60%) were present at equilibrium for 5'-TMP, 5'-CMP and 5'-AMP. In contrast, no binding to the phosphodiester groups of 3', 5'-cyclic-GMP (cGMP) or cAMP was detected. Reactions with nucleotides proceeded via aquation of [(eta(6)-arene)Ru(en)Cl](+), followed by rapid binding to the 5'-phosphate, and then rearrangement to give N7, N1, or N3-bound products. Small amounts of the dinuclear species, e.g., Ru-O(PO(3))GMPN7-Ru, Ru-O(PO(3))IMPN1-Ru, Ru-O(PO(3))TMPN3-Ru, Ru-N7IMPN1-Ru, and Ru-N7InoN1-Ru were also detected. In competitive binding experiments for [(eta(6)-Bip)Ru(en)Cl](+) with 5'-GMP versus 5'-AMP or 5'-CMP or 5'-TMP, the only final adduct was [(eta(6)-Bip)Ru(en)(N7-GMP)]. Ru-H(2)O species were more reactive than Ru-OH species. The presence of Cl(-) or phosphate in neutral solution significantly decreased the rates of Ru-N7 binding through competitive coordination to Ru. In kinetic studies (pH 7.0, 298 K, 100 mM NaClO(4)), the rates of reaction of cGMP with [(eta(6)-arene)Ru(II)(en)X](n+) (X = Cl(-) or H(2)O) decreased in the order: THA > Bip > DHA >> Cym > Ben, suggesting that N7-binding is promoted by favorable arene-purine hydrophobic interactions in the associative transition state. These findings have revealed that the diamine NH(2) groups, the hydrophobic arene, and the chloride leaving group have important roles in the novel mechanism of recognition of nucleic acids by Ru arene complexes, and will aid the design of more effective anticancer complexes, as well as new site-specific DNA reagents.
Collapse
|
|
22 |
323 |
13
|
Schöller E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A, Meister G. Interactions, localization, and phosphorylation of the m 6A generating METTL3-METTL14-WTAP complex. RNA (NEW YORK, N.Y.) 2018; 24:499-512. [PMID: 29348140 PMCID: PMC5855951 DOI: 10.1261/rna.064063.117] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/03/2018] [Indexed: 05/04/2023]
Abstract
N6-methyladenine (m6A) is found on many eukaryotic RNAs including mRNAs. m6A modification has been implicated in mRNA stability and turnover, localization, or translation efficiency. A heterodimeric enzyme complex composed of METTL3 and METTL14 generates m6A on mRNAs. METTL3/14 is found in the nucleus where it is localized to nuclear speckles and the splicing regulator WTAP is required for this distinct nuclear localization pattern. Although recent crystal structures revealed how the catalytic MT-A70 domains of METTL3 and METTL14 interact with each other, a more global architecture including WTAP and RNA interactions has not been reported so far. Here, we used recombinant proteins and mapped binding surfaces within the METTL3/14-WTAP complex. Furthermore, we identify nuclear localization signals and identify phosphorylation sites on the endogenous proteins. Using an in vitro methylation assay, we confirm that monomeric METTL3 is soluble and inactive while the catalytic center of METTL14 is degenerated and thus also inactive. In addition, we show that the C-terminal RGG repeats of METTL14 are required for METTL3/14 activity by contributing to RNA substrate binding. Our biochemical work identifies characteristic features of METTL3/14-WTAP and reveals novel insight into the overall architecture of this important enzyme complex.
Collapse
|
research-article |
7 |
319 |
14
|
Carroll SS, Tomassini JE, Bosserman M, Getty K, Stahlhut MW, Eldrup AB, Bhat B, Hall D, Simcoe AL, LaFemina R, Rutkowski CA, Wolanski B, Yang Z, Migliaccio G, De Francesco R, Kuo LC, MacCoss M, Olsen DB. Inhibition of hepatitis C virus RNA replication by 2'-modified nucleoside analogs. J Biol Chem 2003; 278:11979-84. [PMID: 12554735 DOI: 10.1074/jbc.m210914200] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is essential for the replication of viral RNA and thus constitutes a valid target for the chemotherapeutic intervention of HCV infection. In this report, we describe the identification of 2'-substituted nucleosides as inhibitors of HCV replication. The 5'-triphosphates of 2'-C-methyladenosine and 2'-O-methylcytidine are found to inhibit NS5B-catalyzed RNA synthesis in vitro, in a manner that is competitive with substrate nucleoside triphosphate. NS5B is able to incorporate either nucleotide analog into RNA as determined with gel-based incorporation assays but is impaired in its ability to extend the incorporated analog by addition of the next nucleotide. In a subgenomic replicon cell line, 2-C-methyladenosine and 2'-O-methylcytidine inhibit HCV RNA replication. The 5'-triphosphates of both nucleosides are detected intracellularly following addition of the nucleosides to the media. However, significantly higher concentrations of 2'-C-methyladenosine triphosphate than 2'-O-methylcytidine triphosphate are detected, consistent with the greater potency of 2'-C-methyladenosine in the replicon assay, despite similar inhibition of NS5B by the triphosphates in the in vitro enzyme assays. Thus, the 2'-modifications of natural substrate nucleosides transform these molecules into potent inhibitors of HCV replication.
Collapse
|
|
22 |
282 |
15
|
Klussmann S, Nolte A, Bald R, Erdmann VA, Fürste JP. Mirror-image RNA that binds D-adenosine. Nat Biotechnol 1996; 14:1112-5. [PMID: 9631061 DOI: 10.1038/nbt0996-1112] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A 58-mer L-RNA ligand that binds to naturally occurring D-adenosine with a dissociation constant of 1.7 microM in solution was identified from a combinatorial library employing mirror-design. The corresponding D-RNA ligand shows identical binding affinity to L-adenosine. Reciprocal chiral specificity was also evident from ligand discrimination; the binding affinity of the L-RNA ligand for D-adenosine was 9000-fold greater than its affinity for L-adenosine and vice versa. While the D-RNA ligand was rapidly degraded in human serum, the L-RNA ligand displayed an extraordinary stability. This indicates the potential application of specifically designed L-RNA ligands as stable monoclonal antibody analogues and the development of highly stable L-ribozymes.
Collapse
|
|
29 |
277 |
16
|
Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z, Constantini S, Barbash ZS, Adamsky K, Safran M, Hirschberg A, Krupsky M, Ben-Dov I, Cazacu S, Mikkelsen T, Brodie C, Eisenberg E, Rechavi G. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res 2007; 17:1586-95. [PMID: 17908822 PMCID: PMC2045141 DOI: 10.1101/gr.6493107] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing was recently shown to be abundant in the human transcriptome, affecting thousands of genes. Employing a bioinformatic approach, we identified significant global hypoediting of Alu repetitive elements in brain, prostate, lung, kidney, and testis tumors. Experimental validation confirmed this finding, showing significantly reduced editing in Alu sequences within MED13 transcripts in brain tissues. Looking at editing of specific recoding and noncoding sites, including in cancer-related genes, a more complex picture emerged, with a gene-specific editing pattern in tumors vs. normal tissues. Additionally, we found reduced RNA levels of all three editing mediating enzymes, ADAR, ADARB1, and ADARB2, in brain tumors. The reduction of ADARB2 correlated with the grade of malignancy of glioblastoma multiforme, the most aggressive of brain tumors, displaying a 99% decrease in ADARB2 RNA levels. Consistently, overexpression of ADAR and ADARB1 in the U87 glioblastoma multiforme cell line resulted in decreased proliferation rate, suggesting that reduced A-to-I editing in brain tumors is involved in the pathogenesis of cancer. Altered epigenetic control was recently shown to play a central role in oncogenesis. We suggest that A-to-I RNA editing may serve as an additional epigenetic mechanism relevant to cancer development and progression.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
274 |
17
|
Xiang Y, Tong A, Lu Y. Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb(2+) and adenosine with high sensitivity, selectivity, and tunable dynamic range. J Am Chem Soc 2009; 131:15352-7. [PMID: 19807110 PMCID: PMC2783749 DOI: 10.1021/ja905854a] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An abasic site called dSpacer has been introduced into duplex regions of the 8-17 DNAzyme and adenosine aptamer for label-free fluorescent detection of Pb(2+) and adenosine, respectively. The dSpacer can bind an extrinsic fluorescent compound, 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND), and quench its fluorescence. Addition of Pb(2+) enables the DNAzyme to cleave its substrate and release ATMND from DNA duplex, recovering the fluorescence of ATMND. Similarly, the presence of adenosine induces structural switching of the aptamer, resulting in the release of ATMND from the DNA duplex and a subsequent fluorescence enhancement. Under optimized conditions, this label-free method exhibits detection limits of 4 nM for Pb(2+) and 3.4 muM for adenosine, which are even lower than those of the corresponding labeled-DNAzyme and aptamer sensors. These low detection limits have been obtained without compromising any of the selectivity of the sensors. Finally, the dynamic range of the adenosine sensor has been tuned by varying the number of hybridized base-pairs in the aptamer duplex. The method demonstrated here can be applied for label-free detection and quantification of a broad range of analytes using other DNAzymes and aptamers.
Collapse
|
Evaluation Study |
16 |
266 |
18
|
Duan HC, Wei LH, Zhang C, Wang Y, Chen L, Lu Z, Chen PR, He C, Jia G. ALKBH10B Is an RNA N6-Methyladenosine Demethylase Affecting Arabidopsis Floral Transition. THE PLANT CELL 2017; 29:2995-3011. [PMID: 29180595 PMCID: PMC5757257 DOI: 10.1105/tpc.16.00912] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 10/17/2017] [Accepted: 11/24/2017] [Indexed: 05/18/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant, internal, posttranscriptional modification in mRNA among all higher eukaryotes. In mammals, this modification is reversible and plays broad roles in the regulation of mRNA metabolism and processing. Despite its importance, previous studies on the role and mechanism of m6A methylation in Arabidopsis thaliana have been limited. Here, we report that ALKBH10B is a demethylase that oxidatively reverses m6A methylation in mRNA in vitro and in vivo. Depletion of ALKBH10B in the alkbh10b mutant delays flowering and represses vegetative growth. Complementation with wild-type ALKBH10B, but not a catalytically inactive mutant (ALKBH10B H366A/E368A), rescues these effects in alkbh10b-1 mutant plants, suggesting the observed phenotypes are controlled by the catalytic action of ALKBH10B We show that ALKBH10B-mediated mRNA demethylation affects the stability of target transcripts, thereby influencing floral transition. We identified 1190 m6A hypermethylated transcripts in the alkbh10b-1 mutant involved in plant development. The discovery and characterization of the archetypical RNA demethylase in Arabidopsis sheds light on the occurrence and functional role(s) of reversible mRNA methylation in plants and defines the role of m6A RNA modification in Arabidopsis floral transition.
Collapse
|
research-article |
8 |
266 |
19
|
Rachofsky EL, Osman R, Ross JB. Probing structure and dynamics of DNA with 2-aminopurine: effects of local environment on fluorescence. Biochemistry 2001; 40:946-56. [PMID: 11170416 DOI: 10.1021/bi001664o] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-Aminopurine (2AP) is an analogue of adenine that has been utilized widely as a fluorescence probe of protein-induced local conformational changes in DNA. Within a DNA strand, this fluorophore demonstrates characteristic decreases in quantum yield and emission decay lifetime that vary sensitively with base sequence, temperature, and helix conformation but that are accompanied by only small changes in emission wavelength. However, the molecular interactions that give rise to these spectroscopic changes have not been established. To develop a molecular model for interpreting the fluorescence measurements, we have investigated the effects of environmental polarity, hydrogen bonding, and the purine and pyrimidine bases of DNA on the emission energy, quantum yield, and intensity decay kinetics of 2AP in simple model systems. The effects of environmental polarity were examined in a series of solvents of varying dielectric constant, and hydrogen bonding was investigated in binary mixtures of water with 1,4-dioxane or N,N-dimethylformamide (DMF). The effects of the purine and pyrimidine bases were studied by titrating 2AP deoxyriboside (d2AP) with the nucleosides adenosine (rA), cytidine (rC), guanosine (rG), and deoxythymidine (dT), and the nucleoside triphosphates ATP and GTP in neutral aqueous solution. The nucleosides and NTPs each quench the fluorescence of d2AP by a combination of static (affecting only the quantum yield) and dynamic (affecting both the quantum yield and the lifetime, proportionately) mechanisms. The peak wavelength and shape of the emission spectrum are not altered by either of these effects. The static quenching is saturable and has half-maximal effect at approximately 20 mM nucleoside or NTP, consistent with an aromatic stacking interaction. The rate constant for dynamic quenching is near the diffusion limit for collisional interaction (k(q) approximately 2 x 10(9) M(-1) s(-1)). Neither of these effects varies significantly between the various nucleosides and NTPs studied. In contrast, hydrogen bonding with water was observed to have a negligible effect on the emission wavelength, fluorescence quantum yield, or lifetime of 2AP in either dioxane or DMF. In nonpolar solvents, the fluorescence lifetime and quantum yield decrease dramatically, accompanied by significant shifts in the emission spectrum to shorter wavelengths. However, these effects of polarity do not coincide with the observed emission wavelength-independent quenching of 2AP fluorescence in DNA. Therefore, we conclude that the fluorescence quenching of 2AP in DNA arises from base stacking and collisions with neighboring bases only but is insensitive to base-pairing or other hydrogen bonding interactions. These results implicate both structural and dynamic properties of DNA in quenching of 2AP and constitute a simple model within which the fluorescence changes induced by protein-DNA binding or other perturbations may be interpreted.
Collapse
|
|
24 |
265 |
20
|
Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, Ren J, Xie W, He C, Luo GZ. Single-base mapping of m 6A by an antibody-independent method. SCIENCE ADVANCES 2019; 5:eaax0250. [PMID: 31281898 PMCID: PMC6609220 DOI: 10.1126/sciadv.aax0250] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/30/2019] [Indexed: 05/12/2023]
Abstract
N 6-methyladenosine (m6A) is one of the most abundant messenger RNA modifications in eukaryotes involved in various pivotal processes of RNA metabolism. The most popular high-throughput m6A identification method depends on the anti-m6A antibody but suffers from poor reproducibility and limited resolution. Exact location information is of great value for understanding the dynamics, machinery, and functions of m6A. Here, we developed a precise and high-throughput antibody-independent m6A identification method based on the m6A-sensitive RNA endoribonuclease recognizing ACA motif (m6A-sensitive RNA-Endoribonuclease-Facilitated sequencing or m6A-REF-seq). Whole-transcriptomic, single-base m6A maps generated by m6A-REF-seq quantitatively displayed an explicit distribution pattern with enrichment near stop codons. We used independent methods to validate methylation status and abundance of individual m6A sites, confirming the high reliability and accuracy of m6A-REF-seq. We applied this method on five tissues from human, mouse, and rat, showing that m6A sites are conserved with single-nucleotide specificity and tend to cluster among species.
Collapse
|
research-article |
6 |
264 |
21
|
de Moor CH, Meijer H, Lissenden S. Mechanisms of translational control by the 3' UTR in development and differentiation. Semin Cell Dev Biol 2005; 16:49-58. [PMID: 15659339 DOI: 10.1016/j.semcdb.2004.11.007] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translational control plays a major role in early development, differentiation and the cell cycle. In this review, we focus on the four main mechanisms of translational control by 3' untranslated regions: 1. Cytoplasmic polyadenylation and deadenylation; 2. Recruitment of 4E binding proteins; 3. Regulation of ribosomal subunit binding; 4. Post-initiation repression by microRNAs. Proteins with conserved functions in translational control during development include cytoplasmic polyadenylation element binding proteins (CPEB/Orb), Pumilio, Bruno, Fragile X mental retardation protein and RNA helicases. The translational regulation of the mRNAs encoding cyclin B1, Oskar, Nanos, Male specific lethal 2 (Msl-2), lipoxygenase and Lin-14 is discussed.
Collapse
|
Review |
20 |
258 |
22
|
Yang H, Liu H, Kang H, Tan W. Engineering target-responsive hydrogels based on aptamer-target interactions. J Am Chem Soc 2008; 130:6320-1. [PMID: 18444626 PMCID: PMC2757630 DOI: 10.1021/ja801339w] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this communication, we report a simple, but highly adaptable, method of constructing selective target-responsive hydrogels using DNA aptamers. The simplicity of the design is accomplished by using linear polymer chains as the hydrogel backbone and a DNA aptamer as the cross-linker. In this design, competitive binding of target to the aptamer causes the decrease of cross-linking density and, hence, dissolution of the hydrogel. The adaptability of this strategy for therapeutic applications was demonstrated using two different types of targets, small molecules and proteins. Our results indicated that this molecular engineering provides a highly selective and controllable release system whereby efficient release of therapeutic agents can occur at specific environments in which the target biomarker is found.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
257 |
23
|
Liu J, Lu Y. Adenosine-Dependent Assembly of Aptazyme-Functionalized Gold Nanoparticles and Its Application as a Colorimetric Biosensor. Anal Chem 2004; 76:1627-32. [PMID: 15018560 DOI: 10.1021/ac0351769] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous work has shown that DNAzyme-directed assembly of gold nanoparticles can be utilized to make effective colorimetric biosensors. However, the method is restricted to analytes that are directly involved in phosphodiester cleavage. To expand the methodology to a broader range of analytes, a colorimetric adenosine biosensor based on the aptazyme-directed assembly of gold nanoparticles is reported here. The aptazyme is based on the 8-17 DNAzyme with an adenosine aptamer motif that can modulate the DNAzyme activity through allosteric interactions depending on the presence of adenosine. In the absence of adenosine, the aptazyme is inactive and the substrate strands can serve as linkers to assemble DNA-functionalized 13-nm-diameter gold nanoparticles, resulting in a blue color. However, the presence of adenosine activates the aptazyme, which cleaves the substrate strand, disrupting the formation of nanoparticle aggregates. A red color of separated gold nanoparticles is observed. Concentrations of adenosine of up to 1 mM can be measured semiquantitatively by the degree of blue to red color changes or quantitatively by the extinction ratio at 520 and 700 nm. Under the same conditions, 5 mM guanosine, cytidine, or uridine resulted in a blue color only, indicating good selectivity of the sensor. The color difference can be clearly observed by the naked eye by spotting the resulting sensor solution onto an alumina TLC plate. Since aptamers that can target many classes of important analytes have already been selected, they can be adapted into aptazyme systems through rational design or further selection. Thus, colorimetric biosensors for many analytes of interest can be designed using the method presented here, regardless of whether the analytes are directly involved in the cleavage reaction or not.
Collapse
|
|
21 |
245 |
24
|
Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Szewczak AA, Kundrot CE, Cech TR, Doudna JA. RNA tertiary structure mediation by adenosine platforms. Science 1996; 273:1696-9. [PMID: 8781229 DOI: 10.1126/science.273.5282.1696] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The crystal structure of a group I intron domain reveals an unexpected motif that mediates both intra- and intermolecular interactions. At three separate locations in the 160-nucleotide domain, adjacent adenosines in the sequence lie side-by-side and form a pseudo-base pair within a helix. This adenosine platform opens the minor groove for base stacking or base pairing with nucleotides from a noncontiguous RNA strand. The platform motif has a distinctive chemical modification signature that may enable its detection in other structured RNAs. The ability of this motif to facilitate higher order folding provides one explanation for the abundance of adenosine residues in internal loops of many RNAs.
Collapse
|
Comment |
29 |
243 |
25
|
Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM, Chen ZS. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer 2022; 21:52. [PMID: 35164788 PMCID: PMC8842557 DOI: 10.1186/s12943-022-01510-2] [Citation(s) in RCA: 233] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Abnormal N6-methyladenosine (m6A) modification is closely associated with the occurrence, development, progression and prognosis of cancer, and aberrant m6A regulators have been identified as novel anticancer drug targets. Both traditional medicine-related approaches and modern drug discovery platforms have been used in an attempt to develop m6A-targeted drugs. Here, we provide an update of the latest findings on m6A modification and the critical roles of m6A modification in cancer progression, and we summarize rational sources for the discovery of m6A-targeted anticancer agents from traditional medicines and computer-based chemosynthetic compounds. This review highlights the potential agents targeting m6A modification for cancer treatment and proposes the advantage of artificial intelligence (AI) in the discovery of m6A-targeting anticancer drugs. Three stages of m6A-targeting anticancer drug discovery: traditional medicine-based natural products, modern chemical modification or synthesis, and artificial intelligence (AI)-assisted approaches for the future.
Collapse
|
Review |
3 |
233 |