1
|
Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. ADVANCES IN ENZYME REGULATION 1984; 22:27-55. [PMID: 6382953 DOI: 10.1016/0065-2571(84)90007-4] [Citation(s) in RCA: 5679] [Impact Index Per Article: 138.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A generalized method for analyzing the effects of multiple drugs and for determining summation, synergism and antagonism has been proposed. The derived, generalized equations are based on kinetic principles. The method is relatively simple and is not limited by whether the dose-effect relationships are hyperbolic or sigmoidal, whether the effects of the drugs are mutually exclusive or nonexclusive, whether the ligand interactions are competitive, noncompetitive or uncompetitive, whether the drugs are agonists or antagonists, or the number of drugs involved. The equations for the two most widely used methods for analyzing synergism, antagonism and summation of effects of multiple drugs, the isobologram and fractional product concepts, have been derived and been shown to have limitations in their applications. These two methods cannot be used indiscriminately. The equations underlying these two methods can be derived from a more generalized equation previously developed by us (59). It can be shown that the isobologram is valid only for drugs whose effects are mutually exclusive, whereas the fractional product method is valid only for mutually nonexclusive drugs which have hyperbolic dose-effect curves. Furthermore, in the isobol method, it is laborious to find proper combinations of drugs that would produce an iso-effective curve, and the fractional product method tends to give indication of synergism, since it underestimates the summation of the effect of mutually nonexclusive drugs that have sigmoidal dose-effect curves. The method described herein is devoid of these deficiencies and limitations. The simplified experimental design proposed for multiple drug-effect analysis has the following advantages: It provides a simple diagnostic plot (i.e., the median-effect plot) for evaluating the applicability of the data, and provides parameters that can be directly used to obtain a general equation for the dose-effect relation; the analysis which involves logarithmic conversion and linear regression can be readily carried out with a simple programmable electronic calculator and does not require special graph paper or tables; and the simplicity of the equation allows flexibility of application and the use of a minimum number of data points. This method has been used to analyze experimental data obtained from enzymatic, cellular and animal systems.
Collapse
|
|
41 |
5679 |
2
|
Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, Walseth TF, Lee HC. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 1993; 262:1056-9. [PMID: 8235624 DOI: 10.1126/science.8235624] [Citation(s) in RCA: 599] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CD38 is a 42-kilodalton glycoprotein expressed extensively on B and T lymphocytes. CD38 exhibits a structural homology to Aplysia adenosine diphosphate (ADP)-ribosyl cyclase. This enzyme catalyzes the synthesis of cyclic ADP-ribose (cADPR), a metabolite of nicotinamide adenine dinucleotide (NAD+) with calcium-mobilizing activity. A complementary DNA encoding the extracellular domain of murine CD38 was constructed and expressed, and the resultant recombinant soluble CD38 was purified to homogeneity. Soluble CD38 catalyzed the formation and hydrolysis of cADPR when added to NAD+. Purified cADPR augmented the proliferative response of activated murine B cells, potentially implicating the enzymatic activity of CD38 in lymphocyte function.
Collapse
|
|
32 |
599 |
3
|
Galione A, Lee HC, Busa WB. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 1991; 253:1143-6. [PMID: 1909457 DOI: 10.1126/science.1909457] [Citation(s) in RCA: 479] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium-induced calcium release (CICR) may function widely in calcium-mediated cell signaling, but has been most thoroughly characterized in muscle cells. In a homogenate of sea urchin eggs, which display transients in the intracellular free calcium concentration ([Ca2+]i) during fertilization and anaphase, addition of Ca2+ triggered CICR. Ca2+ release was also induced by the CICR modulators ryanodine and caffeine. Responses to both Ca2+ and CICR modulators (but not Ca2+ release mediated by inositol 1,4,5-trisphosphate) were inhibited by procaine and ruthenium red, inhibitors of CICR. Intact eggs also displayed transients of [Ca2+]i when microinjected with ryanodine. Cyclic ADP-ribose, a metabolite with potent Ca(2+)-releasing properties, appears to act by way of the CICR mechanism and may thus be an endogenous modulator of CICR. A CICR mechanism is present in these nonmuscle cells as is assumed in various models of intracellular Ca2+ wave propagation.
Collapse
|
|
34 |
479 |
4
|
Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 2001; 293:1327-30. [PMID: 11509734 DOI: 10.1126/science.1062473] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We characterized an activation mechanism of the human LTRPC2 protein, a member of the transient receptor potential family of ion channels, and demonstrated that LTRPC2 mediates Ca2+ influx into immunocytes. Intracellular pyrimidine nucleotides, adenosine 5'-diphosphoribose (ADPR), and nicotinamide adenine dinucleotide (NAD), directly activated LTRPC2, which functioned as a Ca2+-permeable nonselective cation channel and enabled Ca2+ influx into cells. This activation was suppressed by intracellular adenosine triphosphate. These results reveal that ADPR and NAD act as intracellular messengers and may have an important role in Ca2+ influx by activating LTRPC2 in immunocytes.
Collapse
|
|
24 |
362 |
5
|
Cancela JM, Churchill GC, Galione A. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature 1999; 398:74-6. [PMID: 10078532 DOI: 10.1038/18032] [Citation(s) in RCA: 313] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many hormones and neurotransmitters evoke Ca2+ release from intracellular stores, often triggering agonist-specific signatures of intracellular Ca2+ concentration. Inositol trisphosphate (InsP3) and cyclic adenosine 5'-diphosphate-ribose (cADPR) are established Ca2+-mobilizing messengers that activate Ca2+ release through intracellular InsP3 and ryanodine receptors, respectively. However, in pancreatic acinar cells, neither messenger can explain the complex pattern of Ca2+ signals triggered by the secretory hormone cholecystokinin (CCK). We show here that the Ca2+-mobilizing molecule nicotinic acid adenine dinucleotide phosphate (NAADP), an endogenous metabolite of beta-NADP, triggers a Ca2+ response that varies from short-lasting Ca2+ spikes to a complex mixture of short-lasting (1-2s) and long-lasting (0.2-1 min) Ca2+ spikes. Cells were significantly more sensitive to NAADP than to either cADPR or InsP3, whereas higher concentrations of NAADP selectively inactivated CCK-evoked Ca2+ signals in pancreatic acinar cells, indicating that NAADP may function as an intracellular messenger in mammalian cells.
Collapse
|
|
26 |
313 |
6
|
Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell 1995; 80:439-44. [PMID: 7859285 DOI: 10.1016/0092-8674(95)90494-8] [Citation(s) in RCA: 299] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uptake and release of Ca2+ from isolated liver nuclei were studied with fluorescent probes. We show with the help of digital imaging and confocal microscopy that the Ca(2+)-sensitive fluorescent probe Fura 2 is concentrated in or around the nuclear envelope and that the distribution of Fura 2 fluorescence is similar to that of an endoplasmic reticulum marker. The previously demonstrated ATP-dependent uptake of Ca2+ into isolated nuclei and release of the accumulated Ca2+ by inositol 1,4,5-trisphosphate (IP3) are therefore due to transport of Ca2+ into and out of the nuclear envelope and not the nucleoplasm. Dextrans labeled with fluorescent Ca2+ indicators (calcium-Green 1 and Fura 2) are distributed uniformly in the nucleoplasm and can be used to show that changes in the external Ca2+ concentration produce rapid changes in the nucleoplasmic Ca2+ concentration. Nevertheless, IP3 and cyclic ADP-ribose evoke transient intranuclear Ca2+ elevations. The release from the Ca2+ stores in or around the nuclear envelope appears to be directed into the nucleoplasm from where it can diffuse out through the permeable nuclear pore complexes.
Collapse
|
|
30 |
299 |
7
|
Galione A, McDougall A, Busa WB, Willmott N, Gillot I, Whitaker M. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science 1993; 261:348-52. [PMID: 8392748 DOI: 10.1126/science.8392748] [Citation(s) in RCA: 255] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Propagating Ca2+ waves are a characteristic feature of Ca(2+)-linked signal transduction pathways. Intracellular Ca2+ waves are formed by regenerative stimulation of Ca2+ release from intracellular stores by Ca2+ itself. Mechanisms that rely on either inositol trisphosphate or ryanodine receptor channels have been proposed to account for Ca2+ waves in various cell types. Both channel types contributed to the Ca2+ wave during fertilization of sea urchin eggs. Alternative mechanisms of Ca2+ release imply redundancy but may also allow for modulation and diversity in the generation of Ca2+ waves.
Collapse
|
|
32 |
255 |
8
|
Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BV, Mayr GW. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 1999; 398:70-3. [PMID: 10078531 DOI: 10.1038/18024] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclic ADP-ribose (cADPR) is a natural compound that mobilizes calcium ions in several eukaryotic cells. Although it can lead to the release of calcium ions in T lymphocytes, it has not been firmly established as a second messenger in these cells. Here, using high-performance liquid chromatography analysis, we show that stimulation of the T-cell receptor/CD3 (TCR/CD3) complex results in activation of a soluble ADP-ribosyl cyclase and a sustained increase in intracellular levels of cADPR. There is a causal relation between increased cADPR concentrations, sustained calcium signalling and activation of T cells, as shown by inhibition of TCR/CD3-stimulated calcium signalling, cell proliferation and expression of the early- and late-activation markers CD25 and HLA-DR by using cADPR antagonists. The molecular target for cADPR, the type-3 ryanodine receptor/calcium channel, is expressed in T cells. Increased cADPR significantly and specifically stimulates the apparent association of [3H]ryanodine with the type-3 ryanodine receptor, indicating a direct modulatory effect of cADPR on channel opening. Thus we show the presence, causal relation and biological significance of the major constituents of the cADPR/calcium-signalling pathway in human T cells.
Collapse
|
|
26 |
241 |
9
|
Lee HC, Aarhus R, Walseth TF. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science 1993; 261:352-5. [PMID: 8392749 DOI: 10.1126/science.8392749] [Citation(s) in RCA: 239] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fertilization is accompanied by a transient increase in the concentration of intracellular Ca2+, which serves as a signal for initiating development. Some of the Ca2+ appears to be released from intracellular stores by the binding of inositol trisphosphate (IP3) to its receptor. However, in sea urchin eggs, other mechanisms appear to participate. Cyclic adenosine diphosphate--ribose (cADPR), a naturally occurring metabolite of nicotinamide adenine dinucleotide, is as potent as IP3 in mobilizing Ca2+ in sea urchin eggs. Experiments with antagonists of the cADPR and IP3 receptors revealed that both Ca2+ mobilizing systems were activated during fertilization. Blockage of either of the systems alone was not sufficient to prevent the sperm-induced Ca2+ transient. This study provides direct evidence for a physiological role of cADPR in the Ca2+ signaling process.
Collapse
|
|
32 |
239 |
10
|
Fonfria E, Marshall ICB, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD, McNulty S. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 2004; 143:186-92. [PMID: 15302683 PMCID: PMC1575275 DOI: 10.1038/sj.bjp.0705914] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. TRPM2 (melastatin-like transient receptor potential 2 channel) is a nonselective cation channel that is activated under conditions of oxidative stress leading to an increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)) and cell death. We investigated the role of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) on hydrogen peroxide (H(2)O(2))-mediated TRPM2 activation using a tetracycline-inducible TRPM2-expressing cell line. 2. In whole-cell patch-clamp recordings, intracellular adenine 5'-diphosphoribose (ADP-ribose) triggered an inward current in tetracycline-induced TRPM2-human embryonic kidney (HEK293) cells, but not in uninduced cells. Similarly, H(2)O(2) stimulated an increase in [Ca(2+)](i) (pEC(50) 4.54+/-0.02) in Fluo-4-loaded TRPM2-expressing HEK293 cells, but not in uninduced cells. Induction of TRPM2 expression caused an increase in susceptibility to plasma membrane damage and mitochondrial dysfunction in response to H(2)O(2). These data demonstrate functional expression of TRPM2 following tetracycline induction in TRPM2-HEK293 cells. 3. PARP inhibitors SB750139-B (patent number DE10039610-A1 (Lubisch et al., 2001)), PJ34 (N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide) and DPQ (3, 4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone) inhibited H(2)O(2)-mediated increases in [Ca(2+)](i) (pIC(50) vs 100 microm H(2)O(2): 7.64+/-0.38; 6.68+/-0.28; 4.78+/-0.05, respectively), increases in mitochondrial dysfunction (pIC(50) vs 300 microm H(2)O(2): 7.32+/-0.23; 6.69+/-0.22; 5.44+/-0.09, respectively) and decreases in plasma membrane integrity (pIC(50) vs 300 microm H(2)O(2): 7.45+/-0.27; 6.35+/-0.18; 5.29+/-0.12, respectively). The order of potency of the PARP inhibitors in these assays (SB750139>PJ34>DPQ) was the same as for inhibition of isolated PARP enzyme. 4. SB750139-B, PJ34 and DPQ had no effect on inward currents elicited by intracellular ADP-ribose in tetracycline-induced TRPM2-HEK293 cells, suggesting that PARP inhibitors are not interacting directly with the channel. 5. SB750139-B, PJ34 and DPQ inhibited increases in [Ca(2+)](i) in a rat insulinoma cell line (CRI-G1 cells) endogenously expressing TRPM2 (pIC(50) vs 100 microm H(2)O(2): 7.64+/-0.38; 6.68+/-0.28; 4.78+/-0.05, respectively). 6. These data suggest that oxidative stress causes TRPM2 channel opening in both recombinant and endogenously expressing cell systems via activation of PARP enzymes.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
230 |
11
|
Wu Y, Kuzma J, Maréchal E, Graeff R, Lee HC, Foster R, Chua NH. Abscisic acid signaling through cyclic ADP-ribose in plants. Science 1997; 278:2126-30. [PMID: 9405349 DOI: 10.1126/science.278.5346.2126] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abscisic acid (ABA) is the primary hormone that mediates plant responses to stresses such as cold, drought, and salinity. Single-cell microinjection experiments in tomato were used to identify possible intermediates involved in ABA signal transduction. Cyclic ADP-ribose (cADPR) was identified as a signaling molecule in the ABA response and was shown to exert its effects by way of calcium. Bioassay experiments showed that the amounts of cADPR in Arabidopsis thaliana plants increased in response to ABA treatment and before ABA-induced gene expression.
Collapse
|
|
28 |
227 |
12
|
Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R. TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal 2009; 2:ra23. [PMID: 19454650 PMCID: PMC2779714 DOI: 10.1126/scisignal.2000278] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
TRPM2 is a Ca2+-permeable cation channel that is specifically activated by adenosine diphosphoribose (ADPR). Channel activation in the plasma membrane leads to Ca2+ influx and has been linked to apoptotic mechanisms. The primary agonist, ADPR, is produced both extra- and intracellularly and causes increases in intracellular calcium concentration ([Ca2+]i), but the mechanisms involved are not understood. Using short interfering RNA and a knockout mouse, we report that TRPM2, in addition to its role as a plasma membrane channel, also functions as a Ca2+-release channel activated by intracellular ADPR in a lysosomal compartment. We show that both functions of TRPM2 are critically linked to hydrogen peroxide-induced beta cell death. Additionally, extracellular ADPR production by the ectoenzyme CD38 from its substrates NAD+ (nicotinamide adenine dinucleotide) or cADPR causes IP3-dependent Ca2+ release via P2Y and adenosine receptors. Thus, ADPR and TRPM2 represent multimodal signaling elements regulating Ca2+ mobilization in beta cells through membrane depolarization, Ca2+ influx, and release of Ca2+ from intracellular stores.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
226 |
13
|
Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G, Harteneck C. Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 2003; 286:C129-37. [PMID: 14512294 DOI: 10.1152/ajpcell.00331.2003] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microglial cells are the host macrophages in the central nervous system and respond to brain injury and various neurological diseases. In this process, microglial cells undergo multiple morphological and functional changes from the resting cell toward a fully activated, phagocyting tissue macrophage. In culture, bacterial lipopolysaccharide (LPS) is a frequently used tool to induce this activation. By using calcium-imaging and patch-clamp techniques, we investigated the effect of hydrogen peroxide (H2O2), which is released by macrophagic cells themselves, on the intracellular calcium concentration and ion currents in cultured rat microglia. Application of 0.1-5 mM H2O2 for several minutes induced small responses in untreated cells but a large calcium influx and cation current in LPS-treated cells. In both untreated and LPS-treated microglia, internal perfusion of ADP-ribose (ADPR) via the patch pipette elicited large cation currents. Both stimuli, H2O2 and ADPR, have been reported to activate the recently cloned nonselective cation channel TRPM2. RT-PCR analysis from cultured rat glial and neuronal cells confirmed a strong expression of TRPM2 in rat microglia but not in astrocytes and cerebellar granule cells. In situ hybridizations from mouse brain showed a distribution of TRPM2, which is compatible with the expression in microglial cells. In conclusion, we describe here a novel calcium influx pathway in microglia coupled to hydrogen peroxide and ADPR and provide evidence that this pathway involves TRPM2. The increased sensitivity to H2O2 in LPS-stimulated cells suggests a role for TRPM2 in the calcium signaling of activated microglia.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
221 |
14
|
Gerasimenko OV, Gerasimenko JV, Belan PV, Petersen OH. Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell 1996; 84:473-80. [PMID: 8608601 DOI: 10.1016/s0092-8674(00)81292-1] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In pancreatic acinar cells low (physiological) agonist concentrations evoke cytosolic Ca2+ spikes specifically in the apical secretory pole that contains a high density of secretory (zymogen) granules (ZGs). Inositol 1,4,5-trisphosphate (IP3) is believed to release Ca2+ from the endoplasmic reticulum, but we have now tested whether the Ca(2+)-releasing messengers IP3 and cyclic ADP-ribose (cADPr) can liberate Ca2+ from AGs. In experiments on single isolated ZGs, we show using confocal microscopy that IP3 and cADPr evoke a marked decrease in the free intragranular Ca2+ concentration. Using a novel high resolution method, we have measured changes in the Ca2+ concentration in the vicinity of an isolated AG and show that IP3 and cADPr cause rapid Ca2+ release from the granule, explaining the agonist-evoked cytosolic Ca2+ rise in the secretory pole.
Collapse
|
|
29 |
184 |
15
|
Dargie PJ, Agre MC, Lee HC. Comparison of Ca2+ mobilizing activities of cyclic ADP-ribose and inositol trisphosphate. CELL REGULATION 1990; 1:279-90. [PMID: 2100201 PMCID: PMC361471 DOI: 10.1091/mbc.1.3.279] [Citation(s) in RCA: 169] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have previously shown that a metabolite of NAD+ generated by an enzyme present in sea urchin eggs and mammalian tissues can mobilize intracellular Ca2+ in the eggs. Structural determination established it to be a cyclized ADP-ribose, and the name cyclic ADP-ribose (cADPR) has been proposed. In this study, Ca2+ mobilizations induced by cADPR and inositol trisphosphate (IP3) in sea urchin egg homogenates were monitored with Ca2+ indicators and Ca2(+)-specific electrodes. Both methods showed that cADPR can release Ca2+ from egg homogenates. Evidence indicated that it did not act as a nonspecific Ca2(+)-ionophore or as a blocker of the microsomal Ca2(+)-transport; instead, it was likely to be operating through a specific receptor system. This was supported by its half-maximal effective concentration of 18 nM, which was 7 times lower than that of IP3. The receptor for cADPR appeared to be different from that of IP3 because heparin, an inhibitor of IP3 binding, had no effect on the cADPR action. The Ca2+ releases induced by cADPR and IP3 were not additive and had an inverse relationship, indicating overlapping stores were mobilized. Microinjection of cADPR into intact eggs induced transient intracellular Ca2+ changes and activated the cortical reaction. The in vivo effectiveness of cADPR was directly comparable with IP3 and neither required external Ca2+. In addition, both were effective in activating the eggs to undergo multiple nuclear cycles and DNA synthesis. These results suggest that cADPR could function as a second messenger in sea urchin eggs.
Collapse
|
research-article |
35 |
169 |
16
|
Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jüngling E, Zitt C, Lückhoff A. Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 2003; 371:1045-53. [PMID: 12564954 PMCID: PMC1223343 DOI: 10.1042/bj20021975] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Revised: 01/29/2003] [Accepted: 02/04/2003] [Indexed: 01/05/2023]
Abstract
An early key event in the activation of neutrophil granulocytes is Ca(2+) influx. Members of the transient receptor potential (TRP) channel family may be held responsible for this. The aim of the present study is to analyse the expression pattern of TRP mRNA and identify characteristic currents unambiguously attributable to particular TRP channels. mRNA was extracted from human neutrophils, isolated by gradient centrifugation and also by magnetically labelled CD15 antibodies. The presence of mRNA was demonstrated using reverse transcriptase-PCR in neutrophils (controlled to be CD5-negative) as well as in human leukaemic cell line 60 (HL-60) cells, for the following TRP species: the long TRPC2 (LTRPC2), the vanilloid receptor 1, the vanilloid receptor-like protein 1 and epithelial Ca(2+) channels 1 and 2. TRPC6 was specific for neutrophils, whereas only in HL-60 cells were TRPC1, TRPC2, TRPC3, melastatin 1 and melastatin-related 1 found. Patch-clamp measurements in neutrophils revealed non-selective cation currents evoked by intracellular ADP-ribose and by NAD(+). Both these modes of activation have been found to be characteristic of LTRPC2. Furthermore, single-channel activity was resolved in neutrophils and it was indistinguishable from that in LTRPC2-transfected HEK-293 cells. The results provide evidence that LTRPC2 in neutrophil granulocytes forms an entry pathway for Na(+) and Ca(2+), which is regulated by ADP-ribose and the redox state.
Collapse
|
research-article |
22 |
155 |
17
|
Genazzani AA, Galione A. Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem J 1996; 315 ( Pt 3):721-5. [PMID: 8645149 PMCID: PMC1217266 DOI: 10.1042/bj3150721] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nicotinic acid-adenine dinucleotide phosphate (NAADP) is a novel intracellular Ca2+ releasing agent recently described in sea-urchin eggs and egg homogenates. Ca2+ release by NAADP is independent of that induced by either inositol trisphosphate (InsP3) or cyclic adenosine dinucleotide phosphate (cADPR). We now report that in sea urchin egg homogenates, NAADP releases Ca2+ from a Ca2+ pool that is distinct from those that are sensitive to InsP3 and cADPR. This organelle has distinct Ca2+ uptake characteristics: it is insensitive to thapsigargin and cyclopiazoic acid, but maintenance of the pool shows some requirement for ATP. Although the different Ca2+ pools have different characteristics, there appears to be some degree of overlap or cross-talk between the NAADP- and cADPR/InsP3-sensitive Ca2+ pools. Ca(2+)-induced Ca2+ release is unlikely to account for the apparent overlap between stores, since NAADP-induced Ca2+ release, in contrast with that stimulated by cADPR, is not potentiated by bivalent cations.
Collapse
|
research-article |
29 |
148 |
18
|
Galkin AS, Grivennikova VG, Vinogradov AD. -->H+/2e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles. FEBS Lett 1999; 451:157-61. [PMID: 10371157 DOI: 10.1016/s0014-5793(99)00575-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tightly coupled bovine heart submitochondrial particles treated to activate complex I and to block ubiquinol oxidation were capable of rapid uncoupler-sensitive inside-directed proton translocation when a limited amount of NADH was oxidized by the exogenous ubiquinone homologue Q1. External alkalization, internal acidification and NADH oxidation were followed by the rapidly responding (t1/2 < or = 1 s) spectrophotometric technique. Quantitation of the initial rates of NADH oxidation and external H+ decrease resulted in a stoichiometric ratio of 4 H+ vectorially translocated per 1 NADH oxidized at pH 8.0. ADP-ribose, a competitive inhibitor of the NADH binding site decreased the rates of proton translocation and NADH oxidation without affecting -->H+/2e- stoichiometry. Rotenone, piericidin and thermal deactivation of complex I completely prevented NADH-induced proton translocation in the NADH-endogenous ubiquinone reductase reaction. NADH-exogenous Q1 reductase activity was only partially prevented by rotenone. The residual rotenone- (or piericidin-) insensitive NADH-exogenous Q1 reductase activity was found to be coupled with vectorial uncoupler-sensitive proton translocation showing the same -->H+/2e- stoichiometry of 4. It is concluded that the transfer of two electrons from NADH to the Q1-reactive intermediate located before the rotenone-sensitive step is coupled with translocation of 4 H+.
Collapse
|
|
26 |
141 |
19
|
Abstract
1. We carried out confocal Ca2+ imaging in myocytes permeabilized with saponin in 'internal' solutions containing: MgATP, EGTA and fluo-3 potassium salt. 2. Permeabilized myocytes exhibited spontaneous Ca2+ sparks and waves similar to those observed in intact myocytes loaded with fluo-3 AM. 3. In the presence of 'low' [EGTA] (0.05 mM), Ca2+ waves arose regularly, even at relatively low [Ca2+] (50-100 nM, free). Increasing [EGTA] resulted in decreased frequency and propagation velocity of Ca2+ waves. Propagating waves were completely abolished at [EGTA] > 0.3 mM. 4. The frequency of sparks increased as a function of [Ca2+] (50-400 nM range) with no sign of a high affinity Ca2+-dependent inactivation process. 5. The rate of occurrence of Ca2+ sparks was increased by calmodulin and cyclic adenosine diphosphate-ribose (cADPR).
Collapse
|
research-article |
26 |
135 |
20
|
Kraft R, Grimm C, Frenzel H, Harteneck C. Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid. Br J Pharmacol 2006; 148:264-73. [PMID: 16604090 PMCID: PMC1751561 DOI: 10.1038/sj.bjp.0706739] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. TRPM2 is a Ca2+ -permeable nonselective cation channel activated by intracellular ADP-ribose (ADPR) and by hydrogen peroxide (H2O2). We investigated the modulation of TRPM2 activity by N-(p-amylcinnamoyl)anthranilic acid (ACA). ACA has previously been reported to inhibit phospholipase A2 (PLA2). 2. Using patch-clamp and calcium-imaging techniques, we show that extracellular application of 20 microM ACA completely blocked ADPR-induced whole-cell currents and H2O2-induced Ca2+ signals (IC50 = 1.7 microM) in HEK293 cells transfected with human TRPM2. Two other PLA2 inhibitors, p-bromophenacyl bromide (BPB; 100 microM) and arachidonyl trifluoromethyl ketone (20 microM), had no significant effect on ADPR-stimulated TRPM2 activity. 3. Inhibition of TRPM2 whole-cell currents by ACA was voltage independent and accelerated at decreased pH. ACA was ineffective when applied intracellularly. The single-channel conductance was not changed during ACA treatment, suggesting a reduction of TRPM2 open probability by modulating channel gating. 4. ACA (20 microM) also blocked currents through human TRPM8 and TRPC6 expressed in HEK293 cells, while BPB (100 microM) was ineffective. TRPC6-mediated currents (IC50 = 2.3 microM) and TRPM8-induced Ca2+ signals (IC50 = 3.9 microM) were blocked in a concentration-dependent manner. 5. ADPR-induced currents in human U937 cells, endogeneously expressing TRPM2 protein, were fully suppressed by 20 microM ACA. 6. Our data indicate that ACA modulates the activity of different TRP channels independent of PLA2 inhibition. Owing to its high potency and efficacy ACA can serve, in combination with other blockers, as a useful tool for studying the unknown function of TRPM2 in native cells.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
130 |
21
|
Adebanjo OA, Anandatheerthavarada HK, Koval AP, Moonga BS, Biswas G, Sun L, Sodam BR, Bevis PJ, Huang CL, Epstein S, Lai FA, Avadhani NG, Zaidi M. A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nat Cell Biol 1999; 1:409-14. [PMID: 10559984 DOI: 10.1038/15640] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nucleoplasmic calcium ions (Ca2+) influence nuclear functions as critical as gene transcription, apoptosis, DNA repair, topoisomerase activation and polymerase unfolding. Although both inositol trisphosphate receptors and ryanodine receptors, types of Ca2+ channel, are present in the nuclear membrane, their role in the homeostasis of nuclear Ca2+ remains unclear. Here we report the existence in the inner nuclear membrane of a functionally active CD38/ADP-ribosyl cyclase that has its catalytic site within the nucleoplasm. We propose that the enzyme catalyses the intranuclear cyclization of nicotinamide adenine dinucleotide to cyclic adenosine diphosphate ribose. The latter activates ryanodine receptors of the inner nuclear membrane to trigger nucleoplasmic Ca2+ release.
Collapse
|
|
26 |
127 |
22
|
Kuemmerle JF, Makhlouf GM. Agonist-stimulated cyclic ADP ribose. Endogenous modulator of Ca(2+)-induced Ca2+ release in intestinal longitudinal muscle. J Biol Chem 1995; 270:25488-94. [PMID: 7592718 DOI: 10.1074/jbc.270.43.25488] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have previously shown that agonist-induced Ca2+ mobilization in intestinal longitudinal muscle is mediated by ryanodine-sensitive, inositol 1,4,5-trisphosphate-insensitive sacroplasmic Ca2+ channels. Ca2+ release via these channels is triggered by agonist-stimulated Ca2+ influx and results in Ca(2+)-induced Ca2+ release. The present study examined whether cyclic ADP-ribose (cADPR) is synthesized in response to stimulation of longitudinal muscle by agonists and modulates the activity of Ca2+ release channels. Cyclic ADPR bound with high affinity to dispersed longitudinal muscle cells (IC50 1.9nM) and induced Ca2+ release (EC50 3.8 nM), increase in [Ca2+]i (EC50 2.0 nM), and contraction (EC50 1.1 nM); cADPR had no effect on circular muscle cells. The effects of cADPR were blocked by ruthenium red, dantrolene, and the specific antagonist, 8-amino-cADPR, and were augmented by caffeine but not affected by heparin. The binding of cADPR and its ability to stimulate Ca2+ release were dependent on the concentration of Ca2+. Cyclic ADPR was capable of stimulating Ca2+ release at subthreshold Ca2+ concentrations (25-100 nM) and of enhancing Ca(2+)-induced Ca2+ release. Longitudinal muscle extracts incubated with beta-NAD+ produced a time-dependent increase in Ca(2+)-mobilizing activity identified as authentic cADPR by blockade of Ca2+ release with 8-amino-cADPR and ruthenium red. Ca2+ mobilizing activity was increased by cholecystokinin octapeptide (CCK-8) in a concentration-dependent fashion. The increase induced by CCK-8 was suppressed by the CCK-A antagonist, L364,718, nifedipine, and guanyl-5'-yl thiophosphate. The study shows that ADP-ribosyl cyclase can be stimulated by agonists and that cADPR can act as an endogenous modulator of Ca(2+)-induced Ca2+ release.
Collapse
|
Comparative Study |
30 |
127 |
23
|
Chen SR, Li X, Ebisawa K, Zhang L. Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J Biol Chem 1997; 272:24234-46. [PMID: 9305876 DOI: 10.1074/jbc.272.39.24234] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate the channel properties of the mammalian type 3 ryanodine receptor (RyR3), we have cloned the RyR3 cDNA from rabbit uterus by reverse transcriptase-polymerase chain reaction and expressed the cDNA in HEK293 cells. Immunoblotting studies showed that the cloned RyR3 was indistinguishable from the native mammalian RyR3 in molecular size and immunoreactivity. Ca2+ release measurements using the fluorescence Ca2+ indicator fluo 3 revealed that the cloned RyR3 functioned as a caffeine- and ryanodine-sensitive Ca2+ release channel in HEK293 cells. Functional properties of the cloned RyR3 were further characterized by using single channel recordings in lipid bilayers. The cloned RyR3 channel exhibited a K+ conductance of 777 picosiemens in 250 mM KCl and a Ca2+ conductance of 137 picosiemens in 250 mM CaCl2 and displayed a pCa2+/pK+ ratio of 6.3 and an open time constant of about 1.16 ms. The response of the cloned RyR3 to cytoplasmic Ca2+ concentrations was biphasic. The channel was activated by Ca2+ at about 100 nM and inactivated at about 10 mM. Ca2+ alone was able to activate the cloned RyR3 fully. Calmodulin activated the cloned RyR3 at low Ca2+ concentrations but inhibited the channel at high Ca2+ concentrations. The cloned RyR3 was activated by ATP, caffeine, and perchlorate, inhibited by Mg2+ and ruthenium red, and modified by ryanodine. Cyclic ADP-ribose did not seem to affect single channel activity of the cloned RyR3. The most prominent differences of the cloned RyR3 from the rabbit skeletal muscle ryanodine receptor were in the gating kinetics, extent of maximal activation by Ca2+, and sensitivity to Ca2+ inactivation. Results of the present study provide initial insights into the single channel properties of the mammalian RyR3.
Collapse
|
|
28 |
121 |
24
|
Abstract
Members of the transient receptor potential (TRP) family for which mRNA can be demonstrated in neutrophil granulocytes with RT-PCR include TRPC6 (as only "short" TRP), TRPM2, TRPV1, TRPV2, TRPV5 and TRPV6. When these are analyzed in heterologous overexpression experiments, TRPM2 is the only cation channel with characteristic properties that can be used as fingerprint to provide functional evidence for its expression in neutrophil granulocytes. As cells transfected with TRPM2, neutrophil granulocytes display non-selective cation currents and typical channel activity evoked by intracellular ADP-ribose and NAD. Thus, stimulation of TRPM2 is likely to occur after activation of CD38 (producing ADP-ribose) and during the oxidative burst (enhancing the NAD concentration). This novel mode of cation entry regulation may be of particular importance for the response of granulocytes to chemoattractants. TRPV6 is a likely but not exclusive candidate as subunit of the channels mediating store-operated Ca2+ entry (SOCE). Evidence for SOCE in granulocytes has been presented with the fura-2 technique but not with electrophysiological methods although Ca2+-selective store-operated currents can be demonstrated in HL-60 cells, a cell culture model of neutrophil granulocytes.
Collapse
|
Review |
22 |
121 |
25
|
Hill K, Benham CD, McNulty S, Randall AD. Flufenamic acid is a pH-dependent antagonist of TRPM2 channels. Neuropharmacology 2004; 47:450-60. [PMID: 15275834 DOI: 10.1016/j.neuropharm.2004.04.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 03/26/2004] [Accepted: 04/29/2004] [Indexed: 11/29/2022]
Abstract
Like a number of other TRP channels, TRPM2 is a Ca(2+)-permeable non-selective cation channel, the activity of which is regulated by intracellular and extracellular Ca(2+). A unique feature of TRPM2 is its activation by ADP-ribose and chemical species that arise during oxidative stress, for example, NAD(+) and H(2)O(2). These properties have lead to proposals that this channel may play a role in the cell death produced by pathological redox states. The lack of known antagonists of this channel have made these hypotheses difficult to test. Here, we demonstrate, using patch clamp electrophysiology, that the non-steroidal anti-inflammatory compound flufenamic acid (FFA) inhibits recombinant human TRPM2 (hTRPM2) as well as currents activated by intracellular ADP-ribose in the CRI-G1 rat insulinoma cell line. All concentrations tested in a range from 50 to 1000 microM produced complete inhibition of the TRPM2-mediated current. Following FFA removal, a small (typically 10-15%) component of current was rapidly recovered (time constant approximately 3 s), considerably longer periods in the absence of FFA produced no further current recovery. Reapplication of FFA re-antagonised the recovered current and subsequent FFA washout produced recovery of only a small percentage of the reblocked current. Decreasing extracellular pH accelerated FFA inhibition of TRPM2. Additional experiments indicated hTRPM2 activation was required for FFA antagonism to occur and that the generation of irreversible antagonism was preceded by a reversible component of block. FFA inhibition could not be induced by intracellular application of FFA. ADP-ribose activated currents in the rat insulinoma cell line CRI-G1 were also antagonised by FFA with concentration- and pH-dependent kinetics. In contrast to the observations made with hTRPM2, antagonism of ADP-ribose activated currents in CRI-G1 cells could be fully reversed following FFA removal. These experiments suggest that FFA may be a useful tool antagonist for studies of TRPM2 function.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
117 |