1
|
Abstract
Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5'-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
238 |
2
|
Abstract
Adenosine kinase (AK) is a key enzyme in the regulation of extracellular adenosine and intracellular adenylate levels. Inhibitors of adenosine kinase elevate adenosine to levels that activate nearby adenosine receptors and produce a wide variety of therapeutically beneficial activities. Accordingly, AK is a promising target for new analgesic, neuroprotective, and cardioprotective agents. We determined the structure of human adenosine kinase by X-ray crystallography using MAD phasing techniques and refined the structure to 1.5 A resolution. The enzyme structure consisted of one large alpha/beta domain with nine beta-strands, eight alpha-helices, and one small alpha/beta-domain with five beta-strands and two alpha-helices. The active site is formed along the edge of the beta-sheet in the large domain while the small domain acts as a lid to cover the upper face of the active site. The overall structure is similar to the recently reported structure of ribokinase from Escherichia coli [Sigrell et al. (1998) Structure 6, 183-193]. The structure of ribokinase was determined at 1.8 A resolution and represents the first structure of a new family of carbohydrate kinases. Two molecules of adenosine were present in the AK crystal structure with one adenosine molecule located in a site that matches the ribose site in ribokinase and probably represents the substrate-binding site. The second adenosine site overlaps the ADP site in ribokinase and probably represents the ATP site. A Mg2+ ion binding site is observed in a trough between the two adenosine sites. The structure of the active site is consistent with the observed substrate specificity. The active-site model suggests that Asp300 is an important catalytic residue involved in the deprotonation of the 5'-hydroxyl during the phosphate transfer.
Collapse
|
|
27 |
149 |
3
|
Abstract
Ribokinase (RK) and adenosine kinase (AK) catalyze the phosphorylation of ribose and adenosine to ribose-5-phosphate and AMP, respectively. Belonging to the RK family of proteins, these enzymes share a number of unique structural and functional elements. Extensive work has been carried out on many aspects of these enzymes in recent years, and we summarize the wealth of information currently available on them. The topics covered include descriptions of the primary and three-dimensional structures of AK and RK, their phylogenetic relationships, biochemical aspects of these enzymes including their reaction mechanisms and ionic requirements, and also work on certain inhibitors of these enzymes. The cellular metabolism and transport of ribose and adenosine are also briefly discussed, as well as the beneficial effects of ribose and adenosine in physiology and how these effects can be harnessed for pharmacological purposes.
Collapse
|
review-article |
17 |
109 |
4
|
Spychala J, Datta NS, Takabayashi K, Datta M, Fox IH, Gribbin T, Mitchell BS. Cloning of human adenosine kinase cDNA: sequence similarity to microbial ribokinases and fructokinases. Proc Natl Acad Sci U S A 1996; 93:1232-7. [PMID: 8577746 PMCID: PMC40062 DOI: 10.1073/pnas.93.3.1232] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adenosine kinase catalyzes the phosphorylation of adenosine to AMP and hence is a potentially important regulator of extracellular adenosine concentrations. Despite extensive characterization of the kinetic properties of the enzyme, its primary structure has never been elucidated. Full-length cDNA clones encoding catalytically active adenosine kinase were obtained from lymphocyte, placental, and liver cDNA libraries. Corresponding mRNA species of 1.3 and 1.8 kb were noted on Northern blots of all tissues examined and were attributable to alternative polyadenylylation sites at the 3' end of the gene. The encoding protein consists of 345 amino acids with a calculated molecular size of 38.7 kDa and does not contain any sequence similarities to other well-characterized mammalian nucleoside kinases, setting it apart from this family of structurally and functionally related proteins. In contrast, two regions were identified with significant sequence identity to microbial ribokinase and fructokinases and a bacterial inosine/guanosine kinase. Thus, adenosine kinase is a structurally distinct mammalian nucleoside kinase that appears to be akin to sugar kinases of microbial origin.
Collapse
|
research-article |
29 |
90 |
5
|
Ito S, Fushinobu S, Yoshioka I, Koga S, Matsuzawa H, Wakagi T. Structural basis for the ADP-specificity of a novel glucokinase from a hyperthermophilic archaeon. Structure 2001; 9:205-14. [PMID: 11286887 DOI: 10.1016/s0969-2126(01)00577-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND ATP is the most common phosphoryl group donor for kinases. However, certain hyperthermophilic archaea such as Thermococcus litoralis and Pyrococcus furiosus utilize unusual ADP-dependent glucokinases and phosphofructokinases in their glycolytic pathways. These ADP-dependent kinases are homologous to each other but show no sequence similarity to any of the hitherto known ATP-dependent enzymes. RESULTS We solved the crystal structure at 2.3 A resolution of an ADP-dependent glucokinase from T. litoralis (tlGK) complexed with ADP. The overall structure can be divided into large and small alpha/beta domains, and the ADP molecule is buried in a shallow pocket in the large domain. Unexpectedly, the structure was similar to those of two ATP-dependent kinases, ribokinase and adenosine kinase. Comparison based on three-dimensional structure revealed that several motifs important both in structure and function are conserved, and the recognition of the alpha- and beta-phosphate of the ADP in the tlGK was almost identical with the recognition of the beta- and gamma-phosphate of ATP in these ATP-dependent kinases. CONCLUSIONS Noticeable points of our study are the first structure of ADP-dependent kinase, the structural similarity to members of the ATP-dependent ribokinase family, its rare nucleotide specificity caused by a shift in nucleotide binding position by one phosphate unit, and identification of the residues that discriminate ADP- and ATP-dependence. The strict conservation of the binding site for the terminal and adjacent phosphate moieties suggests a common ancestral origin of both the ATP- and ADP-dependent kinases.
Collapse
|
|
24 |
77 |
6
|
Schumacher MA, Scott DM, Mathews II, Ealick SE, Roos DS, Ullman B, Brennan RG. Crystal structures of Toxoplasma gondii adenosine kinase reveal a novel catalytic mechanism and prodrug binding. J Mol Biol 2000; 298:875-93. [PMID: 10801355 DOI: 10.1006/jmbi.2000.3753] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine kinase (AK) is a key purine metabolic enzyme from the opportunistic parasitic protozoan Toxoplasma gondii and belongs to the family of carbohydrate kinases that includes ribokinase. To understand the catalytic mechanism of AK, we determined the structures of the T. gondii apo AK, AK:adenosine complex and the AK:adenosine:AMP-PCP complex to 2.55 A, 2.50 A and 1.71 A resolution, respectively. These structures reveal a novel catalytic mechanism that involves an adenosine-induced domain rotation of 30 degrees and a newly described anion hole (DTXGAGD), requiring a helix-to-coil conformational change that is induced by ATP binding. Nucleotide binding also evokes a coil-to-helix transition that completes the formation of the ATP binding pocket. A conserved dipeptide, Gly68-Gly69, which is located at the bottom of the adenosine-binding site, functions as the switch for domain rotation. The synergistic structural changes that occur upon substrate binding sequester the adenosine and the ATP gamma phosphate from solvent and optimally position the substrates for catalysis. Finally, the 1.84 A resolution structure of an AK:7-iodotubercidin:AMP-PCP complex reveals the basis for the higher affinity binding of this prodrug over adenosine and thus provides a scaffold for the design of new inhibitors and subversive substrates that target the T. gondii AK.
Collapse
|
Duplicate Publication |
25 |
74 |
7
|
Abstract
Carbohydrate kinases frequently require a monovalent cation for their activity. The physical basis of this phenomenon is, however, usually unclear. We report here that Escherichia coli ribokinase is activated by potassium with an apparent K(d) of 5 mM; the enzyme should therefore be fully activated under physiological conditions. Cesium can be used as an alternative ion, with an apparent K(d) of 17 mM. An X-ray structure of ribokinase in the presence of cesium was solved and refined at 2.34 A resolution. The cesium ion was bound between two loops immediately adjacent to the anion hole of the active site. The buried location of the site suggests that conformational changes will accompany ion binding, thus providing a direct mechanism for activation. Comparison with structures of a related enzyme, the adenosine kinase of Toxoplasma gondii, support this proposal. This is apparently the first instance in which conformational activation of a carbohydrate kinase by a monovalent cation has been assigned a clear structural basis. The mechanism is probably general to ribokinases, to some adenosine kinases, and to other members of the larger family. A careful re-evaluation of the biochemical and structural data is suggested for other enzyme systems.
Collapse
|
|
23 |
67 |
8
|
Maj MC, Singh B, Gupta RS. Pentavalent ions dependency is a conserved property of adenosine kinase from diverse sources: identification of a novel motif implicated in phosphate and magnesium ion binding and substrate inhibition. Biochemistry 2002; 41:4059-69. [PMID: 11900549 DOI: 10.1021/bi0119161] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic activity of adenosine kinase (AK) from mammalian sources has previously been shown to exhibit a marked dependency upon the presence of pentavalent ions (PVI), such as phosphate (PO4), arsenate, or vanadate. We now show that the activity of AK from diverse sources, including plant, yeast, and protist species, is also markedly enhanced in the presence of PVI. In all cases, PO4 or other PVI exerted their effects primarily by decreasing the Km for adenosine and alleviating the inhibition caused by high concentrations of substrates. These results provide evidence that PVI dependency is a conserved property of AK and perhaps of the PfkB family of carbohydrate kinases which includes AK. On the basis of sequence alignments, we have identified a conserved motif NXXE within the PfkB family. The N and E of this motif make close contacts with Mg2+ and PO4 ions in the crystal structures of AK and bacterial ribokinase (another PfkB member which shows PVI dependency), implicating these residues in their binding. Site-directed mutagenesis of these residues in Chinese hamster AK have resulted in active proteins with greatly altered phosphate stimulation and substrate inhibition characteristics. The N239Q mutation leads to the formation of an active protein whose activity was not stimulated by PO4 or inhibited by high concentrations of adenosine or ATP. The activity of the E242D mutant protein was also not significantly altered in the presence of phosphate. Although PO4 had no effect on the KmAdenosine for this mutant, the KmATP, K(i)Adenosine, and K(i)ATP were significantly decreased. In contrast to these mutations, N239L or E242L mutant proteins showed greatly decreased activity with an altered Mg2+ requirement. These observations support the view that N239 and E242 play an important role in the binding of PO4 and Mg2+ ions required for the catalytic activity of adenosine kinase.
Collapse
|
|
23 |
40 |
9
|
Schumacher MA, Scott DM, Mathews II, Ealick SE, Roos DS, Ullman B, Brennan RG. Crystal structures of Toxoplasma gondii adenosine kinase reveal a novel catalytic mechanism and prodrug binding. J Mol Biol 2000; 296:549-67. [PMID: 10669608 DOI: 10.1006/jmbi.1999.3474] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine kinase (AK) is a key purine metabolic enzyme from the opportunistic parasitic protozoan Toxoplasma gondii and belongs to the family of carbohydrate kinases that includes ribokinase. To understand the catalytic mechanism of AK, we determined the structures of the T. gondii apo AK, AK:adenosine complex and the AK:adenosine:AMP-PCP complex to 2.55 A, 2.50 A and 1.71 A resolution, respectively. These structures reveal a novel catalytic mechanism that involves an adenosine-induced domain rotation of 30 degrees and a newly described anion hole (DTXGAGD), requiring a helix-to-coil conformational change that is induced by ATP binding. Nucleotide binding also evokes a coil-to-helix transition that completes the formation of the ATP binding pocket. A conserved dipeptide, Gly68-Gly69, which is located at the bottom of the adenosine-binding site, functions as the switch for domain rotation. The synergistic structural changes that occur upon substrate binding sequester the adenosine and the ATP gi phosphate from solvent and optimally position the substrates for catalysis. Finally, the 1.84 A resolution structure of an AK:7-iodotubercidin:AMP-PCP complex reveals the basis for the higher affinity binding of this prodrug over adenosine and thus provides a scaffold for the design of new inhibitors and subversive substrates that target the T. gondii AK.
Collapse
|
Duplicate Publication |
25 |
39 |
10
|
Long MC, Escuyer V, Parker WB. Identification and characterization of a unique adenosine kinase from Mycobacterium tuberculosis. J Bacteriol 2003; 185:6548-55. [PMID: 14594827 PMCID: PMC262096 DOI: 10.1128/jb.185.22.6548-6555.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenosine kinase (AK) is a purine salvage enzyme that catalyzes the phosphorylation of adenosine to AMP. In Mycobacterium tuberculosis, AK can also catalyze the phosphorylation of the adenosine analog 2-methyladenosine (methyl-Ado), the first step in the metabolism of this compound to an active form. Purification of AK from M. tuberculosis yielded a 35-kDa protein that existed as a dimer in its native form. Adenosine (Ado) was preferred as a substrate at least 30-fold (Km = 0.8 +/- 0.08 microM) over other natural nucleosides, and substrate inhibition was observed when Ado concentrations exceeded 5 micro M. M. tuberculosis and human AKs exhibited different affinities for methyl-Ado, with Km values of 79 and 960 microM, respectively, indicating that differences exist between the substrate binding sites of these enzymes. ATP was a good phosphate donor (Km = 1100 +/- 140 microM); however, the activity levels observed with dGTP and GTP were 4.7 and 2.5 times the levels observed with ATP, respectively. M. tuberculosis AK activity was dependent on Mg2+, and activity was stimulated by potassium, as reflected by a decrease in the Km and an increase in Vmax for both Ado and methyl-Ado. The N-terminal amino acid sequence of the purified enzyme revealed complete identity with Rv2202c, a protein currently classified as a hypothetical sugar kinase. When an AK-deficient strain of M. tuberculosis (SRICK1) was transformed with this gene, it exhibited a 5,000-fold increase in AK activity compared to extracts from the original mutants. These results verified that the protein that we identified as AK was coded for by Rv2202c. AK is not commonly found in bacteria, and to the best of our knowledge, M. tuberculosis AK is the first bacterial AK to be characterized. The enzyme shows greater sequence homology with ribokinase and fructokinase than it does with other AKs. The multiple differences that exist between M. tuberculosis and human AKs may provide the molecular basis for the development of nucleoside analog compounds with selective activity against M. tuberculosis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
39 |
11
|
Yadav V, Chu CK, Rais RH, Al Safarjalani ON, Guarcello V, Naguib FNM, el Kouni MH. Synthesis, biological activity and molecular modeling of 6-benzylthioinosine analogues as subversive substrates of Toxoplasma gondii adenosine kinase. J Med Chem 2004; 47:1987-96. [PMID: 15055998 DOI: 10.1021/jm030537y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii is the most common cause of secondary CNS infections in immunocompromised persons such as AIDS patients. The major route of adenosine metabolism in T. gondii is direct phosphorylation to adenosine 5'-monophosphate (AMP) catalyzed by the enzyme adenosine kinase (EC 2.7.1.20). Adenosine kinase in T. gondii is significantly more active than any other purine salvage enzyme in this parasite and has been established as a potential chemotherapeutic target for the treatment of toxoplasmosis. Subversive substrates of T. gondii,but not the human, adenosine kinase are preferentially metabolized to their monophosphorylated forms and become selectively toxic to the parasites but not their host. 6-Benzylthioinosine (BTI) was identified as an excellent subversive substrate of T. gondii adenosine kinase. Herein, we report the synthesis of new analogues of BTI as subversive substrates for T. gondii adenosine kinase. These new subversive substrates were synthesized starting from tribenzoyl protected d-ribose. To accomplish the lead optimization process, a divergent and focused combinatorial library was synthesized using a polymer-supported trityl group at the 5'-position. The combinatorial library of 20 compounds gave several compounds more active than BTI. Structure-activity relationship studies showed that substitution at the para position plays a crucial role. To investigate the reasons for this discrimination, substrates with different substituents at the para position were studied by molecular modeling using Monte Carlo Conformational Search followed by energy minimization of the enzyme-ligand complex.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
34 |
12
|
Reddy MCM, Palaninathan SK, Shetty ND, Owen JL, Watson MD, Sacchettini JC. High resolution crystal structures of Mycobacterium tuberculosis adenosine kinase: insights into the mechanism and specificity of this novel prokaryotic enzyme. J Biol Chem 2007; 282:27334-27342. [PMID: 17597075 DOI: 10.1074/jbc.m703290200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenosine kinase (ADK) catalyzes the phosphorylation of adenosine (Ado) to adenosine monophosphate (AMP). It is part of the purine salvage pathway that has been identified only in eukaryotes, with the single exception of Mycobacterium spp. Whereas it is not clear if Mycobacterium tuberculosis (Mtb) ADK is essential, it has been shown that the enzyme can selectively phosphorylate nucleoside analogs to produce products toxic to the cell. We have determined the crystal structure of Mtb ADK unliganded as well as ligand (Ado) bound at 1.5- and 1.9-A resolution, respectively. The structure of the binary complexes with the inhibitor 2-fluoroadenosine (F-Ado) bound and with the adenosine 5'-(beta,gamma-methylene)triphosphate (AMP-PCP) (non-hydrolyzable ATP analog) bound were also solved at 1.9-A resolution. These four structures indicate that Mtb ADK is a dimer formed by an extended beta sheet. The active site of the unliganded ADK is in an open conformation, and upon Ado binding a lid domain of the protein undergoes a large conformation change to close the active site. In the closed conformation, the lid forms direct interactions with the substrate and residues of the active site. Interestingly, AMP-PCP binding alone was not sufficient to produce the closed state of the enzyme. The binding mode of F-Ado was characterized to illustrate the role of additional non-bonding interactions in Mtb ADK compared with human ADK.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
33 |
13
|
Kwade Z, Swiatek A, Azmi A, Goossens A, Inzé D, Van Onckelen H, Roef L. Identification of four adenosine kinase isoforms in tobacco By-2 cells and their putative role in the cell cycle-regulated cytokinin metabolism. J Biol Chem 2005; 280:17512-9. [PMID: 15731114 DOI: 10.1074/jbc.m411428200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenosine kinase (ADK), a key enzyme in the regulation of the intracellular level of adenosine is also speculated to be responsible for the conversion of cytokinin ribosides to their respective nucleotides. To elucidate the role of ADK in the cytokinin metabolism of tobacco BY-2 cells (Nicotiana tabacum cv. "Bright Yellow-2"; TBY-2), we have identified and characterized the full-length cDNAs encoding four ADK isoforms of N. tabacum and determined their catalytic properties. The four TBY-2 ADK isoforms (designated 1S, 2S, 1T, and 2T) display a high affinity for both adenosine (Km 1.88-7.30 microm) and three distinct types of cytokinin ribosides: isopentenyladenosine; zeatin riboside; and dihydrozeatin riboside (Km 0.30-8.71 microm). The Vmax/Km values suggest that ADK2S exhibits in vitro an overall higher efficiency in the metabolism of cytokinin ribosides than the other three isoforms. The expression pattern of NtADK genes is modulated significantly during the cell cycle. We suggest that the increased transcript accumulation of NtADK coupled to an increased ADK activity just prior to mitosis is associated with a very active cytokinin metabolism at that phase of the cell cycle of synchronized TBY-2 cells.
Collapse
|
|
20 |
30 |
14
|
Long MC, Parker WB. Structure-activity relationship for nucleoside analogs as inhibitors or substrates of adenosine kinase from Mycobacterium tuberculosis. I. Modifications to the adenine moiety. Biochem Pharmacol 2006; 71:1671-82. [PMID: 16620788 DOI: 10.1016/j.bcp.2006.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/01/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
Adenosine kinase (Ado kinase, EC 2.7.1.20) is a purine salvage enzyme that phosphorylates adenosine (Ado) to AMP. Ado kinase from Mycobacterium tuberculosis also catalyzes an essential step in the conversion of 2-methyl-Ado to a compound with selective antimycobacterial activity. In order to aid in the design of more potent and selective Ado analogs, eighty nucleoside analogs with modifications to the adenine (Ade) moiety of Ado were evaluated as both substrates and inhibitors of Ado kinase from M. tuberculosis, and a subset was further tested with human Ado kinase for the sake of comparison. The best substrates were 2-aza-Ado, 8-aza-9-deaza-Ado, and 2-fluoro-Ado and the most potent inhibitors were N1-benzyl-Ado (Ki=0.19 microM), 2-fluoro-Ado (Ki=0.5 microM), 6-cyclopentyloxy-purine riboside (Ki=0.15 microM), and 7-iodo-7-deaza-Ado (Ki=0.21 microM). These studies revealed the presence of a hydrophobic pocket near the N6- and N1-positions that can accommodate substitutions at least as large as a benzyl group. The ability to fit into this pocket increased the likelihood that a compound would be an inhibitor and not a substrate. The 2-position was able to accommodate exocyclic substitutions as large as a methoxy group, although substrate activity was low. Similarly, the 7-position could bind an exocyclic group as large as a carboxamido moiety. However, all of the compounds tested with modifications at the 7-position were much better inhibitors than substrates. MIC studies performed with selected compounds have yielded several Ado analogs with promising antitubercular activity. Future studies will utilize this information for the design of new analogs that may be selective antitubercular agents.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
30 |
15
|
McGaraughty S, Cowart M, Jarvis MF. Recent developments in the discovery of novel adenosine kinase inhibitors: mechanism of action and therapeutic potential. CNS DRUG REVIEWS 2001; 7:415-32. [PMID: 11830758 PMCID: PMC6741667 DOI: 10.1111/j.1527-3458.2001.tb00208.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenosine (ADO) is an endogenous inhibitory neuromodulator that limits cellular excitability in response to tissue trauma and inflammation. Adenosine kinase (AK; EC 2.7.1.20) is the primary metabolic enzyme regulating intra- and extracellular concentrations of ADO. AK inhibitors have been shown to significantly increase ADO concentrations at sites of tissue injury and to provide effective antinociceptive, antiinflammatory, and anticonvulsant activity in animal models. Structurally novel nucleoside and non-nucleoside AK inhibitors that demonstrate high specificity for the AK enzyme compared with other ADO metabolic enzymes, transporters, and receptors have recently been synthesized. These compounds have also demonstrated improved cellular and tissue penetration compared with earlier tubercidin analogs. These compounds have been shown to exert beneficial effects in animal models of pain, inflammation and epilepsy with reduced cardiovascular side effects compared with direct acting ADO receptor (P1) agonists, thus supporting the hypothesis that AK inhibitors can enhance the actions of ADO in a site- and event-specific fashion.
Collapse
|
research-article |
24 |
29 |
16
|
Chen W, Zeng W, Sun J, Yang M, Li L, Zhou J, Wu Y, Sun J, Liu G, Tang R, Tan J, Zhu C. Construction of an Aptamer-SiRNA Chimera-Modified Tissue-Engineered Blood Vessel for Cell-Type-Specific Capture and Delivery. ACS NANO 2015; 9:6069-6076. [PMID: 26051465 DOI: 10.1021/acsnano.5b01203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The application of tissue-engineered blood vessels (TEBVs) is the main developmental direction of vascular replacement therapy. Due to few and/or dysfunctional endothelial progenitor cells (EPCs), it is difficult to successfully construct EPC capture TEBVs in diabetes. RNA has a potential application in cell protection and diabetes treatment, but poor specificity and low efficiency of RNA transfection in vivo limit the application of RNA. On the basis of an acellular vascular matrix, we propose an aptamer-siRNA chimera-modified TEBV that can maintain a satisfactory patency in diabetes. This TEBV consists of two parts, CD133-adenosine kinase (ADK) chimeras and a TEBV scaffold. Our results showed that CD133-ADK chimeras could selectively capture the CD133-positive cells in vivo, and then captured cells can internalize the bound chimeras to achieve RNA self-transfection. Subsequently, CD133-ADK chimeras were cut into ADK siRNA by a dicer, resulting in depletion of ADK. An ADK-deficient cell may act as a bioreactor that sustainably releases adenosine. To reduce nonspecific RNA transfection, we increased the proportion of HAuCl4 during the material preparation, through which the transfection capacity of polyethylenimine (PEI)/polyethylene glycol (PEG)-capped gold nanoparticles (PEI/PEG-AuNPs) was significantly decreased and the ability of TEBV to resist tensile and liquid shear stress was greatly enhanced. PEG and 2'-O-methyl modification was used to enhance the in vivo stability of RNA chimeras. At day 30 postgrafting, the patency rate of CD133-ADK chimera-modified TEBVs reached 90% in diabetic rats and good endothelialization was observed.
Collapse
|
|
10 |
28 |
17
|
Perner RJ, Gu YG, Lee CH, Bayburt EK, McKie J, Alexander KM, Kohlhaas KL, Wismer CT, Mikusa J, Jarvis MF, Kowaluk EA, Bhagwat SS. 5,6,7-trisubstituted 4-aminopyrido[2,3-d]pyrimidines as novel inhibitors of adenosine kinase. J Med Chem 2004; 46:5249-57. [PMID: 14613327 DOI: 10.1021/jm030327l] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and structure-activity relationship of a series of 5,6,7-trisubstituted 4-aminopyrido[2,3-d]pyrimidines as novel nonnucleoside adenosine kinase inhibitors is described. A variety of alkyl, aryl, and heteroaryl substituents were found to be tolerated at the C5, C6, and C7 positions of the pyridopyrimidine core. These studies have led to the identification of analogues that are potent inhibitors of adenosine kinase with in vivo analgesic activity.
Collapse
|
Journal Article |
21 |
25 |
18
|
Abstract
New directions in computational methods for the prediction of protein function are discussed. THEMATICS, a method for the location and characterization of the active sites of enzymes, is featured. THEMATICS, for Theoretical Microscopic Titration Curves, is based on well-established finite-difference Poisson-Boltzmann methods for computing the electric field function of a protein. THEMATICS requires only the structure of the subject protein and thus may be applied to proteins that bear no similarity in structure or sequence to any previously characterized protein. The unique features of catalytic sites in proteins are discussed. Discussion of the chemical basis for the predictive powers of THEMATICS is featured in this paper. Some results are given for three illustrative examples: HIV-1 protease, human apurinic/apyrimidinic endonuclease, and human adenosine kinase.
Collapse
|
|
23 |
25 |
19
|
Cook WJ, DeLucas LJ, Chattopadhyay D. Crystal structure of adenosine kinase from Toxoplasma gondii at 1.8 A resolution. Protein Sci 2000; 9:704-12. [PMID: 10794412 PMCID: PMC2144604 DOI: 10.1110/ps.9.4.704] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Human infection with Toxoplasma gondii is an important cause of morbidity and mortality. Protozoan parasites such as T. gondii are incapable of de novo purine biosynthesis and must acquire purines from their host, so the purine salvage pathway offers a number of potential targets for antiparasitic chemotherapy. In T. gondii tachyzoites, adenosine is the predominantly salvaged purine nucleoside, and thus adenosine kinase is a key enzyme in the purine salvage pathway of this parasite. The structure of T. gondii adenosine kinase was solved using molecular replacement and refined by simulated annealing at 1.8 A resolution to an R-factor of 0.214. The overall structure and the active site geometry are similar to human adenosine kinase, although there are significant differences. The T. gondii adenosine kinase has several unique features compared to the human sequence, including a five-residue deletion in one of the four linking segments between the two domains, which is probably responsible for a major change in the orientation of the two domains with respect to each other. These structural differences suggest the possibility of developing specific inhibitors of the parasitic enzyme.
Collapse
|
research-article |
25 |
24 |
20
|
Maj M, Singh B, Gupta RS. The influence of inorganic phosphate on the activity of adenosine kinase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1476:33-42. [PMID: 10606765 DOI: 10.1016/s0167-4838(99)00220-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme adenosine kinase (AK; EC 2.7.1.20) shows a dependence upon inorganic phosphate (Pi) for activity. The degree of dependence varies among enzyme sources and the pH at which the activity is measured. At physiological pH, recombinant AK from Chinese hamster ovary (CHO) cells and AK from beef liver (BL) show higher affinities for the substrate adenosine (Ado), larger maximum velocities and lower sensitivities to substrate inhibition in the presence of Pi. At pH 6.2, both BL and CHO AK exhibit almost complete dependence on the presence of Pi for activity. The data show that both enzymes exhibit increasing relief from substrate inhibition upon increasing Pi and the inhibition of BL AK is almost completely alleviated by the addition of 50 mM Pi. The affinity of CHO AK for Ado increases asymptotically from K(m) 6.4 microM to a limit of 0.7 microM upon the addition of increasing Pi from 1 to 50 mM. The concentration of Ado necessary to invoke substrate inhibition also increases asymptotically from K(i) 32 microM to a limit of 69 microM at saturating concentrations of phosphate. In the presence of increasing amounts of Pi, the maximal velocity of activity increases hyperbolically. The effect that phosphate exerts on AK may be either to protect the enzyme from inactivation at high adenosine and H(+) concentrations or to stabilize substrate binding at the active site.
Collapse
|
|
25 |
24 |
21
|
Matulenko MA, Paight ES, Frey RR, Gomtsyan A, DiDomenico S, Jiang M, Lee CH, Stewart AO, Yu H, Kohlhaas KL, Alexander KM, McGaraughty S, Mikusa J, Marsh KC, Muchmore SW, Jakob CL, Kowaluk EA, Jarvis MF, Bhagwat SS. 4-amino-5-aryl-6-arylethynylpyrimidines: structure-activity relationships of non-nucleoside adenosine kinase inhibitors. Bioorg Med Chem 2006; 15:1586-605. [PMID: 17197188 DOI: 10.1016/j.bmc.2006.12.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 12/15/2006] [Indexed: 11/25/2022]
Abstract
A series of non-nucleoside adenosine kinase (AK) inhibitors is reported. These inhibitors originated from the modification of 5-(3-bromophenyl)-7-(6-morpholin-4-ylpyridin-3-yl)pyrido[2,3-d]pyrimidin-4-ylamine (ABT-702). The identification of a linker that would approximate the spatial arrangement found between the pyrimidine ring and the aryl group at C(7) in ABT-702 was a key element in this modification. A search of potential linkers led to the discovery of an acetylene moiety as a suitable scaffold. It was hypothesized that the aryl acetylenes, ABT-702, and adenosine bound to the active site of AK (closed form) in a similar manner with respect to the orientation of the heterocyclic base. Although potent acetylene analogs were discovered based on this assumption, an X-ray crystal structure of 5-(4-dimethylaminophenyl)-6-(6-morpholin-4-ylpyridin-3-ylethynyl)pyrimidin-4-ylamine (16a) revealed a binding orientation contrary to adenosine. In addition, this compound bound tightly to a unique open conformation of AK. The structure-activity relationships and unique ligand orientation and protein conformation are discussed.
Collapse
|
Journal Article |
19 |
22 |
22
|
Liang L, Yang LL, Wang W, Ji C, Zhang L, Jia Y, Chen Y, Wang X, Tan J, Sun ZJ, Yuan Q, Tan W. Calcium Phosphate-Reinforced Metal-Organic Frameworks Regulate Adenosine-Mediated Immunosuppression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102271. [PMID: 34554618 DOI: 10.1002/adma.202102271] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Indexed: 05/26/2023]
Abstract
Long-term accumulation of adenosine (Ado) in tumor tissues helps to establish the immunosuppressive tumor microenvironment and to promote tumor development. Regulation of Ado metabolism is particularly pivotal for blocking Ado-mediated immunosuppression. The activity of adenosine kinase (ADK) for catalyzing the phosphorylation of Ado plays an essential role in regulating Ado metabolism. Specifically, accumulated Ado in the tumor microenvironment occupies the active site of ADK, inhibiting the phosphorylation of Ado. Phosphate can protect ADK from inactivation and restore the activity of ADK. Herein, calcium phosphate-reinforced iron-based metal-organic frameworks (CaP@Fe-MOFs) are designed to reduce Ado accumulation and to inhibit Ado-mediated immunosuppressive response in the tumor microenvironment. CaP@Fe-MOFs are found to regulate the Ado metabolism by promoting ADK-mediated phosphorylation and relieving the hypoxic tumor microenvironment. Moreover, CaP@Fe-MOFs can enhance the antitumor immune response via Ado regulation, including the increase of T lymphocytes and dendritic cells and the decrease of regulatory T lymphocytes. Finally, CaP@Fe-MOFs are used for cancer treatment in mice, alleviating the Ado-mediated immunosuppressive response and achieving tumor suppression. This study may offer a general strategy for blocking the Ado-mediated immunosuppression in the tumor microenvironment and further for enhancing the immunotherapy efficacy in vivo.
Collapse
|
|
4 |
21 |
23
|
Chakraborty A, Sen B, Datta R, Datta AK. Isomerase-Independent Chaperone Function of Cyclophilin Ensures Aggregation Prevention of Adenosine Kinase Both in vitro and under in vivo Conditions. Biochemistry 2004; 43:11862-72. [PMID: 15362872 DOI: 10.1021/bi049490o] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using inactive aggregates of adenosine kinase (AdK) from Leishmania donovani as the model substrate, we recently demonstrated that a cyclophilin (LdCyP) from the same source in an isomerase-independent fashion reactivated the enzyme in vitro by disaggregating its inactive oligomers [Chakraborty et al. (2002) J. Biol. Chem. 277, 47451-47460]. Besides disrupting preformed aggregates, LdCyP also prevents reaggregation of the newly formed active protein that is generated after productive refolding from its urea-denatured state. To investigate possible physiological implications of such phenomena, a unique expression system that simultaneously induces both AdK and LdCyP in naturally AdK-deficient Escherichia coli, was developed. Both in vitro and in vivo experiments revealed that oligomerization is an inherent property of this particular enzyme. In vivo protein cross-linking studies, activity determination analysis and Ado phosphorylation experiments carried out in cells coexpressing both the proteins unequivocally demonstrated that, similar to the phenomena observed in vitro, aggregates of the enzyme formed in vivo are able to interact with both LdCyP and its N-terminal truncated form (N(22-88)DEL LdCyP) in a crowded intracellular environment, resulting in aggregation prevention and reactivation of the enzyme. Our results indicate that the isomerase-independent chaperone function of LdCyP, detected in vitro, participates in vivo as well to keep aggregation-prone proteins in a monomeric state. Furthermore, analogous to yeast/bacterial two-hybrid systems, development of this simple coexpression system may help in the confirmation of interaction of two proteins under simulated in vivo conditions.
Collapse
|
|
21 |
21 |
24
|
Bookser BC, Matelich MC, Ollis K, Ugarkar BG. Adenosine Kinase Inhibitors. 4. 6,8-Disubstituted Purine Nucleoside Derivatives. Synthesis, Conformation, and Enzyme Inhibition. J Med Chem 2005; 48:3389-99. [PMID: 15857145 DOI: 10.1021/jm048968j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6,8-Disubstituted purine nucleosides were synthesized and evaluated as adenosine kinase inhibitors (AKIs). A method was developed to selectively substitute arylamines for halogens at C6 and C8 which utilizes alkali salts of arylamino anions. Regioselectivity was found to be counterion dependent. Potassium and sodium salts add selectively to C6 of 6-chloro-8-iodo-9-(2,3,5-tris-O-tert-butyldimethylsilyl-beta-d-ribofuranosyl)purine (7a) while lithium salts add to C6 and C8 positions. Differential 6,8-bisarylamin-N,N'-diylpurine nucleosides such as 8-anilin-N-yl-6-indolin-N-yl-9-(beta-d-ribofuranosyl)purine (10b) can be prepared by employing stepwise reactions of potassium and then lithium salts of different arylamino anions followed by fluoride ion-induced desilylation. Other C8-substituted compounds were prepared by way of either C8 lithiation chemistry or palladium cross-coupling reactions. Several of these compounds were potent AKIs (e.g. 10b, AK IC(50) = 0.019 microM) and are more potent than the previous best purine-based AKI 5'-deoxy-5'-aminoadenosine (AK IC(50) = 0.170 microM). AK inhibitory potency was greatest for those compounds with (1)H NMR evidence of a predominant anti glycosyl bond conformation, whereas most analogues adopt a syn conformation because of steric repulsions between the C8 substituent and the ribose group. The inhibitors are proposed to bind in the anti conformation with the hydrophobic C6 and C8 substituents contributing to AK affinity in a manner similar to the C4 and C5 aryl substituents of the potent diaryltubercidin nucleoside inhibitor series.
Collapse
|
|
20 |
20 |
25
|
Muchmore SW, Smith RA, Stewart AO, Cowart MD, Gomtsyan A, Matulenko MA, Yu H, Severin JM, Bhagwat SS, Lee CH, Kowaluk EA, Jarvis MF, Jakob CL. Crystal Structures of Human Adenosine Kinase Inhibitor Complexes Reveal Two Distinct Binding Modes†. J Med Chem 2006; 49:6726-31. [PMID: 17154503 DOI: 10.1021/jm060189a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine kinase (AK) is an enzyme responsible for converting endogenous adenosine (ADO) to adenosine monophosphate (AMP) in an adenosine triphosphate- (ATP-) dependent manner. The structure of AK consists of two domains, the first a large alpha/beta Rossmann-like nucleotide binding domain that forms the ATP binding site, and a smaller mixed alpha/beta domain, which, in combination with the larger domain, forms the ADO binding site and the site of phosphoryl transfer. AK inhibitors have been under investigation as antinociceptive, antiinflammatory, and anticonvulsant as well as antiinfective agents. In this work, we report the structures of AK in complex with two classes of inhibitors: the first, ADO-like, and the second, a novel alkynylpyrimidine series. The two classes of structures, which contain structurally similar substituents, reveal distinct binding modes in which the AK structure accommodates the inhibitor classes by a 30 degrees rotation of the small domain relative to the large domain. This change in binding mode stabilizes an open and a closed intermediate structural state and provide structural insight into the transition required for catalysis. This results in a significant rearrangement of both the protein active site and the orientation of the alkynylpyrimidine ligand when compared to the observed orientation of nucleosidic inhibitors or substrates.
Collapse
|
|
19 |
20 |