1
|
Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 2001; 73:2836-42. [PMID: 11467524 DOI: 10.1021/ac001404c] [Citation(s) in RCA: 549] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new method for proteolytic stable isotope labeling is introduced to provide quantitative and concurrent comparisons between individual proteins from two entire proteome pools or their subfractions. Two 18O atoms are incorporated universally into the carboxyl termini of all tryptic peptides during the proteolytic cleavage of all proteins in the first pool. Proteins in the second pool are cleaved analogously with the carboxyl termini of the resulting peptides containing two 16O atoms (i.e., no labeling). The two peptide mixtures are pooled for fractionation and separation, and the masses and isotope ratios of each peptide pair (differing by 4 Da) are measured by high-resolution mass spectrometry. Short sequences and/or accurate mass measurements combined with proteomics software tools allow the peptides to be related to the precursor proteins from which they are derived. Relative signal intensities of paired peptides quantify the expression levels of their precursor proteins from proteome pools to be compared, using an equation described in the paper. Observation of individual (unpaired) peptides is mainly interpreted as differential modification or sequence variation for the protein from the respective proteome pool. The method is evaluated here in a comparison of virion proteins for two serotypes (Ad5 and Ad2) of adenovirus, taking advantage of information already available about protein sequences and concentrations. In general, proteolytic 18O labeling enables a shotgun approach for proteomic studies with quantitation capability and is proposed as a useful tool for comparative proteomic studies of very complex protein mixtures.
Collapse
|
Comparative Study |
24 |
549 |
2
|
Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW, Brough DE, Kovesdi I, Wickham TJ. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 1998; 72:7909-15. [PMID: 9733828 PMCID: PMC110119 DOI: 10.1128/jvi.72.10.7909-7915.1998] [Citation(s) in RCA: 478] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/1998] [Accepted: 06/17/1998] [Indexed: 11/20/2022] Open
Abstract
Attachment of an adenovirus (Ad) to a cell is mediated by the capsid fiber protein. To date, only the cellular fiber receptor for subgroup C serotypes 2 and 5, the so-called coxsackievirus-adenovirus receptor (CAR) protein, has been identified and cloned. Previous data suggested that the fiber of the subgroup D serotype Ad9 also recognizes CAR, since Ad9 and Ad2 fiber knobs cross-blocked each other's cellular binding. Recombinant fiber knobs and 3H-labeled Ad virions from serotypes representing all six subgroups (A to F) were used to determine whether the knobs cross-blocked the binding of virions from different subgroups. With the exception of subgroup B, all subgroup representatives cross-competed, suggesting that they use CAR as a cellular fiber receptor as well. This result was confirmed by showing that CAR, produced in a soluble recombinant form (sCAR), bound to nitrocellulose-immobilized virions from the different subgroups except subgroup B. Similar results were found for blotted fiber knob proteins. The subgroup F virus Ad41 has both short and long fibers, but only the long fiber bound sCAR. The sCAR protein blocked the attachment of all virus serotypes that bound CAR. Moreover, CHO cells expressing human CAR, in contrast to untransformed CHO cells, all specifically bound the sCAR-binding serotypes. We conclude therefore that Ad serotypes from subgroups A, C, D, E, and F all use CAR as a cellular fiber receptor.
Collapse
|
research-article |
27 |
478 |
3
|
Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites TJ, Chiodo VA, Phillipsberg T, Muzyczka N, Hauswirth WW, Flotte TR, Byrne BJ, Snyder RO. Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 2002; 28:158-67. [PMID: 12413414 DOI: 10.1016/s1046-2023(02)00220-7] [Citation(s) in RCA: 476] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors based on serotype 2 are currently being evaluated most extensively in animals and human clinical trials. rAAV vectors constructed from other AAV serotypes (serotypes 1, 3, 4, 5, and 6) can transduce certain tissues more efficiently and with different specificity than rAAV2 vectors in animal models. Here, we describe reagents and methods for the production and purification of AAV2 inverted terminal repeat-containing vectors pseudotyped with AAV1 or AAV5 capsids. To facilitate pseudotyping, AAV2rep/AAV1cap and AAV2rep/AAV5cap helper plasmids were constructed in an adenoviral plasmid backbone. The resultant plasmids, pXYZ1 and pXYZ5, were used to produce rAAV1 and rAAV5 vectors, respectively, by transient transfection. Since neither AAV5 nor AAV1 binds to the heparin affinity chromatography resin used to purify rAAV2 vectors, purification protocols were developed based on anion-exchange chromatography. The purified vector stocks are 99% pure with titers of 1 x 10(12) to 1 x 10(13)vector genomes/ml.
Collapse
|
|
23 |
476 |
4
|
Abstract
This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a 'leader-exon structure', which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants.
Collapse
|
|
22 |
446 |
5
|
Roberts DM, Nanda A, Havenga MJE, Abbink P, Lynch DM, Ewald BA, Liu J, Thorner AR, Swanson PE, Gorgone DA, Lifton MA, Lemckert AAC, Holterman L, Chen B, Dilraj A, Carville A, Mansfield KG, Goudsmit J, Barouch DH. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 2006; 441:239-43. [PMID: 16625206 DOI: 10.1038/nature04721] [Citation(s) in RCA: 383] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/15/2006] [Indexed: 11/09/2022]
Abstract
A common viral immune evasion strategy involves mutating viral surface proteins in order to evade host neutralizing antibodies. Such immune evasion tactics have not previously been intentionally applied to the development of novel viral gene delivery vectors that overcome the critical problem of anti-vector immunity. Recombinant, replication-incompetent adenovirus serotype 5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens have proved highly immunogenic in preclinical studies but will probably be limited by the high prevalence of pre-existing anti-Ad5 immunity in human populations, particularly in the developing world. Here we show that rAd5 vectors can be engineered to circumvent anti-Ad5 immunity. We constructed novel chimaeric rAd5 vectors in which the seven short hypervariable regions (HVRs) on the surface of the Ad5 hexon protein were replaced with the corresponding HVRs from the rare adenovirus serotype Ad48. These HVR-chimaeric rAd5 vectors were produced at high titres and were stable through serial passages in vitro. HVR-chimaeric rAd5 vectors expressing simian immunodeficiency virus Gag proved comparably immunogenic to parental rAd5 vectors in naive mice and rhesus monkeys. In the presence of high levels of pre-existing anti-Ad5 immunity, the immunogenicity of HVR-chimaeric rAd5 vectors was not detectably suppressed, whereas the immunogenicity of parental rAd5 vectors was abrogated. These data demonstrate that functionally relevant Ad5-specific neutralizing antibodies are focused on epitopes located within the hexon HVRs. Moreover, these studies show that recombinant viral vectors can be engineered to circumvent pre-existing anti-vector immunity by removing key neutralizing epitopes on the surface of viral capsid proteins. Such chimaeric viral vectors may have important practical implications for vaccination and gene therapy.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
383 |
6
|
Wiethoff CM, Wodrich H, Gerace L, Nemerow GR. Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 2005; 79:1992-2000. [PMID: 15681401 PMCID: PMC546575 DOI: 10.1128/jvi.79.4.1992-2000.2005] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In contrast to enveloped viruses, the mechanisms involved in membrane penetration by nonenveloped viruses are not as well understood. In these studies, we determined the relationship between adenovirus (Ad) capsid disassembly and the development of membrane lytic activity. Exposure to low pH or heating induced conformational changes in wild-type Ad but not in temperature-sensitive Ad (ts1) particles that fail to escape the early endosome. Wild-type Ad but not ts1 particles permeabilized model membranes (liposomes) and facilitated the cytosolic delivery of a ribotoxin. Alterations in wild-type Ad capsids were associated with the exposure of a pH-independent membrane lytic factor. Unexpectedly, this factor was identified as protein VI, a 22-kDa cement protein located beneath the peripentonal hexons in the viral capsid. Recombinant protein VI and preprotein VI, but not a deletion mutant lacking an N-terminal amphipathic alpha-helix, possessed membrane lytic activity similar to partially disassembled virions. A new model of Ad entry is proposed based on our present observations of capsid disassembly and membrane penetration.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
338 |
7
|
Barouch DH, Pau MG, Custers JHHV, Koudstaal W, Kostense S, Havenga MJE, Truitt DM, Sumida SM, Kishko MG, Arthur JC, Korioth-Schmitz B, Newberg MH, Gorgone DA, Lifton MA, Panicali DL, Nabel GJ, Letvin NL, Goudsmit J. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. THE JOURNAL OF IMMUNOLOGY 2004; 172:6290-7. [PMID: 15128818 DOI: 10.4049/jimmunol.172.10.6290] [Citation(s) in RCA: 321] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The high prevalence of pre-existing immunity to adenovirus serotype 5 (Ad5) in human populations may substantially limit the immunogenicity and clinical utility of recombinant Ad5 vector-based vaccines for HIV-1 and other pathogens. A potential solution to this problem is to use vaccine vectors derived from adenovirus (Ad) serotypes that are rare in humans, such as Ad35. However, cross-reactive immune responses between heterologous Ad serotypes have been described and could prove a major limitation of this strategy. In particular, the extent of immunologic cross-reactivity between Ad5 and Ad35 has not previously been determined. In this study we investigate the impact of pre-existing anti-Ad5 immunity on the immunogenicity of candidate rAd5 and rAd35 vaccines expressing SIV Gag in mice. Anti-Ad5 immunity at levels typically found in humans dramatically blunted the immunogenicity of rAd5-Gag. In contrast, even high levels of anti-Ad5 immunity did not substantially suppress Gag-specific cellular immune responses elicited by rAd35-Gag. Low levels of cross-reactive Ad5/Ad35-specific CD4(+) T lymphocyte responses were observed, but were insufficient to suppress vaccine immunogenicity. These data demonstrate the potential utility of Ad35 as a candidate vaccine vector that is minimally suppressed by anti-Ad5 immunity. Moreover, these studies suggest that using Ad vectors derived from immunologically distinct serotypes may be an effective and general strategy to overcome the suppressive effects of pre-existing anti-Ad immunity.
Collapse
MESH Headings
- Adenoviridae/classification
- Adenoviridae/genetics
- Adenoviridae/immunology
- Adenoviridae Infections/immunology
- Adenoviridae Infections/prevention & control
- Amino Acid Sequence
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Dose-Response Relationship, Immunologic
- Epitope Mapping/methods
- Epitopes, T-Lymphocyte/blood
- Gene Products, gag/administration & dosage
- Gene Products, gag/blood
- Gene Products, gag/immunology
- Genetic Vectors
- Immunity, Active
- Immunization Schedule
- Immunization, Secondary
- Injections, Intramuscular
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/immunology
- Serotyping
- Simian Immunodeficiency Virus/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
321 |
8
|
Arden KE, McErlean P, Nissen MD, Sloots TP, Mackay IM. Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections. J Med Virol 2006; 78:1232-40. [PMID: 16847968 PMCID: PMC7167201 DOI: 10.1002/jmv.20689] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are the major cause of pediatric acute respiratory tract infection (ARTI) and yet many suspected cases of infection remain uncharacterized. We employed 17 PCR assays and retrospectively screened 315 specimens selected by season from a predominantly pediatric hospital-based population. Before the Brisbane respiratory virus research study commenced, one or more predominantly viral pathogens had been detected in 15.2% (n = 48) of all specimens. The Brisbane study made an additional 206 viral detections, resulting in the identification of a microbe in 67.0% of specimens. After our study, the majority of microbes detected were RNA viruses (89.9%). Overall, human rhinoviruses (HRVs) were the most frequently identified target (n = 140) followed by human adenoviruses (HAdVs; n = 25), human metapneumovirus (HMPV; n = 18), human bocavirus (HBoV; n = 15), human respiratory syncytial virus (HRSV; n = 12), human coronaviruses (HCoVs; n = 11), and human herpesvirus-6 (n = 11). HRVs were the sole microbe detected in 37.8% (n = 31) of patients with suspected lower respiratory tract infection (LRTI). Genotyping of the HRV VP4/VP2 region resulted in a proposed subdivision of HRV type A into sublineages A1 and A2. Most of the genotyped HAdV strains were found to be type C. This study describes the high microbial burden imposed by HRVs, HMPV, HRSV, HCoVs, and the newly identified virus, HBoV on a predominantly paediatric hospital population with suspected acute respiratory tract infections and proposes a new formulation of viral targets for future diagnostic research studies.
Collapse
|
Journal Article |
19 |
302 |
9
|
Ison MG. Adenovirus infections in transplant recipients. Clin Infect Dis 2006; 43:331-9. [PMID: 16804849 DOI: 10.1086/505498] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/27/2006] [Indexed: 12/13/2022] Open
Abstract
Adenoviruses are increasingly recognized as contributors to morbidity and mortality among stem cell and solid-organ transplant recipients. Clinical presentations range from asymptomatic viremia to respiratory and gastrointestinal disease, hemorrhagic cystitis, and severe disseminated illness. The limited clinical data available support the use of cidofovir for many of these illnesses. Prospective studies are needed to better understand the pathogenesis of and therapeutic options for adenoviral infections in this patient population.
Collapse
|
Journal Article |
19 |
244 |
10
|
Nwanegbo E, Vardas E, Gao W, Whittle H, Sun H, Rowe D, Robbins PD, Gambotto A. Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:351-7. [PMID: 15013987 PMCID: PMC371218 DOI: 10.1128/cdli.11.2.351-357.2004] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the major limitations of the use of adenoviruses as gene therapy vectors is the existence of preformed immunity in various populations. Recent studies have linked failure of adenoviral gene therapy trials to the presence of antiadenoviral neutralizing antibodies (NAb). Understanding the distribution and specificity of such antibodies will assist in the design of successful recombinant adenoviral gene therapies and vaccines. To assess the prevalence of NAb to adenovirus serotypes 5 and 35 (Ad5 and Ad35), we analyzed serum samples from adult immunocompetent individuals living in The Gambia, South Africa, and the United States by using a neutralization assay. Serum samples were incubated with A549 lung carcinoma cells and adenoviruses encoding enhanced green or yellow fluorescent proteins; results were analyzed by fluorescence microscopy and flow cytometry. Using this technique, we found a high prevalence of NAb against Ad5 in Gambian, South African, and U.S. subjects at both low and high titers. Conversely, all subjects displayed a low prevalence of NAb to Ad35; when present, anti-Ad35 NAb were seen at low titers. Because of the ability of adenoviruses to elicit systemic and mucosal immune responses, Ad35 with its low NAb prevalence appears to be an attractive candidate vector for gene therapy applications.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
217 |
11
|
Anderson RD, Haskell RE, Xia H, Roessler BJ, Davidson BL. A simple method for the rapid generation of recombinant adenovirus vectors. Gene Ther 2000; 7:1034-8. [PMID: 10871752 DOI: 10.1038/sj.gt.3301197] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recombinant adenoviruses are useful vectors for basic research. When the vectors are used for delineating protein function, several viruses, each containing a mutated version of the transgene are compared at the same time. However, methods to generate multiple vectors simultaneously within a short time period are cumbersome. In this report, we show that a novel backbone plasmid, when cotransfected with routinely used shuttle vectors into HEK293 cells allowed for production of recombinant viruses in an average of 14 days. The recombinant viruses had no detectable wild-type virus contamination by A549 plaque assay and only three to 300 E1a copies per 109 adenovirus genomes by a sensitive PCR-based assay. Further culturing or serial amplification did not result in wild-type revertants nor did cultures show increased levels of E1a copy number by quantitative PCR. Thus, recombinant adenovirus vectors can be produced very simply, rapidly and with little to no contaminating wild-type particles. This system should facilitate the generation of multiple genetic variants by eliminating the need for time-consuming plaque purification and the need to manipulate and screen very large plasmids. We call this the RAPAd.I system.
Collapse
|
|
25 |
206 |
12
|
Gall J, Kass-Eisler A, Leinwand L, Falck-Pedersen E. Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes. J Virol 1996; 70:2116-23. [PMID: 8642632 PMCID: PMC190048 DOI: 10.1128/jvi.70.4.2116-2123.1996] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The efficient uptake of adenovirus into a target cell is a function of adenovirus capsid proteins and their interaction with the host cell. The capsid protein fiber mediates high-affinity attachment of adenovirus to the target cell. Although the cellular receptor(s) for adenovirus is unknown, evidence indicates that a single receptor does not function as the attachment site for each of the 49 different serotypes of adenovirus. Sequence variation of the fiber ligand, particularly in the C- terminal knob domain, is associated with serotype-specific binding specificity. Additionally, this domain of fiber functions as a major serotype determinant. Fiber involvement in cell targeting and its function as a target of the host immune response make the fiber gene an attractive target for manipulation, both from the perspective of adenovirus biology and from the perspective of using adenovirus vectors for gene transfer experiments. We have constructed a defective chimeric adenovirus type 5 (Ad5) reporter virus by replacing the Ad5 fiber gene with the fiber gene from Ad7A. Using the chloramphenicol acetyltransferase reporter gene, we have characterized this virus with respect to infectivity both in vitro and in vivo. We have also characterized the role of antifiber antibody in the host neutralizing immune response to adenovirus infection. Our studies demonstrate that exchange of fiber is a strategy that will be useful in characterizing receptor tropism for different serotypes of adenovirus. Additionally, the neutralizing immune response to Ad5 and Ad7 does not differentiate between two viruses that differ only in their fiber proteins. Therefore, following a primary adenovirus inoculation, antibodies generated against fiber do not constitute a significant fraction of the neutralizing antibody population.
Collapse
|
research-article |
29 |
196 |
13
|
Sprangers MC, Lakhai W, Koudstaal W, Verhoeven M, Koel BF, Vogels R, Goudsmit J, Havenga MJE, Kostense S. Quantifying adenovirus-neutralizing antibodies by luciferase transgene detection: addressing preexisting immunity to vaccine and gene therapy vectors. J Clin Microbiol 2004; 41:5046-52. [PMID: 14605137 PMCID: PMC262545 DOI: 10.1128/jcm.41.11.5046-5052.2003] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of various levels of anti-adenovirus serotype 5 (Ad5)-neutralizing antibodies in humans is thought to contribute to the inconsistent clinical results obtained so far in diverse gene transfer and vaccination studies and might preclude universal dosing with recombinant Ad5. Prescreening of individuals eligible for Ad5 or alternative serotype treatment and subsequently tailoring the vector dose might aid in ensuring the consistency of clinical parameters. For this purpose, a qualified Ad neutralization assay is required. Here we have tested the different protocols used to date to determine anti-Ad neutralizing activity. Based on simplicity, speed, high throughput, sensitivity, and robustness, we propose a qualified assay in which Ad neutralization is monitored by luciferase reporter gene expression.
Collapse
|
Journal Article |
21 |
168 |
14
|
Walls T, Shankar AG, Shingadia D. Adenovirus: an increasingly important pathogen in paediatric bone marrow transplant patients. THE LANCET. INFECTIOUS DISEASES 2003; 3:79-86. [PMID: 12560192 DOI: 10.1016/s1473-3099(03)00515-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adenovirus is increasingly being recognised as a significant pathogen in children following bone marrow transplantation. The virus is endemic in the general paediatric population, and frequently causes severe disease in immunocompromised patients, especially children. Immune responses to adenovirus infection are not fully understood but T-cell responses appear to be important for recovery. Infections can affect a variety of organs with gastrointestinal and urinary tract diseases being the most common. When disseminated infection occurs, reported mortality rates are as high as 60%. The responses to treatment in immunocompromised patients have generally been disappointing. New molecular diagnostic techniques have meant that adenoviral infections can now be detected early, often before symptoms have developed. Clinicians now screen for adenovirus infection to allow early initiation of treatment. It is hoped that this approach, together with effective antiviral therapy, will reduce the deaths from this common virus in high-risk children.
Collapse
|
Review |
22 |
167 |
15
|
Sarkar R, Tetreault R, Gao G, Wang L, Bell P, Chandler R, Wilson JM, Kazazian HH. Total correction of hemophilia A mice with canine FVIII using an AAV 8 serotype. Blood 2003; 103:1253-60. [PMID: 14551134 DOI: 10.1182/blood-2003-08-2954] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the popularity of adeno-associated virus 2 (AAV2) as a vehicle for gene transfer, its efficacy for liver-directed gene therapy in hemophilia A or B has been suboptimal. Here we evaluated AAV serotypes 2, 5, 7, and 8 in gene therapy of factor VIII (FVIII) deficiency in a hemophilia A mouse model and found that AAV8 was superior to the other 3 serotypes. We expressed canine B domain-deleted FVIII cDNA either in a single vector or in 2 separate AAV vectors containing the heavy- and light-chain cDNAs. We also evaluated AAV8 against AAV2 in intraportal and tail vein injections. AAV8 gave 100% correction of plasma FVIII activity irrespective of the vector type or route of administration.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
154 |
16
|
Gray GC, McCarthy T, Lebeck MG, Schnurr DP, Russell KL, Kajon AE, Landry ML, Leland DS, Storch GA, Ginocchio CC, Robinson CC, Demmler GJ, Saubolle MA, Kehl SC, Selvarangan R, Miller MB, Chappell JD, Zerr DM, Kiska DL, Halstead DC, Capuano AW, Setterquist SF, Chorazy ML, Dawson JD, Erdman DD. Genotype prevalence and risk factors for severe clinical adenovirus infection, United States 2004-2006. Clin Infect Dis 2007; 45:1120-31. [PMID: 17918073 PMCID: PMC2064001 DOI: 10.1086/522188] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 07/06/2007] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recently, epidemiological and clinical data have revealed important changes with regard to clinical adenovirus infection, including alterations in antigenic presentation, geographical distribution, and virulence of the virus. METHODS In an effort to better understand the epidemiology of clinical adenovirus infection in the United States, we adopted a new molecular adenovirus typing technique to study clinical adenovirus isolates collected from 22 medical facilities over a 25-month period during 2004-2006. A hexon gene sequence typing method was used to characterize 2237 clinical adenovirus-positive specimens, comparing their sequences with those of the 51 currently recognized prototype human adenovirus strains. In a blinded comparison, this method performed well and was much faster than the classic serologic typing method. RESULTS Among civilians, the most prevalent adenovirus types were types 3 (prevalence, 34.6%), 2 (24.3%), 1 (17.7%), and 5 (5.3%). Among military trainees, the most prevalent types were types 4 (prevalence, 92.8%), 3 (2.6%), and 21 (2.4%). CONCLUSIONS For both populations, we observed a statistically significant increasing trend of adenovirus type 21 detection over time. Among adenovirus isolates recovered from specimens from civilians, 50% were associated with hospitalization, 19.6% with a chronic disease condition, 11% with a bone marrow or solid organ transplantation, 7.4% with intensive care unit stay, and 4.2% with a cancer diagnosis. Multivariable risk factor modeling for adenovirus disease severity found that age <7 years (odds ratio [OR], 3.2; 95% confidence interval [CI], 1.4-7.4), chronic disease (OR, 3.6; 95% CI, 2.6-5.1), recent transplantation (OR, 2.7; 95% CI, 1.3-5.2), and adenovirus type 5 (OR, 2.7; 95% CI, 1.5-4.7) or type 21 infection (OR, 7.6; 95% CI, 2.6-22.3) increased the risk of severe disease.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
148 |
17
|
Fujimoto T, Chikahira M, Yoshida S, Ebira H, Hasegawa A, Totsuka A, Nishio O. Outbreak of central nervous system disease associated with hand, foot, and mouth disease in Japan during the summer of 2000: detection and molecular epidemiology of enterovirus 71. Microbiol Immunol 2003; 46:621-7. [PMID: 12437029 DOI: 10.1111/j.1348-0421.2002.tb02743.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Few outbreaks of the serious enterovirus 71 (EV71) infections, which affect the central nervous system (CNS), had been reported in Japan before 2000. During June through August 2000, a patient died of pulmonary edema caused by brainstem encephalitis accompanied by EV71-induced hand, foot, and mouth disease (HFMD), and many patients complicated by serious CNS disease, including paralysis, were hospitalized in a restricted area in Hyogo Prefecture, Japan (K-area). During the same period, endemics of HFMD were reported in other areas in Hyogo Prefecture, where EV71 was isolated from HFMD patients, but few patients developed aseptic meningitis. The isolations of EV71 from K-area patients were difficult with the use of Vero cells, so the strains were isolated by use of GL37 cells; Vero cells, however, could isolate EV71 strains from other areas in Hyogo Prefecture. We sequenced VP4 coding regions of these EV71 isolates and found that the isolates from K-area had the same sequence, which, except for one isolate, was different from the sequences of EV71 strains isolated from other areas of Hyogo Prefecture. Although these results were not enough to state that EV71 from K-area was a virulent strain, it seemed reasonable to conclude that serious CNS diseases in K-area were caused by EV71 because it was the only infectious agent detected in the inpatients of K-area.
Collapse
|
Case Reports |
22 |
147 |
18
|
Smith JG, Nemerow GR. Mechanism of adenovirus neutralization by Human alpha-defensins. Cell Host Microbe 2008; 3:11-9. [PMID: 18191790 DOI: 10.1016/j.chom.2007.12.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 11/06/2007] [Accepted: 12/11/2007] [Indexed: 12/17/2022]
Abstract
Defensins are naturally occurring antimicrobial peptides that disrupt bacterial membranes and prevent bacterial invasion of the host. Emerging studies indicate that certain defensins also block virus infection; however, the mechanism(s) involved are poorly understood. We demonstrate that human alpha-defensins inhibit adenovirus infection at low micromolar concentrations, and this requires direct association of the defensin with the virus. Moreover, defensins inhibit virus disassembly at the vertex region, thereby restricting the release of an internal capsid protein, pVI, which is required for endosomal membrane penetration during cell entry. As a consequence, defensins hamper the release of adenovirus particles from endocytic vesicles, resulting in virion accumulation in early endosomes and lysosomes. Thus, defensins possess remarkably distinct modes of activity against bacteria and viruses, and their function may provide insights for the development of new antiviral strategies.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
147 |
19
|
|
Review |
56 |
135 |
20
|
Hundesa A, Maluquer de Motes C, Bofill-Mas S, Albinana-Gimenez N, Girones R. Identification of human and animal adenoviruses and polyomaviruses for determination of sources of fecal contamination in the environment. Appl Environ Microbiol 2006; 72:7886-93. [PMID: 17041162 PMCID: PMC1694229 DOI: 10.1128/aem.01090-06] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 09/28/2006] [Indexed: 11/20/2022] Open
Abstract
The Adenoviridae and Polyomaviridae families comprise a wide diversity of viruses which may be excreted for long periods in feces or urine. In this study, a preliminary analysis of the prevalence in the environment and the potential usefulness as source-tracking tools of human and animal adenoviruses and polyomaviruses has been developed. Molecular assays based on PCR specifically targeting human adenoviruses (HAdV), porcine adenoviruses (PAdV), bovine adenoviruses (BAdV), and bovine polyomaviruses (BPyV) were applied to environmental samples including urban sewage, slaughterhouse, and river water samples. PAdV and BPyV were detected in a very high percentage of samples potentially affected by either porcine or bovine fecal contamination, respectively. However, BAdV were detected in only one sample, showing a lower prevalence than BPyV in the wastewater samples analyzed. The 22 slaughterhouse samples with fecal contamination of animal origin showed negative results for the presence of HAdV. The river water samples analyzed were positive for the presence of both human and animal adenoviruses and polyomaviruses, indicating the existence of diverse sources of contamination. The identities of the viruses detected were confirmed by analyses of the amplified sequences. All BPyV isolates showed a 97% similarity in nucleotide sequences. This is the first time that PAdV5, BAdV6, and BPyV have been reported to occur in environmental samples. Human and porcine adenoviruses and human and bovine polyomaviruses are proposed as tools for evaluating the presence of viral contamination and for tracking the origin of fecal/urine contamination in environmental samples.
Collapse
|
Evaluation Study |
19 |
120 |
21
|
Chen H, Xiang ZQ, Li Y, Kurupati RK, Jia B, Bian A, Zhou DM, Hutnick N, Yuan S, Gray C, Serwanga J, Auma B, Kaleebu P, Zhou X, Betts MR, Ertl HCJ. Adenovirus-based vaccines: comparison of vectors from three species of adenoviridae. J Virol 2010; 84:10522-32. [PMID: 20686035 PMCID: PMC2950567 DOI: 10.1128/jvi.00450-10] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 07/27/2010] [Indexed: 11/20/2022] Open
Abstract
In order to better understand the broad applicability of adenovirus (Ad) as a vector for human vaccine studies, we compared four adenovirus (Ad) vectors from families C (Ad human serotype 5 [HAdV-5; here referred to as AdHu5]), D (HAdV-26; here referred to as AdHu26), and E (simian serotypes SAdV-23 and SAdV-24; here referred to as chimpanzee serotypes 6 and 7 [AdC6 and AdC7, respectively]) of the Adenoviridae. Seroprevalence rates and titers of neutralizing antibodies to the two human-origin Ads were found to be higher than those reported previously, especially in countries of sub-Saharan Africa. Conversely, prevalence rates and titers to AdC6 and AdC7 were markedly lower. Healthy human adults from the United States had readily detectable circulating T cells recognizing Ad viruses, the levels of which in some individuals were unexpectedly high in response to AdHu26. The magnitude of T-cell responses to AdHu5 correlated with those to AdHu26, suggesting T-cell recognition of conserved epitopes. In mice, all of the different Ad vectors induced CD8(+) T-cell responses that were comparable in their magnitudes and cytokine production profiles. Prime-boost regimens comparing different combinations of Ad vectors failed to indicate that the sequential use of Ad vectors from distinct families resulted in higher immune responses than the use of serologically distinct Ad vectors from the same family. Moreover, the transgene product-specific antibody responses induced by the AdHu26 and AdC vectors were markedly lower than those induced by the AdHu5 vector. AdHu26 vectors and, to a lesser extent, AdC vectors induced more potent Ad-neutralizing antibody responses. These results suggest that the potential of AdHu26 as a vaccine vector may suffer from limitations similar to those found for vectors based on other prevalent human Ads.
Collapse
MESH Headings
- Adenoviridae/classification
- Adenoviridae/genetics
- Adenoviridae/immunology
- Adenoviruses, Human/classification
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Adenoviruses, Simian/classification
- Adenoviruses, Simian/genetics
- Adenoviruses, Simian/immunology
- Adult
- Africa South of the Sahara
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- CD8-Positive T-Lymphocytes/immunology
- CHO Cells
- Capsid/immunology
- Cell Line
- Cricetinae
- Cricetulus
- Female
- Genetic Vectors
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Mice
- Mice, Inbred BALB C
- Rabies virus/immunology
- Receptors, Virus/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Seroepidemiologic Studies
- Serotyping
- Species Specificity
- Viral Vaccines/genetics
Collapse
|
Comparative Study |
15 |
108 |
22
|
Hjelmsø MH, Hellmér M, Fernandez-Cassi X, Timoneda N, Lukjancenko O, Seidel M, Elsässer D, Aarestrup FM, Löfström C, Bofill-Mas S, Abril JF, Girones R, Schultz AC. Evaluation of Methods for the Concentration and Extraction of Viruses from Sewage in the Context of Metagenomic Sequencing. PLoS One 2017; 12:e0170199. [PMID: 28099518 PMCID: PMC5242460 DOI: 10.1371/journal.pone.0170199] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/02/2017] [Indexed: 01/18/2023] Open
Abstract
Viral sewage metagenomics is a novel field of study used for surveillance, epidemiological studies, and evaluation of waste water treatment efficiency. In raw sewage human waste is mixed with household, industrial and drainage water, and virus particles are, therefore, only found in low concentrations. This necessitates a step of sample concentration to allow for sensitive virus detection. Additionally, viruses harbor a large diversity of both surface and genome structures, which makes universal viral genomic extraction difficult. Current studies have tackled these challenges in many different ways employing a wide range of viral concentration and extraction procedures. However, there is limited knowledge of the efficacy and inherent biases associated with these methods in respect to viral sewage metagenomics, hampering the development of this field. By the use of next generation sequencing this study aimed to evaluate the efficiency of four commonly applied viral concentrations techniques (precipitation with polyethylene glycol, organic flocculation with skim milk, monolithic adsorption filtration and glass wool filtration) and extraction methods (Nucleospin RNA XS, QIAamp Viral RNA Mini Kit, NucliSENS® miniMAG®, or PowerViral® Environmental RNA/DNA Isolation Kit) to determine the viriome in a sewage sample. We found a significant influence of concentration and extraction protocols on the detected viriome. The viral richness was largest in samples extracted with QIAamp Viral RNA Mini Kit or PowerViral® Environmental RNA/DNA Isolation Kit. Highest viral specificity were found in samples concentrated by precipitation with polyethylene glycol or extracted with Nucleospin RNA XS. Detection of viral pathogens depended on the method used. These results contribute to the understanding of method associated biases, within the field of viral sewage metagenomics, making evaluation of the current literature easier and helping with the design of future studies.
Collapse
|
Journal Article |
8 |
105 |
23
|
Karlin S, Mocarski ES, Schachtel GA. Molecular evolution of herpesviruses: genomic and protein sequence comparisons. J Virol 1994; 68:1886-902. [PMID: 8107249 PMCID: PMC236651 DOI: 10.1128/jvi.68.3.1886-1902.1994] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phylogenetic reconstruction of herpesvirus evolution is generally founded on amino acid sequence comparisons of specific proteins. These are relevant to the evolution of the specific gene (or set of genes), but the resulting phylogeny may vary depending on the particular sequence chosen for analysis (or comparison). In the first part of this report, we compare 13 herpesvirus genomes by using a new multidimensional methodology based on distance measures and partial orderings of dinucleotide relative abundances. The sequences were analyzed with respect to (i) genomic compositional extremes; (ii) total distances within and between genomes; (iii) partial orderings among genomes relative to a set of sequence standards; (iv) concordance correlations of genome distances; and (v) consistency with the alpha-, beta-, gammaherpesvirus classification. Distance assessments within individual herpesvirus genomes show each to be quite homogeneous relative to the comparisons between genomes. The gammaherpesviruses, Epstein-Barr virus (EBV), herpesvirus saimiri, and bovine herpesvirus 4 are both diverse and separate from other herpesvirus classes, whereas alpha- and betaherpesviruses overlap. The analysis revealed that the most central genome (closest to a consensus herpesvirus genome and most individual herpesvirus sequences of different classes) is that of human herpesvirus 6, suggesting that this genome is closest to a progenitor herpesvirus. The shorter DNA distances among alphaherpesviruses supports the hypothesis that the alpha class is of relatively recent ancestry. In our collection, equine herpesvirus 1 (EHV1) stands out as the most central alphaherpesvirus, suggesting it may approximate an ancestral alphaherpesvirus. Among all herpesviruses, the EBV genome is closest to human sequences. In the DNA partial orderings, the chicken sequence collection is invariably as close as or closer to all herpesvirus sequences than the human sequence collection is, which may imply that the chicken (or other avian species) is a more natural or more ancient host of herpesviruses. In the second part of this report, evolutionary relationships among the 13 herpesvirus genomes are evaluated on the basis of recent methods of amino acid alignment applied to four essential protein sequences. In this analysis, the alignment of the two betaherpesviruses (human cytomegalovirus versus human herpesvirus 6) showed lower scores compared with alignments within alphaherpesviruses (i.e., among EHV1, herpes simplex virus type 1, varicella-zoster virus, pseudorabies virus type 1 and Marek's disease virus) and within gammaherpesviruses (EBV versus herpesvirus saimiri).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
research-article |
31 |
102 |
24
|
Seshidhar Reddy P, Ganesh S, Limbach MP, Brann T, Pinkstaff A, Kaloss M, Kaleko M, Connelly S. Development of adenovirus serotype 35 as a gene transfer vector. Virology 2003; 311:384-93. [PMID: 12842627 DOI: 10.1016/s0042-6822(03)00161-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
While 51 human adenoviral serotypes have been identified to date, the vast majority of adenoviral vectors designed for gene transfer have been generated in the adenovirus serotype 5 (Ad5) backbone. Viral infections caused by Ad5 are endemic in most human populations and the majority of humans carry preexisting humoral and/or cellular immunity to Ad5 which may severely limit the use of Ad5-based vectors for gene therapy applications. To circumvent this preexisting Ad5 immunity, we have identified Ad35 as an alternative adenoviral serotype to which the majority of humans do not have neutralizing antibodies. Importantly, Ad35 can be grown to high titers with a low particle-to-PFU ratio. As a prerequisite for the development of Ad35 for use as a gene transfer vector, a genome organization map was constructed using the available Ad35 sequence information, and E1a-deficient Ad35 vectors encoding marker genes were generated. Ad35 biodistribution in mice was assessed following intravenous administration and compared with that of Ad5. Extremely low levels of Ad35 were detected in all organs evaluated, including liver, lung, spleen, and bone marrow, while Ad5 displayed high transduction of these organs. Due to the lack of Ad35 liver tropism, minimal hepatotoxicity was observed in mice treated with Ad35. Furthermore, the half-life of Ad35 in mouse blood was found to be two to three times longer than that of Ad5. These data suggest that either mice do not express the Ad35 cell surface receptor or that Ad35 does not efficiently transduce mouse cells in vivo following systemic delivery. Therefore, to begin to elucidate the Ad35 cell entry mechanisms, in vitro competition studies were performed. These data demonstrated that Ad35 cell entry is CAR independent, and may involve protein(s) expressed on most human cells.
Collapse
|
|
22 |
99 |
25
|
Wigand R, Bartha A, Dreizin RS, Esche H, Ginsberg HS, Green M, Hierholzer JC, Kalter SS, McFerran JB, Pettersson U, Russell WC, Wadell G. Adenoviridae: second report. Intervirology 1982; 18:169-76. [PMID: 7141835 DOI: 10.1159/000149322] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
Comparative Study |
43 |
96 |