1
|
Liu J, Platts-Mills JA, Juma J, Kabir F, Nkeze J, Okoi C, Operario DJ, Uddin J, Ahmed S, Alonso PL, Antonio M, Becker SM, Blackwelder WC, Breiman RF, Faruque ASG, Fields B, Gratz J, Haque R, Hossain A, Hossain MJ, Jarju S, Qamar F, Iqbal NT, Kwambana B, Mandomando I, McMurry TL, Ochieng C, Ochieng JB, Ochieng M, Onyango C, Panchalingam S, Kalam A, Aziz F, Qureshi S, Ramamurthy T, Roberts JH, Saha D, Sow SO, Stroup SE, Sur D, Tamboura B, Taniuchi M, Tennant SM, Toema D, Wu Y, Zaidi A, Nataro JP, Kotloff KL, Levine MM, Houpt ER. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet 2016; 388:1291-301. [PMID: 27673470 PMCID: PMC5471845 DOI: 10.1016/s0140-6736(16)31529-x] [Citation(s) in RCA: 611] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diarrhoea is the second leading cause of mortality in children worldwide, but establishing the cause can be complicated by diverse diagnostic approaches and varying test characteristics. We used quantitative molecular diagnostic methods to reassess causes of diarrhoea in the Global Enteric Multicenter Study (GEMS). METHODS GEMS was a study of moderate to severe diarrhoea in children younger than 5 years in Africa and Asia. We used quantitative real-time PCR (qPCR) to test for 32 enteropathogens in stool samples from cases and matched asymptomatic controls from GEMS, and compared pathogen-specific attributable incidences with those found with the original GEMS microbiological methods, including culture, EIA, and reverse-transcriptase PCR. We calculated revised pathogen-specific burdens of disease and assessed causes in individual children. FINDINGS We analysed 5304 sample pairs. For most pathogens, incidence was greater with qPCR than with the original methods, particularly for adenovirus 40/41 (around five times), Shigella spp or enteroinvasive Escherichia coli (EIEC) and Campylobactor jejuni o C coli (around two times), and heat-stable enterotoxin-producing E coli ([ST-ETEC] around 1·5 times). The six most attributable pathogens became, in descending order, Shigella spp, rotavirus, adenovirus 40/41, ST-ETEC, Cryptosporidium spp, and Campylobacter spp. Pathogen-attributable diarrhoeal burden was 89·3% (95% CI 83·2-96·0) at the population level, compared with 51·5% (48·0-55·0) in the original GEMS analysis. The top six pathogens accounted for 77·8% (74·6-80·9) of all attributable diarrhoea. With use of model-derived quantitative cutoffs to assess individual diarrhoeal cases, 2254 (42·5%) of 5304 cases had one diarrhoea-associated pathogen detected and 2063 (38·9%) had two or more, with Shigella spp and rotavirus being the pathogens most strongly associated with diarrhoea in children with mixed infections. INTERPRETATION A quantitative molecular diagnostic approach improved population-level and case-level characterisation of the causes of diarrhoea and indicated a high burden of disease associated with six pathogens, for which targeted treatment should be prioritised. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
research-article |
9 |
611 |
2
|
Fong TT, Lipp EK. Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 2005; 69:357-71. [PMID: 15944460 PMCID: PMC1197419 DOI: 10.1128/mmbr.69.2.357-371.2005] [Citation(s) in RCA: 465] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Waterborne enteric viruses threaten both human and animal health. These pathogens are host specific and cause a wide range of diseases and symptoms in humans or other animals. While considerable research has documented the risk of enteric viruses to human health from contact with contaminated water, the current bacterial indicator-based methods for evaluation of water quality are often ineffectual proxies for pathogenic viruses. Additionally, relatively little work has specifically investigated the risk of waterborne viruses to animal health, and this risk currently is not addressed by routine water quality assessments. Nonetheless, because of their host specificity, enteric viruses can fulfill a unique role both for assessing health risks and as measures of contamination source in a watershed, yet the use of animal, as well as human, host-specific viruses in determining sources of fecal pollution has received little attention. With improved molecular detection assays, viruses from key host groups can be targeted directly using PCR amplification or hybridization with a high level of sensitivity and specificity. A multispecies viral analysis would provide needed information for controlling pollution by source, determining human health risks based on assessments of human virus loading and exposure, and determining potential risks to production animal health and could indicate the potential for the presence of other zoonotic pathogens. While there is a need to better understand the prevalence and environmental distribution of nonhuman enteric viruses, the development of improved methods for specific and sensitive detection will facilitate the use of these microbes for library-independent source tracking and water quality assessment tools.
Collapse
|
Review |
20 |
465 |
3
|
Kanegae Y, Makimura M, Saito I. A simple and efficient method for purification of infectious recombinant adenovirus. JAPANESE JOURNAL OF MEDICAL SCIENCE & BIOLOGY 1994; 47:157-66. [PMID: 7823411 DOI: 10.7883/yoken1952.47.157] [Citation(s) in RCA: 383] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently, the adenovirus expression vector attracts much attention for the application to gene therapy and the method to purify and concentrate adenovirus without loss of infectivity has become very important, especially for animal experiments and gene therapy of humans. In this report, we show a simple and efficient method for purifying infectious adenovirus. The method consists of sequential centrifugation in CsCl step gradients without loss of infectivity and can be completed in one day. The method maintained the viral infectivity after 10-fold concentration and seemed to remove more than 99.9% of carried-over proteins. We showed also that the buffers for dialyzing the purified virions influenced the stability of infectivity. The buffers of 10 mM HEPES-1 mM EDTA-10% glycerol and PBS(-)-10% glycerol resulted in higher stability than did 10 mM HEPES-1 mM MgCl2-10% glycerol. The method is may be useful in many applications of recombinant adenovirus.
Collapse
|
|
31 |
383 |
4
|
Meier O, Boucke K, Hammer SV, Keller S, Stidwill RP, Hemmi S, Greber UF. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 2002; 158:1119-31. [PMID: 12221069 PMCID: PMC2173207 DOI: 10.1083/jcb.200112067] [Citation(s) in RCA: 375] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenovirus type 2 (Ad2) binds the coxsackie B virus Ad receptor and is endocytosed upon activation of the alphav integrin coreceptors. Here, we demonstrate that expression of dominant negative clathrin hub, eps15, or K44A-dynamin (dyn) inhibited Ad2 uptake into epithelial cells, indicating clathrin-dependent viral endocytosis. Surprisingly, Ad strongly stimulated the endocytic uptake of fluid phase tracers, coincident with virus internalization but without affecting receptor-mediated transferrin uptake. A large amount of the stimulated endocytic activity was macropinocytosis. Macropinocytosis depended on alphav integrins, PKC, F-actin, and the amiloride-sensitive Na+/H+ exchanger, which are all required for Ad escape from endosomes and infection. Macropinocytosis stimulation was not a consequence of viral escape, since it occurred in K44A-dyn-expressing cells. Surprisingly, 30-50% of the endosomal contents were released into the cytosol of control and also K44A-dyn-expressing cells, and the number of fluid phase-positive endosomes dropped below the levels of noninfected cells, indicating macropinosomal lysis. The release of macropinosomal contents was Ad dose dependent, but the presence of Ad particles on macropinosomal membranes was not sufficient for contents release. We conclude that Ad signaling from the cell surface controls the induction of macropinosome formation and leakage, and this correlates with viral exit to the cytosol and infection.
Collapse
|
research-article |
23 |
375 |
5
|
Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B, Kay MA. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol 1997; 71:8798-807. [PMID: 9343240 PMCID: PMC192346 DOI: 10.1128/jvi.71.11.8798-8807.1997] [Citation(s) in RCA: 336] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Systemic application of first-generation adenovirus induces pathogenic effects in the liver. To begin unraveling the mechanisms underlying early liver toxicity after adenovirus infusion, particularly the role of macrophage activation and expression of viral genes in transduced target cells, first-generation adenovirus or adenovirus vectors that lacked most early and late gene expression were administered to C3H/HeJ mice after transient depletion of Kupffer cells by gadolinium chloride treatment. Activation of NF-kappaB, and the serum levels of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) were studied in correlation with liver damage, apoptosis, and hepatocellular DNA synthesis. While Kupffer cell depletion nearly eliminated adenovirus-induced TNF release, it resulted in a more robust IL-6 release. These responses were greatly reduced in animals receiving the deleted adenovirus. Although there were quantitative differences, NF-kappaB activation was observed within minutes of first-generation or deleted adenovirus vector administration regardless of the status of the Kupffer cells, suggesting that the induction is related to a direct effect of the virus particle on the hepatocyte. Early liver toxicity as determined by serum glutamic-pyruvic transaminase elevation and inflammatory cell infiltrates appeared to be dependent on adenovirus-mediated early gene expression and intact Kupffer cell function. Kupffer cell depletion had little effect on adenovirus-mediated hepatocyte apoptosis but did increase hepatocellular DNA synthesis. Finally, Kupffer cell depletion decreased the persistence of transgene (human alpha1-antitrypsin [hAAT]) expression that was associated with a more pronounced humoral immune response against hAAT. The elucidation of these events occurring after intravenous adenovirus injection will be important in developing new vectors and transfer techniques with reduced toxicity.
Collapse
|
research-article |
28 |
336 |
6
|
Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J, Welsh MJ. Adenovirus Fiber Disrupts CAR-Mediated Intercellular Adhesion Allowing Virus Escape. Cell 2002; 110:789-99. [PMID: 12297051 DOI: 10.1016/s0092-8674(02)00912-1] [Citation(s) in RCA: 285] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Adenovirus binds its receptor (CAR), enters cells, and replicates. It must then escape to the environment to infect a new host. We found that following infection, human airway epithelia first released adenovirus to the basolateral surface. Virus then traveled between epithelial cells to emerge on the apical surface. Adenovirus fiber protein, which is produced during viral replication, facilitated apical escape. Fiber binds CAR, which sits on the basolateral membrane where it maintains tight junction integrity. When fiber bound CAR, it disrupted junctional integrity, allowing virus to filter between the cells and emerge apically. Thus, adenovirus exploits its receptor for two important but distinct steps in its life cycle: entry into host cells and escape across epithelial barriers to the environment.
Collapse
|
|
23 |
285 |
7
|
Bergelson JM, Krithivas A, Celi L, Droguett G, Horwitz MS, Wickham T, Crowell RL, Finberg RW. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol 1998; 72:415-9. [PMID: 9420240 PMCID: PMC109389 DOI: 10.1128/jvi.72.1.415-419.1998] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Complementary DNA clones encoding the murine homolog (mCAR) of the human coxsackievirus and adenovirus receptor (CAR) were isolated. Nonpermissive CHO cells transfected with mCAR cDNA became susceptible to infection by coxsackieviruses B3 and B4 and showed increased susceptibility to adenovirus-mediated gene transfer. These results indicate that the same receptor is responsible for virus interactions with both murine and human cells. Analysis of receptor expression in human and murine tissues should be useful in defining factors governing virus tropism in vivo.
Collapse
|
research-article |
27 |
269 |
8
|
Juang YT, Lowther W, Kellum M, Au WC, Lin R, Hiscott J, Pitha PM. Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3. Proc Natl Acad Sci U S A 1998; 95:9837-42. [PMID: 9707562 PMCID: PMC21423 DOI: 10.1073/pnas.95.17.9837] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The family of interferon (IFN) regulatory factors (IRFs) encodes DNA-binding transcription factors, some of which function as modulators of virus-induced signaling. The IRF-3 gene is constitutively expressed in many tissues and cell types, and neither virus infection nor IFN treatment enhances its transcription. In infected cells, however, IRF-3 protein is phosphorylated at the carboxyl terminus, which facilitates its binding to the CBP/p300 coactivator. In the present study, we demonstrate that overexpression of IRF-3 significantly enhances virus-mediated transcription of the IFNA and IFNB genes in infected cells as well as IFN synthesis. IRF-3-mediated activation of IFN genes depends in part on carboxyl-terminal phosphorylation of a cluster of Ser/Thr residues, because a mutant with Ser/Thr to Ala substitutions activates the IFN promoter less efficiently. However, overexpression of IRF-3 in human 2FTGH cells alone results in the induction of an antiviral state, which depends on functional IFN signaling, because IRF-3 does not induce an antiviral state in mutant 2FTGH cells defective in either JAK-1 or p48 functions; also no antiviral effect of IRF-3 could be demonstrated in Vero cells that lack the IFNA and IFNB genes. This finding indicates that the observed antiviral activity of IRF-3 in 2FTGH cells results mainly from the induction of IFNs. Furthermore, E1A protein inhibited IRF-3-mediated stimulation of the IFNA4 promoter in transient expression assays; this inhibition could be reversed partially by overexpression of CBP/p300 and was not demonstrated with the mutant of E1A that does not bind p300. These results identify IRF-3 and CBP/p300 as integral components of the virus-induced complex that stimulates type 1 IFN gene transcription. The observation that adenovirus E1A antagonizes IRF-3 mediated activation suggests that E1A and IRF-3 may compete for binding to CBP/p300 and implicates a novel mechanism by which adenovirus may overcome the antiviral effects of the IFN pathway.
Collapse
|
research-article |
27 |
216 |
9
|
McClary H, Koch R, Chisari FV, Guidotti LG. Relative sensitivity of hepatitis B virus and other hepatotropic viruses to the antiviral effects of cytokines. J Virol 2000; 74:2255-64. [PMID: 10666256 PMCID: PMC111707 DOI: 10.1128/jvi.74.5.2255-2264.2000] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/1999] [Accepted: 12/09/1999] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that hepatitis B virus (HBV) replication is inhibited noncytopathically in the livers of transgenic mice following injection of HBV-specific cytotoxic T lymphocytes (CTLs) or infection with unrelated hepatotropic viruses, including lymphocytic choriomeningitis virus (LCMV) and adenovirus. These effects are mediated by gamma interferon (IFNgamma), tumor necrosis factor alpha (TNFalpha), and IFNalpha/beta. In the present study, we crossed HBV transgenic mice with mice genetically deficient for IFNgamma (IFNgammaKO), the TNFalpha receptor (TNFalphaRKO), or the IFNalpha/beta receptor (IFNalpha/betaRKO) in order to determine the relative contribution of each cytokine to the antiviral effects observed in each of these systems. Interestingly, we showed that HBV replicates in unmanipulated IFNgammaKO and IFNalpha/betaRKO mice at levels higher than those observed in control mice, implying that baseline levels of these cytokines control HBV replication in the absence of inflammation. We also showed that IFNgamma mediates most of the antiviral effect of the CTLs while IFNalpha/beta is primarily responsible for the early inhibitory effect of LCMV and adenovirus on HBV replication. In addition, we showed that the hepatic induction of IFNalpha/beta observed after injection of poly(I. C) is sufficient to inhibit HBV replication and that a similar antiviral effect is achieved by systemic administration of very high doses of IFNalpha. We also compared the relative sensitivity of LCMV and adenovirus to control by IFNgamma, TNFalpha, or IFNalpha/beta in these animals. Importantly, IFNalpha/betaRKO mice, and to a lesser extent IFNgammaKO mice, showed higher hepatic levels of LCMV RNA and adenovirus DNA and RNA than control mice, underscoring the importance of both interferons in controlling these other viral infections as well.
Collapse
|
research-article |
25 |
210 |
10
|
|
Review |
22 |
184 |
11
|
Brandt CD, Kim HW, Vargosko AJ, Jeffries BC, Arrobio JO, Rindge B, Parrott RH, Chanock RM. Infections in 18,000 infants and children in a controlled study of respiratory tract disease. I. Adenovirus pathogenicity in relation to serologic type and illness syndrome. Am J Epidemiol 1969; 90:484-500. [PMID: 4312064 DOI: 10.1093/oxfordjournals.aje.a121094] [Citation(s) in RCA: 180] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
|
56 |
180 |
12
|
Walls T, Shankar AG, Shingadia D. Adenovirus: an increasingly important pathogen in paediatric bone marrow transplant patients. THE LANCET. INFECTIOUS DISEASES 2003; 3:79-86. [PMID: 12560192 DOI: 10.1016/s1473-3099(03)00515-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adenovirus is increasingly being recognised as a significant pathogen in children following bone marrow transplantation. The virus is endemic in the general paediatric population, and frequently causes severe disease in immunocompromised patients, especially children. Immune responses to adenovirus infection are not fully understood but T-cell responses appear to be important for recovery. Infections can affect a variety of organs with gastrointestinal and urinary tract diseases being the most common. When disseminated infection occurs, reported mortality rates are as high as 60%. The responses to treatment in immunocompromised patients have generally been disappointing. New molecular diagnostic techniques have meant that adenoviral infections can now be detected early, often before symptoms have developed. Clinicians now screen for adenovirus infection to allow early initiation of treatment. It is hoped that this approach, together with effective antiviral therapy, will reduce the deaths from this common virus in high-risk children.
Collapse
|
Review |
22 |
167 |
13
|
Shayakhmetov DM, Li ZY, Ni S, Lieber A. Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol 2004; 78:5368-81. [PMID: 15113916 PMCID: PMC400378 DOI: 10.1128/jvi.78.10.5368-5381.2004] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After intravenous administration, adenovirus (Ad) vectors are predominantly sequestered by the liver. Delineating the mechanisms for Ad accumulation in the liver is crucial for a better understanding of Ad clearance and Ad-associated innate toxicity. To help address these issues, in this study, we used Ad vectors with different fiber shaft lengths and either coxsackievirus-Ad receptor (CAR)-interacting Ad serotype 9 (Ad9) or non-CAR-interacting Ad35 fiber knob domains. We analyzed the kinetics of Ad vector accumulation in the liver, uptake into hepatocytes and Kupffer cells, and induction of cytokine expression and release in response to systemic vector application. Immediately after intravenous injection, all Ad vectors accumulated equally efficiently in the liver; however, only genomes of long-shafted Ads were maintained in the liver tissue over time. We found that Kupffer cell uptake of long-shafted Ads was mediated by the fiber knob domain and was CAR independent. The short-shafted Ads were unable to efficiently interact with hepatocellular receptors and were not taken up by Kupffer cells. Moreover, our studies indicated that Kupffer cells were not the major reservoir for the observed accumulation of Ads (used in this study) in the liver within the first 30 min after virus infusion. The lower level of liver cell transduction by short-shafted Ads correlated with a significantly reduced inflammatory anti-Ad response as well as liver damage induced by the systemic administration of these vectors. This study contributes to a better understanding of the biology of systemically applied Ad and will help in designing safer vectors that can efficiently transduce target tissues.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
166 |
14
|
Ceccarini C, Eagle H. pH as a determinant of cellular growth and contact inhibition. Proc Natl Acad Sci U S A 1971; 68:229-33. [PMID: 4322262 PMCID: PMC391201 DOI: 10.1073/pnas.68.1.229] [Citation(s) in RCA: 151] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
1) Both the growth rate and the maximum population density of several normal, virus-transformed, and cancer cells were markedly pH-dependent; the optimum varied from pH 6.9 to 7.8. At the optimum pH, some diploid human cells attained population densities comparable to those of cancer or virus-transformed cells. Contact inhibition of growth is facilitated by repeated fluctuations of pH in nonphysiological ranges, and may not be an intrinsic and necessary attribute of diploid cells in culture. 2) At pH 8.3, at which there was little or no cellular multiplication, the protein content per cell increased 2- to 5-fold over a period of 10-16 days, and was slowly reversed to normal concentrations on restoration of pH to the optimal range. 3) Uridine uptake by contact-inhibited human cell cultures was stimulated by refeeding with salt solution, and to the same extent as by complete (serum-supplemented) growth medium; that immediate increase did not involve the reinitiation of cellular growth and multiplication. Contact inhibition was, however, reversed in 2-4 days by an appropriate increase in the serum concentration of the medium.
Collapse
|
research-article |
54 |
151 |
15
|
Smith JG, Nemerow GR. Mechanism of adenovirus neutralization by Human alpha-defensins. Cell Host Microbe 2008; 3:11-9. [PMID: 18191790 DOI: 10.1016/j.chom.2007.12.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 11/06/2007] [Accepted: 12/11/2007] [Indexed: 12/17/2022]
Abstract
Defensins are naturally occurring antimicrobial peptides that disrupt bacterial membranes and prevent bacterial invasion of the host. Emerging studies indicate that certain defensins also block virus infection; however, the mechanism(s) involved are poorly understood. We demonstrate that human alpha-defensins inhibit adenovirus infection at low micromolar concentrations, and this requires direct association of the defensin with the virus. Moreover, defensins inhibit virus disassembly at the vertex region, thereby restricting the release of an internal capsid protein, pVI, which is required for endosomal membrane penetration during cell entry. As a consequence, defensins hamper the release of adenovirus particles from endocytic vesicles, resulting in virion accumulation in early endosomes and lysosomes. Thus, defensins possess remarkably distinct modes of activity against bacteria and viruses, and their function may provide insights for the development of new antiviral strategies.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
147 |
16
|
Abstract
Viral infections are serious battles between pathogens and hosts. They can result in cell death, elimination of the virus or latent infection keeping both cells and pathogens alive. The outcome of an infection is often determined by cell signalling. Viruses deliver genomes and proteins with signalling potential into target cells and thereby alter the metabolism of the host. Virus interactions with cell surface receptors can elicit two types of signals, conformational changes of viral particles, and intracellular signals triggering specific cellular reactions. Responses by cells include stimulation of innate and adaptive immunity, growth, proliferation, survival and apoptosis. In addition, virus-activated cell signalling boosts viral entry and gene delivery, as recently shon for adenoviruses and adeno-associated viruses. This review illustrates that multiple activation of host cells during viral entry profoundly impacts the elaborate relationship between hosts and viral pathogens.
Collapse
|
Review |
23 |
146 |
17
|
Lichtenstein DL, Toth K, Doronin K, Tollefson AE, Wold WSM. Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 2004; 23:75-111. [PMID: 14690856 DOI: 10.1080/08830180490265556] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the evolutionary battle between viruses and their hosts, viruses have armed themselves with weapons to defeat the host's attacks on infected cells. Various proteins encoded in the adenovirus (Ad) E3 transcription unit protect cells from killing mediated by cytotoxic T cells and death-inducing cytokines such as tumor necrosis factor (TNF), Fas ligand, and TNF-related apoptosis-inducing ligand (TRAIL). The viral protein E3-gp19 K blocks MHC class-I-restricted antigen presentation, which diminishes killing by cytotoxic T cells. The receptor internalization and degradation (RID) complex (formerly E3-10.4 K/14.5 K) stimulates the clearance from the cell surface and subsequent degradation of the receptors for Fas ligand and TRAIL, thereby preventing the action of these important immune mediators. RID also downmodulates the epidermal growth factor receptor (EGFR), although what role, if any, this function has in immune regulation is uncertain. In addition, RID antagonizes TNF-mediated apoptosis and inflammation through a mechanism that does not primarily involve receptor downregulation. E3-6.7 K functions together with RID in downregulating some TRAIL receptors and may block apoptosis independently of other E3 proteins. Furthermore, E3-14.7 K functions as a general inhibitor of TNF-mediated apoptosis and blocks TRAIL-induced apoptosis. Finally, after expending great effort to maintain cell viability during the early part of the virus replication cycle, Ads lyse the cell to allow efficient virus release and dissemination. To perform this task subgroup C Ads synthesize a protein late in infection named ADP (formerly E3-11.6 K) that is required for efficient virus release. This review focuses on recent experiments aimed at discovering the mechanism of action of these critically important viral proteins.
Collapse
|
Review |
21 |
137 |
18
|
Williams JF. Enhancement of adenovirus plaque formation on HeLa cells by magnesium chloride. J Gen Virol 1970; 9:251-5. [PMID: 5532241 DOI: 10.1099/0022-1317-9-3-251] [Citation(s) in RCA: 133] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
|
55 |
133 |
19
|
Abstract
Pathogen entry into cells occurs by direct penetration of the plasma membrane, clathrin-mediated endocytosis, caveolar endocytosis, pinocytosis or macropinocytosis. For a particular agent, the infectious pathways are typically restricted, reflecting a tight relationship with the host. Here, we survey the uptake process of human adenovirus (Ad) type 2 and 5 and integrate it into the cell biology of endocytosis. Ad2 and Ad5 naturally infect respiratory epithelial cells. They bind to a primary receptor, the coxsackie virus B Ad receptor (CAR). The CAR-docked particles activate integrin coreceptors and this triggers a variety of cell responses, including endocytosis. Ad2/Ad5 endocytosis is clathrin-mediated and involves the large GTPase dynamin and the adaptor protein 2. A second endocytic process is induced simultaneously with viral uptake, macropinocytosis. Together, these pathways are associated with viral infection. Macropinocytosis requires integrins, F-actin, protein kinase C and small G-proteins of the Rho family, but not dynamin. Macropinocytosis per se is not required for viral uptake into epithelial cells, but it appears to be a productive entry pathway of Ad artificially targeted to the high-affinity Fcgamma receptor CD64 of hematopoietic cells lacking CAR. In epithelial and hematopoietic cells, the macropinosomal contents are released to the cytosol. This requires viral signalling from the surface and coincides with particle escape from endosomes and infection. It emerges that incoming Ad2 and Ad5 distinctly modulate the endocytic trafficking and disrupt selective cellular compartments. These features can be exploited for effective artificial targeting of Ad vectors to cell types of interest.
Collapse
|
Review |
22 |
127 |
20
|
Abstract
The interaction of (32)P-labeled adenovirus type 2 and HeLa or KB cells has been examined during early infection. The kinetics of virus uncoating to deoxyribonuclease-sensitive products, the partial characterization of three such products by gradient centrifugation, and the distribution of these products in the extranuclear and nuclear portions of infected cells are reported. The results are compatible with the following model. Extracellular virus attaches to a receptor on the plasma membrane. The membrane-bound virus has a half-life of less than 15 min and is transformed to a partly uncoated product which is free inside the cell and about half of which rapidly enters the cell nucleus. This is rapidly transformed, in both cytoplasm and nucleus, to a membrane-bound virion "core." The proteins of the bound "core" are then removed from the intact virus deoxyribonucleic acid (DNA). In the nucleus, viral DNA is the main product and there the overall sequence is completed in about 2 hr.
Collapse
|
research-article |
56 |
124 |
21
|
Kelkar SA, Pfister KK, Crystal RG, Leopold PL. Cytoplasmic dynein mediates adenovirus binding to microtubules. J Virol 2004; 78:10122-32. [PMID: 15331745 PMCID: PMC515014 DOI: 10.1128/jvi.78.18.10122-10132.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During infection, adenovirus (Ad) capsids undergo microtubule-dependent retrograde transport as part of a program of vectorial transport of the viral genome to the nucleus. The microtubule-associated molecular motor, cytoplasmic dynein, has been implicated in the retrograde movement of Ad. We hypothesized that cytoplasmic dynein constituted the primary mode of association of Ad with microtubules. To evaluate this hypothesis, an Ad-microtubule binding assay was established in which microtubules were polymerized with taxol, combined with Ad in the presence or absence of microtubule-associated proteins (MAPs), and centrifuged through a glycerol cushion. The addition of purified bovine brain MAPs increased the fraction of Ad in the microtubule pellet from 17.3% +/- 3.5% to 80.7% +/- 3.8% (P < 0.01). In the absence of tubulin polymerization or in the presence of high salt, no Ad was found in the pellet. Ad binding to microtubules was not enhanced by bovine brain MAPs enriched for tau protein or by the addition of bovine serum albumin. Enhanced Ad-microtubule binding was also observed by using a fraction of MAPs purified from lung A549 epithelial cell lysate which contained cytoplasmic dynein. Ad-microtubule interaction was sensitive to the addition of ATP, a hallmark of cytoplasmic dynein-dependent microtubule interactions. Immunodepletion of cytoplasmic dynein from the A549 cell lysate abolished the MAP-enhanced Ad-microtubule binding. The interaction of Ad with both dynein and dynactin complexes was demonstrated by coimmunoprecipitation. Partially uncoated capsids isolated from cells 40 min after infection also exhibited microtubule binding. In summary, the primary mode of Ad attachment to microtubules occurs though cytoplasmic dynein-mediated binding.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
114 |
22
|
Douglas JT, Miller CR, Kim M, Dmitriev I, Mikheeva G, Krasnykh V, Curiel DT. A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat Biotechnol 1999; 17:470-5. [PMID: 10331807 DOI: 10.1038/8647] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of genetically modified adenovirus (Ad) vectors with specificity for a single cell type will require both the introduction of novel tropism determinants and the ablation of endogenous tropism. Consequently, it will not be possible to exploit the native cellular entry pathway in the propagation of these targeted Ad vectors. Based on the concept that Ad enters cells by a two-step process in which a primary receptor serves as a high affinity binding site for the Ad fiber knob, with subsequent internalization mediated by alpha v integrins, we designed two artificial primary receptors. The extracellular domain of one of these synthetic receptors was derived from a single-chain antibody (sFv) with specificity for Ad5 knob, while the second receptor consisted of an icosapeptide identified by biopanning a phage display library against Ad5 knob. Expression of either of these artificial virus-binding receptors in fiber receptor-negative cells possessing alpha v integrins conferred susceptibility to Ad infection. We then created a novel mechanism for cell binding by genetically modifying both the vector and the target cell. In this approach, six histidine (His) residues were incorporated at the C-terminal of the Ad fiber protein. The resultant Ad vector was able to infect nonpermissive cells displaying the cognate artificial receptor, containing an anti-His sFv. This strategy, comprising a genetically engineered Ad virion and a modified cell line, should be useful in the propagation of targeted Ad vectors that lack the ability to bind the native fiber receptor.
Collapse
|
|
26 |
112 |
23
|
Ahmed AU, Tyler MA, Thaci B, Alexiades NG, Han Y, Ulasov IV, Lesniak MS. A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma. Mol Pharm 2011; 8:1559-72. [PMID: 21718006 PMCID: PMC3185211 DOI: 10.1021/mp200161f] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme is a primary malignancy of the central nervous system that is universally fatal due to its disseminated nature. Recent investigations have focused on the unique tumor-tropic properties of stem cells as a novel platform for targeted delivery of anticancer agents to the brain. Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) both have the potential to function as cell carriers for targeted delivery of a glioma restricted oncolytic virus to disseminated tumor due to their reported tumor tropism. In this study, we evaluated NSCs and MSCs as cellular delivery vehicles for an oncolytic adenovirus in the context of human glioma. We report the first preclinical comparison of the two cell lines and show that, while both stem cell lines are able to support therapeutic adenoviral replication intracellularly, the amount of virus released from NSCs was a log higher than the MSC (p < 0.001). Moreover, only virus loaded NSCs that were administered intracranially in an orthotopic glioma model significantly prolonged the survival of tumor bearing animals (median survival for NSCs 68.5 days vs 44 days for MSCs, p < 0.002). Loading oncolytic adenovirus into NSCs and MSCs also led to expression of both pro- and anti-inflammatory genes and decreased vector-mediated neuroinflammation. Our results indicate that, despite possessing a comparable migratory capacity, NSCs display superior therapeutic efficacy in the context of intracranial tumors. Taken together, these findings argue in favor of NSCs as an effective cell carrier for antiglioma oncolytic virotherapy.
Collapse
|
Comparative Study |
14 |
109 |
24
|
Ehrengruber MU, Hennou S, Büeler H, Naim HY, Déglon N, Lundstrom K. Gene Transfer into Neurons from Hippocampal Slices: Comparison of Recombinant Semliki Forest Virus, Adenovirus, Adeno-Associated Virus, Lentivirus, and Measles Virus. Mol Cell Neurosci 2001; 17:855-71. [PMID: 11358483 DOI: 10.1006/mcne.2001.0982] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Viral vectors are useful for transferring genes into neurons. Here, we characterized recombinant Semliki Forest virus (SFV), adenovirus type 5 (Ad5), adeno-associated virus type 2 (AAV), lentivirus, and measles virus (MV) by their expression of green fluorescent protein (GFP) in rat hippocampal slice cultures. SFV infected more neurons (>90% of all GFP-positive cells) than AAV, lentivirus, and MV (71, 69, and 62%, respectively), whereas no infected neurons were identified with Ad5. AAV-mediated GFP expression was neuron-specific when the platelet-derived growth factor beta-chain promoter rather than cytomegalovirus promoter was used. Transgene expression occurred rapidly but transiently for SFV, increased slowly but remained stable with AAV and lentivirus, and was fast with MV. Resting membrane potential and conductance, action potentials, firing accommodation, and H-current appeared normal in infected CA1 pyramidal cells. Thus, SFV is useful for short-term and AAV and lentivirus for long-term transduction of hippocampal slices, while MV constitutes a novel vector.
Collapse
|
|
24 |
108 |
25
|
Lewis AM, Rowe WP. Studies on nondefective adenovirus-simian virus 40 hybrid viruses. I. A newly characterized simian virus 40 antigen induced by the Ad2+ND 1 virus. J Virol 1971; 7:189-97. [PMID: 4329396 PMCID: PMC356097 DOI: 10.1128/jvi.7.2.189-197.1971] [Citation(s) in RCA: 105] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), does not induce heat-labile SV40 T antigen but does induce a previously uncharacterized heat-stable SV40 antigen-the SV40 "U" antigen. This antigen is detectable by both immunofluorescence and complement fixation by using sera from hamsters with SV40 tumors. Sera from hamsters bearing SV40 tumors can be divided into two groups, those that react with both SV40 T and U antigens (T(+)U(+) sera) and those that react with SV40 T antigen only (T(+)U(-) sera). SV40 U-specific sera from monkeys immunized with Ad2(+)ND(1)-infected cells do not react with SV40 T antigen by immunofluorescence but do react with an antigen in the nucleus of SV40-transformed cells and with an early, cytosine arabinoside-resistant antigen present in the nucleus of SV40-infected cells. A heat-stable SV40 antigen detectable by complement fixation with T(+)U(+) hamster sera is present in extracts of SV40-induced hamster tumors and in cell packs of SV40-infected or -transformed cells. SV40 U-antigen synthesis by Ad2(+)ND(1) virus is partially sensitive to inhibitors of deoxyribonucleic acid synthesis, whereas U-antigen synthesis by SV40 virus is an early cytosine arabinoside-resistant event. As an early SV40 antigen differing from SV40 T antigen, U antigen may play a role in malignant transformation mediated by SV40.
Collapse
|
research-article |
54 |
105 |