1
|
Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 2007; 9:255-67. [PMID: 17293855 DOI: 10.1038/ncb1542] [Citation(s) in RCA: 710] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 01/30/2007] [Indexed: 02/08/2023]
Abstract
Cells derived from blood vessels of human skeletal muscle can regenerate skeletal muscle, similarly to embryonic mesoangioblasts. However, adult cells do not express endothelial markers, but instead express markers of pericytes, such as NG2 proteoglycan and alkaline phosphatase (ALP), and can be prospectively isolated from freshly dissociated ALP(+) cells. Unlike canonical myogenic precursors (satellite cells), pericyte-derived cells express myogenic markers only in differentiated myotubes, which they form spontaneously with high efficiency. When transplanted into severe combined immune deficient-X-linked, mouse muscular dystrophy (scid-mdx) mice, pericyte-derived cells colonize host muscle and generate numerous fibres expressing human dystrophin. Similar cells isolated from Duchenne patients, and engineered to express human mini-dystrophin, also give rise to many dystrophin-positive fibres in vivo. These data show that myogenic precursors, distinct from satellite cells, are associated with microvascular walls in the human skeletal muscle, may represent a correlate of embryonic 'mesoangioblasts' present after birth and may be a promising candidate for future cell-therapy protocols in patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Adult Stem Cells/cytology
- Adult Stem Cells/metabolism
- Adult Stem Cells/transplantation
- Aged
- Animals
- Antigens, CD/analysis
- Cell Culture Techniques/methods
- Child
- Child, Preschool
- Female
- Humans
- Male
- Mice
- Mice, Inbred mdx
- Mice, Nude
- Mice, SCID
- Middle Aged
- Muscle Proteins/analysis
- Muscle Proteins/genetics
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/surgery
- Pericytes/chemistry
- Pericytes/cytology
- Pericytes/transplantation
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/transplantation
- Stem Cell Transplantation/methods
- Treatment Outcome
Collapse
|
|
18 |
710 |
2
|
Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007; 9:204. [PMID: 17316462 PMCID: PMC1860068 DOI: 10.1186/ar2116] [Citation(s) in RCA: 662] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recent advances in understanding the cellular and molecular signaling pathways and global transcriptional regulators of adult mesenchymal stem cells have provided new insights into their biology and potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal and regulation of lineage-specific differentiation of mesenchymal stem cells. In addition we review recent research on the concept of stem cell niche, and its relevance to adult mesenchymal stem cells.
Collapse
|
Research Support, N.I.H., Intramural |
18 |
662 |
3
|
Sampaolesi M, Blot S, D'Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthélémy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006; 444:574-9. [PMID: 17108972 DOI: 10.1038/nature05282] [Citation(s) in RCA: 528] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 09/26/2006] [Indexed: 12/18/2022]
Abstract
Duchenne muscular dystrophy remains an untreatable genetic disease that severely limits motility and life expectancy in affected children. The only animal model specifically reproducing the alterations in the dystrophin gene and the full spectrum of human pathology is the golden retriever dog model. Affected animals present a single mutation in intron 6, resulting in complete absence of the dystrophin protein, and early and severe muscle degeneration with nearly complete loss of motility and walking ability. Death usually occurs at about 1 year of age as a result of failure of respiratory muscles. Here we report that intra-arterial delivery of wild-type canine mesoangioblasts (vessel-associated stem cells) results in an extensive recovery of dystrophin expression, normal muscle morphology and function (confirmed by measurement of contraction force on single fibres). The outcome is a remarkable clinical amelioration and preservation of active motility. These data qualify mesoangioblasts as candidates for future stem cell therapy for Duchenne patients.
Collapse
|
|
19 |
528 |
4
|
Wagner DE, Wang IE, Reddien PW. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 2011; 332:811-6. [PMID: 21566185 PMCID: PMC3338249 DOI: 10.1126/science.1203983] [Citation(s) in RCA: 472] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pluripotent cells in the embryo can generate all cell types, but lineage-restricted cells are generally thought to replenish adult tissues. Planarians are flatworms and regenerate from tiny body fragments, a process requiring a population of proliferating cells (neoblasts). Whether regeneration is accomplished by pluripotent cells or by the collective activity of multiple lineage-restricted cell types is unknown. We used ionizing radiation and single-cell transplantation to identify neoblasts that can form large descendant-cell colonies in vivo. These clonogenic neoblasts (cNeoblasts) produce cells that differentiate into neuronal, intestinal, and other known postmitotic cell types and are distributed throughout the body. Single transplanted cNeoblasts restored regeneration in lethally irradiated hosts. We conclude that broadly distributed, adult pluripotent stem cells underlie the remarkable regenerative abilities of planarians.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
472 |
5
|
Zeng YA, Nusse R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 2010; 6:568-77. [PMID: 20569694 PMCID: PMC2917779 DOI: 10.1016/j.stem.2010.03.020] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/19/2010] [Accepted: 03/05/2010] [Indexed: 02/06/2023]
Abstract
Adult stem cells have the ability to self-renew and to generate specialized cells. Self-renewal is dependent on extrinsic niche factors but few of those signals have been identified. In addition, stem cells tend to differentiate in the absence of the proper signals and are therefore difficult to maintain in cell culture. The mammary gland provides an excellent system to study self-renewal signals, because the organ develops postnatally, arises from stem cells, and is readily generated from transplanted cells. We show here that adult mammary glands contain a Wnt-responsive cell population that is enriched for stem cells. In addition, stem cells mutant for the negative-feedback regulator Axin2 and therefore sensitized to Wnt signals have a competitive advantage in mammary gland reconstitution assays. In cell culture experiments, exposure to purified Wnt protein clonally expands mammary stem cells for many generations and maintains their ability to generate functional glands in transplantation assays. We conclude that Wnt proteins serve as rate-limiting self-renewal signals acting directly on mammary stem cells.
Collapse
|
research-article |
15 |
330 |
6
|
Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev Rep 2011; 7:269-91. [PMID: 20853072 DOI: 10.1007/s12015-010-9193-7] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipose stem cells (ASCs) are an attractive and abundant stem cell source with therapeutic applicability in diverse fields for the repair and regeneration of acute and chronically damaged tissues. Importantly, unlike the human bone marrow stromal/stem stem cells (BMSCs) that are present at low frequency in the bone marrow, ASCs can be retrieved in high number from either liposuction aspirates or subcutaneous adipose tissue fragments and can easily be expanded in vitro. ASCs display properties similar to that observed in BMSCs and, upon induction, undergo at least osteogenic, chondrogenic, adipogenic and neurogenic, differentiation in vitro. Furthermore, ASCs have been shown to be immunoprivileged, prevent severe graft-versus-host disease in vitro and in vivo and to be genetically stable in long-term culture. They have also proven applicability in other functions, such as providing hematopoietic support and gene transfer. Due to these characteristics, ASCs have rapidly advanced into clinical trials for treatment of a broad range of conditions. As cell therapies are becoming more frequent, clinical laboratories following good manufacturing practices are needed. At the same time as laboratory processes become more extensive, the need for control in the processing laboratory grows consequently involving a greater risk of complications and possibly adverse events for the recipient. Therefore, the safety, reproducibility and quality of the stem cells must thoroughly be examined prior to extensive use in clinical applications. In this review, some of the aspects of examination on ASCs in vitro and the utilization of ASCs in clinical studies are discussed.
Collapse
|
Review |
14 |
321 |
7
|
Jeong JO, Han JW, Kim JM, Cho HJ, Park C, Lee N, Kim DW, Yoon YS. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 2011; 108:1340-7. [PMID: 21493893 PMCID: PMC3109741 DOI: 10.1161/circresaha.110.239848] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 04/01/2011] [Indexed: 12/14/2022]
Abstract
RATIONALE Bone marrow (BM)-derived mesenchymal stem cells (MSCs) hold great promise for cardiovascular cell therapy owing to their multipotency and culture expandability. OBJECTIVE The aim of the study was to investigate whether MSCs can treat experimental acute myocardial infarction (MI) and diabetic neuropathy. METHODS AND RESULTS We isolated mononuclear cells from mouse BM and cultured MSCs in a conventional manner. Flow cytometry analyses of these cultured cells at passage 4 showed expression of typical MSC markers such as CD44 and CD29, but not hematopoietic markers such as c-kit, flk1, and CD34. To determine the therapeutic effects of MSCs, we injected MSCs into the peri-infarct area after ligation of the left anterior descending coronary arteries of mice and, as separate experiments, injected the same batch of MSCs into hindlimb muscles of mice with diabetic neuropathy. During the follow-up at 4 to 8 weeks after cell transplantation, growing tumors were observed in 30% of hearts in the MI model, and in 46% of hindlimbs in the diabetic neuropathy model. Histological examination of the tumors revealed hypercelluarity, pleomorphic nucleoli, cytological atypia and necrosis, and positive staining for α-smooth muscle actin, indicative of malignant sarcoma with myogenic differentiation. Chromosomal analysis of these MSCs showed multiple chromosomal aberrations including fusion, fragmentation, and ring formation. CONCLUSIONS Genetically unmodified MSCs can undergo chromosomal abnormalities even at early passages and form malignant tumors when transplanted in vivo. These results suggest that careful monitoring of chromosomal status is warranted when in vitro expanded MSCs are used for cell therapy such as for MI.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
300 |
8
|
Abstract
Cell therapy is a promising option for treating ischemic diseases and heart failure. Adult stem and progenitor cells from various sources have experimentally been shown to augment the functional recovery after ischemia, and clinical trials have confirmed that autologous cell therapy using bone marrow-derived or circulating blood-derived progenitor cells is safe and provides beneficial effects. However, aging and risk factors for coronary artery disease affect the functional activity of the endogenous stem/progenitor cell pools, thereby at least partially limiting the therapeutic potential of the applied cells. In addition, age and disease affect the tissue environment, in which the cells are infused or injected. The present review article will summarize current evidence for cell impairment during aging and disease but also discuss novel approaches how to reverse the dysfunction of cells or to refresh the target tissue. Pretreatment of cells or the target tissue by small molecules, polymers, growth factors, or a combination thereof may provide useful approaches for enhancement of cell therapy for cardiovascular diseases.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
288 |
9
|
Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA. Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2008; 2:553-65. [PMID: 18522848 PMCID: PMC3358921 DOI: 10.1016/j.stem.2008.03.020] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/05/2008] [Accepted: 03/26/2008] [Indexed: 01/17/2023]
Abstract
Congenitally hypomyelinated shiverer mice fail to generate compact myelin and die by 18-21 weeks of age. Using multifocal anterior and posterior fossa delivery of sorted fetal human glial progenitor cells into neonatal shiverer x rag2(-/-) mice, we achieved whole neuraxis myelination of the engrafted hosts, which in a significant fraction of cases rescued this otherwise lethal phenotype. The transplanted mice exhibited greatly prolonged survival with progressive resolution of their neurological deficits. Substantial myelination in multiple regions was accompanied by the acquisition of normal nodes of Ranvier and transcallosal conduction velocities, ultrastructurally normal and complete myelination of most axons, and a restoration of a substantially normal neurological phenotype. Notably, the resultant mice were cerebral chimeras, with murine gray matter but a predominantly human white matter glial composition. These data demonstrate that the neonatal transplantation of human glial progenitor cells can effectively treat disorders of congenital and perinatal hypomyelination.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
250 |
10
|
Psaltis PJ, Zannettino ACW, Worthley SG, Gronthos S. Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 2008; 26:2201-10. [PMID: 18599808 DOI: 10.1634/stemcells.2008-0428] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular therapy for cardiovascular disease heralds an exciting frontier of research. Mesenchymal stromal cells (MSCs) are present in adult tissues, including bone marrow and adipose, from which they can be easily isolated and cultured ex vivo. Although traditional isolation of these cells by plastic adherence results in a heterogeneous composite of mature and immature cell types, MSCs do possess plasticity of differentiation and under appropriate in vitro culture conditions can be modified to adopt cardiomyocyte and vascular cell phenotypic characteristics. In vivo preclinical studies have demonstrated their capacity to facilitate both myocardial repair and neovascularization in models of cardiac injury. The mechanisms underlying these effects appear to be mediated predominantly through indirect paracrine actions, rather than direct regeneration of endogenous cells by transdifferentiation, especially because current transplantation strategies achieve only modest engraftment of cells in the host myocardium. Currently, published clinical trial experience of MSCs as cardiac therapy is limited, and the outcomes of ongoing studies are keenly anticipated. Of relevance to clinical application is the fact that MSCs are relatively immunoprivileged, potentially enabling their allogeneic therapeutic use, although this too requires further investigation. Overall, MSCs are an attractive adult-derived cell population for cardiovascular repair; however, research is still required at both basic and clinical levels to resolve critical areas of uncertainty and to ensure continued development in cell culture engineering and cell transplantation technology.
Collapse
|
Review |
17 |
236 |
11
|
Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM, Kronenberg HM, Scadden DT. Therapeutic targeting of a stem cell niche. Nat Biotechnol 2007; 25:238-43. [PMID: 17237769 DOI: 10.1038/nbt1281] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 12/01/2006] [Indexed: 12/15/2022]
Abstract
The specialized microenvironment or niche where stem cells reside provides regulatory input governing stem cell function. We tested the hypothesis that targeting the niche might improve stem cell-based therapies using three mouse models that are relevant to clinical uses of hematopoietic stem (HS) cells. We and others previously identified the osteoblast as a component of the adult HS cell niche and established that activation of the parathyroid hormone (PTH) receptor on osteoblasts increases stem cell number. Here we show that pharmacologic use of PTH increases the number of HS cells mobilized into the peripheral blood for stem cell harvests, protects stem cells from repeated exposure to cytotoxic chemotherapy and expands stem cells in transplant recipients. These data provide evidence that the niche may be an attractive target for drug-based stem cell therapeutics.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
224 |
12
|
Jujo K, Ii M, Losordo DW. Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol 2008; 45:530-44. [PMID: 18755197 PMCID: PMC2628572 DOI: 10.1016/j.yjmcc.2008.08.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 02/06/2023]
Abstract
Historically, revascularization of ischemic tissue was believed to occur through the migration and proliferation of endothelial cells in nearby tissues; however, evidence accumulated in recent years indicates that a subpopulation of adult, peripheral-blood cells, collectively referred to as endothelial progenitor cells (EPCs), can differentiate into mature endothelial cells. After ischemic insult, EPCs are believed to home to sites of neovascularization, where they contribute to vascular regeneration by forming a structural component of capillaries and by secreting angiogenic factors; new evidence indicates that EPCs can also differentiate into cardiomyocytes and smooth-muscle cells. These insights into the molecular and cellular processes of tissue formation suggest that cardiac function may be preserved after myocardial infarction by transplanting EPCs into ischemic heart tissue, thereby enhancing vascular and myocardial recovery. This therapeutic strategy has been effective in animal models of ischemic disorders, and results from randomized clinical trials suggest that cell-based strategies may be safe and feasible for treatment of myocardial infarction in humans and have provided early evidence of efficacy. However, the scarcity of EPCs in the peripheral blood and evidence that several disease states reduce EPC number and/or function have prompted the development of several strategies to overcome these limitations, such as the administration of genetically modified EPCs that overexpress angiogenic growth factors. To optimize therapeutic outcomes, researchers must continue to refine methods of EPC purification, expansion, and administration, and to develop techniques that overcome the intrinsic scarcity and phenotypic deficiencies of EPCs.
Collapse
|
Review |
17 |
196 |
13
|
|
Research Support, N.I.H., Extramural |
15 |
162 |
14
|
Lee CH, Lee FY, Tarafder S, Kao K, Jun Y, Yang G, Mao JJ. Harnessing endogenous stem/progenitor cells for tendon regeneration. J Clin Invest 2015; 125:2690-701. [PMID: 26053662 DOI: 10.1172/jci81589] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/30/2015] [Indexed: 12/24/2022] Open
Abstract
Current stem cell-based strategies for tissue regeneration involve ex vivo manipulation of these cells to confer features of the desired progenitor population. Recently, the concept that endogenous stem/progenitor cells could be used for regenerating tissues has emerged as a promising approach that potentially overcomes the obstacles related to cell transplantation. Here we applied this strategy for the regeneration of injured tendons in a rat model. First, we identified a rare fraction of tendon cells that was positive for the known tendon stem cell marker CD146 and exhibited clonogenic capacity, as well as multilineage differentiation ability. These tendon-resident CD146+ stem/progenitor cells were selectively enriched by connective tissue growth factor delivery (CTGF delivery) in the early phase of tendon healing, followed by tenogenic differentiation in the later phase. The time-controlled proliferation and differentiation of CD146+ stem/progenitor cells by CTGF delivery successfully led to tendon regeneration with densely aligned collagen fibers, normal level of cellularity, and functional restoration. Using siRNA knockdown to evaluate factors involved in tendon generation, we demonstrated that the FAK/ERK1/2 signaling pathway regulates CTGF-induced proliferation and differentiation of CD146+ stem/progenitor cells. Together, our findings support the use of endogenous stem/progenitor cells as a strategy for tendon regeneration without cell transplantation and suggest this approach warrants exploration in other tissues.
Collapse
|
Journal Article |
10 |
161 |
15
|
Pai M, Zacharoulis D, Milicevic MN, Helmy S, Jiao LR, Levicar N, Tait P, Scott M, Marley SB, Jestice K, Glibetic M, Bansi D, Khan SA, Kyriakou D, Rountas C, Thillainayagam A, Nicholls JP, Jensen S, Apperley JF, Gordon MY, Habib NA. Autologous infusion of expanded mobilized adult bone marrow-derived CD34+ cells into patients with alcoholic liver cirrhosis. Am J Gastroenterol 2008; 103:1952-8. [PMID: 18637092 DOI: 10.1111/j.1572-0241.2008.01993.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Recent advances in regenerative medicine, including hematopoietic stem cell (HSC) transplantation, have brought hope for patients with severe alcoholic liver cirrhosis (ALC). The aim of this study was to assess the safety and efficacy of administering autologous expanded mobilized adult progenitor CD34+ cells into the hepatic artery of ALC patients and the potential improvement in the liver function. METHODS Nine patients with biopsy-proven ALC, who had abstained from alcohol for at least 6 months, were recruited into the study. Following granulocyte colony-stimulating factor (G-CSF) mobilization and leukapheresis, the autologous CD34+ cells were expanded in vitro and injected into the hepatic artery. All patients were monitored for side effects, toxicities, and changes in the clinical, hematological, and biochemical parameters. RESULTS On average, a five-fold expansion in cell number was achieved in vitro, with a mean total nucleated cell count (TNCC) of 2.3 x 10(8) pre infusion. All patients tolerated the procedure well, and there were no treatment-related side effects or toxicities observed. There were significant decreases in serum bilirubin (P < 0.05) 4, 8, and 12 wk post infusion. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) showed improvement through the study period and were significant (P < 0.05) 1 wk post infusion. The Child-Pugh score improved in 7 out of 9 patients, while 5 patients had improvement in ascites on imaging. CONCLUSION It is safe to mobilize, expand, and reinfuse autologous CD34+ cells in patients with ALC. The clinical and biochemical improvement in the study group is encouraging and warrants further clinical trials.
Collapse
|
Clinical Trial |
17 |
153 |
16
|
Sándor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ, Mannerström B, Patrikoski M, Seppänen R, Miettinen S, Rautiainen M, Öhman J. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med 2014; 3:530-40. [PMID: 24558162 DOI: 10.5966/sctm.2013-0173] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although isolated reports of hard-tissue reconstruction in the cranio-maxillofacial skeleton exist, multipatient case series are lacking. This study aimed to review the experience with 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites, namely frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases). Autologous adipose tissue was harvested from the anterior abdominal wall, and adipose-derived stem cells were cultured, expanded, and then seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. The defects were reconstructed with either bioactive glass or β-tricalcium phosphate scaffolds seeded with adipose-derived stem cells (ASCs), and in some cases with the addition of recombinant human bone morphogenetic protein-2. Production and use of ASCs were done according to good manufacturing practice guidelines. Follow-up time ranged from 12 to 52 months. Successful integration of the construct to the surrounding skeleton was noted in 10 of the 13 cases. Two cranial defect cases in which nonrigid resorbable containment meshes were used sustained bone resorption to the point that they required the procedure to be redone. One septal perforation case failed outright at 1 year because of the postsurgical resumption of the patient's uncontrolled nasal picking habit.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
150 |
17
|
Lukacs RU, Goldstein AS, Lawson DA, Cheng D, Witte ON. Isolation, cultivation and characterization of adult murine prostate stem cells. Nat Protoc 2010; 5:702-13. [PMID: 20360765 PMCID: PMC2943378 DOI: 10.1038/nprot.2010.11] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The successful isolation and cultivation of prostate stem cells will allow us to study their unique biological properties and their application in therapeutic approaches. Here we describe step-by-step procedures on the basis of previous work in our laboratory for the harvesting of primary prostate cells from adolescent male mice by a modified enzymatic procedure; the isolation of an enriched population of prostate stem cells through cell sorting; and the cultivation of prostate stem cells in vitro and characterization of these cells and their stem-like activity, including in vivo tubule regeneration. Normally, it will take approximately 8 h to harvest prostate cells, isolate the stem cell-enriched population and set up the in vitro sphere assay. It will take up to 8 weeks to analyze the unique properties of the stem cells, including their regenerative capacity in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
149 |
18
|
Bearzi C, Leri A, Lo Monaco F, Rota M, Gonzalez A, Hosoda T, Pepe M, Qanud K, Ojaimi C, Bardelli S, D'Amario D, D'Alessandro DA, Michler RE, Dimmeler S, Zeiher AM, Urbanek K, Hintze TH, Kajstura J, Anversa P. Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci U S A 2009; 106:15885-90. [PMID: 19717420 PMCID: PMC2747213 DOI: 10.1073/pnas.0907622106] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Indexed: 11/18/2022] Open
Abstract
Primitive cells capable of generating small resistance arterioles and capillary structures in the injured myocardium have been identified repeatedly. However, these cells do not form large conductive coronary arteries that would have important implications in the management of the ischemic heart. In the current study, we determined whether the human heart possesses a class of progenitor cells that regulates the growth of endothelial cells (ECs) and smooth muscle cells (SMCs) and vasculogenesis. The expression of vascular endothelial growth-factor receptor 2 (KDR) was used, together with the stem cell antigen c-kit, to isolate and expand a resident coronary vascular progenitor cell (VPC) from human myocardial samples. Structurally, vascular niches composed of c-kit-KDR-positive VPCs were identified within the walls of coronary vessels. The VPCs were connected by gap junctions to ECs, SMCs, and fibroblasts that operate as supporting cells. In vitro, VPCs were self-renewing and clonogenic and differentiated predominantly into ECs and SMCs and partly into cardiomyocytes. To establish the functional import of VPCs, a critical stenosis was created in immunosuppressed dogs, and tagged human VPCs were injected in proximity to the constricted artery. One month later, there was an increase in coronary blood flow (CBF) distal to the stenotic artery, resulting in functional improvement of the ischemic myocardium. Regenerated large, intermediate, and small human coronary arteries and capillaries were found. In conclusion, the human heart contains a pool of VPCs that can be implemented clinically to form functionally competent coronary vessels and improve CBF in patients with ischemic cardiomyopathy.
Collapse
|
Retracted Publication |
16 |
146 |
19
|
Liao MJ, Zhang CC, Zhou B, Zimonjic DB, Mani SA, Kaba M, Gifford A, Reinhardt F, Popescu NC, Guo W, Eaton EN, Lodish HF, Weinberg RA. Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity. Cancer Res 2007; 67:8131-8138. [PMID: 17804725 DOI: 10.1158/0008-5472.can-06-4493] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The identification of mammary gland stem cells (MGSC) or progenitors is important for the study of normal breast development and tumorigenesis. Based on their immunophenotype, we have isolated a population of mouse mammary gland cells that are capable of forming "mammospheres" in vitro. Importantly, mammospheres are enriched for cells that regenerate an entire mammary gland on implantation into a mammary fat pad. We also undertook cytogenetic analyses of mammosphere-forming cells after prolonged culture, which provided preliminary insight into the genomic stability of these cells. Our identification of new cell surface markers for enriching mammosphere-initiating cells, including endoglin and prion protein, will facilitate the elucidation of the cell biology of MGSC.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
142 |
20
|
Shayesteh YS, Khojasteh A, Soleimani M, Alikhasi M, Khoshzaban A, Ahmadbeigi N. Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold. ACTA ACUST UNITED AC 2008; 106:203-9. [PMID: 18424115 DOI: 10.1016/j.tripleo.2007.12.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/23/2007] [Accepted: 12/06/2007] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Implant placement in the posterior maxilla may often be contraindicated because of insufficient bone volume and presence of the maxillary sinus. In these situations, sinus floor augmentation frequently has been proposed as the best treatment. This clinical study was based on the hypothesis that the clinical effectiveness of adult mesenchymal stem cells (MSCs) loaded to the biphasic scaffold. METHODS In this report, the clinical and radiographic results are presented on 6 consecutively treated patients using MSCs in combination with biphasic hydroxyl apatite/ beta-tricalcium phosphate (HA/TCP) for sinus elevation. All the patients in the study had less than 3 mm initial bone height in the posterior maxillary area (IBH). MSCs were cultured and expanded from bone marrow aspirate for each patient. Three months after sinus elevation, radiographic evaluation was performed for the patients and the secondary bone height was measured (SBH(1)). In the second stage surgery, 30 implants were placed. Trephine bur was used as a pilot drill and a core biopsy was obtained from each implant site. Prosthetic rehabilitation of the patients was performed after 4 months. Secondary bone height was measured 9 months after implant placement (SBH(2)). RESULTS Of 30 implants, 28 (93%) were considered clinically successful. Two implants were removed due to mobility at the time of surgical exposure. Histologic evaluation of the biopsy specimens revealed numerous areas of osteoid and bone formation HA/TCP, with no evidence of inflammatory cell infiltrate. Mean bone regenerate was 41.34%. Clinically, no complications were observed, and all implants were considered clinically osseointegrated after 4 months. Mean bone height was measured 3 and 12 months after sinus grafting (mean of SBH(1)= 12.08 mm and mean of SBH(2)= 10.08 mm). CONCLUSIONS These clinical and histological findings suggest that sinus grafting with HA/TCP in combination with MSCs provide a viable therapeutic alternative for implant placement. The findings suggest that the addition of MSCs to bone derivative/substitute materials may enhance bone formation in the maxillary sinus area. Of course more studies with the control groups are needed for the evaluation of this method as a clinical solution for the patients.
Collapse
|
Journal Article |
17 |
141 |
21
|
Guadalajara H, Herreros D, De-La-Quintana P, Trebol J, Garcia-Arranz M, Garcia-Olmo D. Long-term follow-up of patients undergoing adipose-derived adult stem cell administration to treat complex perianal fistulas. Int J Colorectal Dis 2012; 27:595-600. [PMID: 22065114 DOI: 10.1007/s00384-011-1350-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2011] [Indexed: 02/06/2023]
Abstract
PURPOSE In patients with perianal fistulas, administration of adult stem cells (ASCs) derived from liposuction samples has proved a promising technique in a preceding phase II trial. We aimed to extend follow-up of these patients with this retrospective study. METHOD Patients who had received at least one dose of treatment (ASCs plus fibrin glue or fibrin glue alone) were included. Adverse events notified since the end of the phase II study were recorded. Clinical and magnetic resonance imaging (MRI) criteria were used to determine whether recurrence of the healed fistula had occurred. RESULTS Data were available for 21 out of 24 patients treated with ASCs plus fibrin glue and 13 out of 25 patients treated with fibrin glue in the phase II study. Follow-up lasted a mean of 38.0 and 42.6 months, respectively. Two adverse events unrelated to the original treatment were reported, one in each group. There were no reports of anal incontinence associated with the procedure. Of the 12 patients treated with ASCs plus fibrin glue who were included in the retrospective follow-up in the complete closure group, only 7 remained free of recurrence. MRI was done in 31 patients. No relationship was detected between MRI results and the clinical fistula status, independent of the treatment received. CONCLUSIONS Long-term follow-up reaffirmed the very good safety profile of the treatment. Nevertheless, a low proportion of the stem cell-treated patients with closure after the procedure remained free of recurrence after more than 3 years of follow-up.
Collapse
|
|
13 |
134 |
22
|
Terrovitis J, Kwok KF, Lautamäki R, Engles JM, Barth AS, Kizana E, Miake J, Leppo MK, Fox J, Seidel J, Pomper M, Wahl RL, Tsui B, Bengel F, Marbán E, Abraham MR. Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 2008; 52:1652-60. [PMID: 18992656 DOI: 10.1016/j.jacc.2008.06.051] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/07/2008] [Accepted: 06/19/2008] [Indexed: 11/19/2022]
Abstract
OBJECTIVES We examined the sodium-iodide symporter (NIS), which promotes in vivo cellular uptake of technetium 99m ((99m)Tc) or iodine 124 ((124)I), as a reporter gene for cell tracking by single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. BACKGROUND Stem cells offer the promise of cardiac repair. Stem cell labeling is a prerequisite to tracking cell fate in vivo. METHODS The human NIS complementary deoxyribonucleic acid was transduced into rat cardiac-derived stem cells (rCDCs) using lentiviral vectors. Rats were injected intramyocardially with up to 4 million NIS(+)-rCDCs immediately after left anterior descending coronary artery ligation. Dual isotope SPECT (or PET) imaging was performed, using (99m)Tc (or (124)I) for cell detection and thallium 201 (or ammonia 13) for myocardial delineation. In a subset of animals, high resolution ex vivo SPECT scans of explanted hearts were obtained to confirm that in vivo signals were derived from the cell injection site. RESULTS NIS expression in rCDCs did not affect cell viability and proliferation. NIS activity was verified in isolated transduced cells by measuring (99m)Tc uptake. NIS(+) rCDCs were visualized in vivo as regions of (99m)Tc or (124)I uptake within a perfusion deficit in the SPECT and PET images, respectively. Cells could be visualized by SPECT up to 6 days post-injection. Ex vivo SPECT confirmed that in vivo (99m)Tc signals were localized to the cell injection sites. CONCLUSIONS Ectopic NIS expression allows noninvasive in vivo stem cell tracking in the myocardium, using either SPECT or PET. The general approach shows significant promise in tracking the fate of transplanted cells participating in cardiac regeneration, given its ability to observe living cells using clinically applicable imaging modalities.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
130 |
23
|
Bartunek J, Dimmeler S, Drexler H, Fernández-Avilés F, Galinanes M, Janssens S, Martin J, Mathur A, Menasche P, Priori S, Strauer B, Tendera M, Wijns W, Zeiher A. The consensus of the task force of the European Society of Cardiology concerning the clinical investigation of the use of autologous adult stem cells for repair of the heart. Eur Heart J 2006; 27:1338-40. [PMID: 16543252 DOI: 10.1093/eurheartj/ehi793] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A task force has been established by the European Society of Cardiology to investigate the role of progenitor/stem cell therapy in the treatment of cardiovascular disease. This article is the consensus of this group, of what clinical studies are needed in this field, and the challenges to be addressed in the translation of progenitor/stem cell biology to repair of the heart.
Collapse
|
Journal Article |
19 |
125 |
24
|
Spellman SR, Eapen M, Logan BR, Mueller C, Rubinstein P, Setterholm MI, Woolfrey AE, Horowitz MM, Confer DL, Hurley CK. A perspective on the selection of unrelated donors and cord blood units for transplantation. Blood 2012; 120:259-65. [PMID: 22596257 PMCID: PMC3398760 DOI: 10.1182/blood-2012-03-379032] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/04/2012] [Indexed: 12/20/2022] Open
Abstract
Selection of a suitable graft for allogeneic hematopoietic stem cell transplantation involves consideration of both donor and recipient characteristics. Of primary importance is sufficient donor-recipient HLA matching to ensure engraftment and acceptable rates of GVHD. In this Perspective, the National Marrow Donor Program and the Center for International Blood and Marrow Transplant Research provide guidelines, based on large studies correlating graft characteristics with clinical transplantation outcomes, on appropriate typing strategies and matching criteria for unrelated adult donor and cord blood graft selection.
Collapse
|
Practice Guideline |
13 |
125 |
25
|
Arnalich-Montiel F, Pastor S, Blazquez-Martinez A, Fernandez-Delgado J, Nistal M, Alio JL, De Miguel MP. Adipose-derived stem cells are a source for cell therapy of the corneal stroma. Stem Cells 2007; 26:570-9. [PMID: 18065394 DOI: 10.1634/stemcells.2007-0653] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most corneal diseases affect corneal stroma and include immune or infectious diseases, ecstatic disorders, traumatic scars, and corneal dystrophies. Cell-based therapy is a promising therapeutic approach to overcome the current disadvantages of corneal transplantation. We intended to search for a cell source to repopulate and regenerate corneal stroma. We investigated the ability of human processed lipoaspirate derived (PLA) cells to regenerate corneal stroma in experimental animals. In the first set of experiments, we tested the biosafety and immunogenicity of human PLA stem cells transplanted into the corneal stroma of rabbits. No immune response was elicited even though we used immune-competent animals. PLA cells survived up to 10 weeks post-transplant, maintained their shape, and remained intermingled in the stroma without disrupting its histological pattern. Interestingly, transparency was preserved even 10 weeks after the transplant, when PLA cells formed a discontinuous layer in the stroma. In the second set of experiments, regeneration of the corneal stroma by PLA cells was assessed, creating a niche by partial ablation of the stroma. After 12 weeks, human cells were disposed following a multilayered pattern and differentiated into functional keratocytes, as assessed by the expression of aldehyde-3-dehydrogenase and cornea-specific proteoglycan keratocan. Based on our results, we believe that adipose-derived adult stem cells can be a cell source for stromal regeneration and repopulation in diseased corneas. The low health impact of the surgical procedure performed to obtain the PLA cells provides this cell source with an additional beneficial feature for its possible future autologous use in human patients.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
123 |