1
|
Kumar N, Singh NP. Effect of dietary selenium on immuno-biochemical plasticity and resistance against Aeromonas veronii biovar sobria in fish reared under multiple stressors. FISH & SHELLFISH IMMUNOLOGY 2019; 84:38-47. [PMID: 30261297 DOI: 10.1016/j.fsi.2018.09.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
The present investigation aims to study role of dietary selenium (Se) on growth performance, oxidative stress markers (catalase, superoxide dismutase and glutathione-s-transferase), stress biomarkers [blood glucose, cortisol and heat shock protein (HSP 70) and immunological status, Nitro blue tetrazolium (NBT), total protein, albumin, globulin, A/G ratio, total immunoglobulin and vitamin C] and survival of fish after Aeromonas veronii biovar sobria challenged. Pangasianodon hypophthalmus was treated with lead (Pb, 4 ppm), and high temperature (34 °C) for 60 days. The growth performance was reduced with declined in feed intake, growth rate and feed efficiency in case of group exposed with Pb alone and concurrent exposure to Pb high temperature (34 °C). The Se has immunomodulatory properties however, supplementation of the dietary Se @ 1 and 2 mg/kg diet has been realistically improved growth performance up to 240%, elevated antioxidative status in different tissues, and immunological status were also improved significantly in the P. hypophthalmus. The bacterial challenged with A. veronii biovar sobria in the P. hypophthalmus resulting in less cumulative mortality (%) and high relative (%) survival has been observed with supplementation of dietary Se @ 1 and 2 mg/kg diet. The bioaccumulation of Pb in muscle tissue has been also drastically reduced with supplementation of dietary Se in feed. Hence, overall results indicated that, dietary Se @ 1 and 2 mg/kg have ability to enhanced overall performance and alleviated multiple stresses in P hypophthalmus.
Collapse
|
|
6 |
26 |
2
|
Mahboub HH, Faggio C, Hendam BM, Algharib SA, Alkafafy M, Abo Hashem M, Mahmoud YK, Khamis T, Abdel-Ghany HM, Masoud SR, Abdel Rahman AN. Immune-antioxidant trait, Aeromonas veronii resistance, growth, intestinal architecture, and splenic cytokines expression of Cyprinus carpio fed Prunus armeniaca kernel-enriched diets. FISH & SHELLFISH IMMUNOLOGY 2022; 124:182-191. [PMID: 35398527 DOI: 10.1016/j.fsi.2022.03.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Currently, the intervention of plant by-products in the fish diet has gained tremendous attention owing to the economic and high nutritious value. The current study is a pioneer attempt to incorporate the apricot, Prunus armeniaca kernel powder (PAKP) into the Common carp, Cyprinus carpio diets, and assess its efficacy on growth, digestion, intestinal morphology, immunity, antioxidant capacity, and splenic cytokines expression, besides the antibacterial role against Aeromonas veronii infection. Apparently healthy fish (N = 120) with an initial body weight of 24.76 ± 0.03g were allotted in 12 glass aquaria (60 L) and randomly distributed into four groups (triplicates, 10 fish/aquarium). The control group (PAKP0) was fed a basal diet without additives. The second, third, and fourth groups were provided PAKP diets with various concentrations (2.5 (PAKP2.5), 5 (PAKP5), and 10 g kg-1 (PAKP10)) respectively. After 60 days (feeding trial), sub-samples of the fish (12 fish/group) were intraperitoneally injected with 1 × 107 CFU mL-1 of A. veronii. Results revealed that body weight gain, feed conversion ratio, and specific growth rates were significantly augmented in the PAKP10 group in comparison to the other groups. The dietary inclusion of PAKP at all concentrations boosted the digestive capacity and maintained the intestinal morphology (average villus length, villus width, and goblet cells count) with a marked improvement in PAKP10. Moreover, fish fed on PAKP10 followed by PAKP5 then PAKP2.5 diets had noticeably elevated values of immunological biomarkers (IgM, antiprotease, and lysozyme activity) and antioxidant capabilities (the total antioxidant capacity, superoxide dismutase, and reduced glutathione) as well as significant up-regulation of immune and antioxidant-related genes (TGF-β2, TLR-2, TNF-α, IL-10, SOD, GPx, and GSS). Fourteen days post-infection with A. veronii, the highest relative percentage survival of fish was observed in PAKP10 (83.33%), followed by PAKP5 (66.67%), and PAKP2.5 (50%). Our results indicated that a dietary intervention with PAKP could promise growth, digestion, immunity, and protect C. carpio against A. veronii infection in a dose-dependent manner. This offers a framework for future application of such seeds as a growth promotor, immune-stimulant, and antioxidant, besides an alternative cheap therapeutic antibacterial agent for sustaining the aquaculture industry.
Collapse
|
Randomized Controlled Trial, Veterinary |
3 |
18 |
3
|
Liu ZG, Zheng AF, Chen MM, Lian YX, Zhang XK, Zhang SZ, Yu D, Li JK. Isolation and identification of pathogenic Aeromonas veronii from a dead Yangtze finless porpoise. DISEASES OF AQUATIC ORGANISMS 2018; 132:13-22. [PMID: 30530927 DOI: 10.3354/dao03288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diseases caused by Aeromonas veronii in freshwater fish have been widely reported, but other species such as aquatic mammals have probably been overlooked. Here, we identified one isolate of A. veronii from a Yangtze finless porpoise Neophocaena asiaeorientalis asiaeorientalis exhibiting disease and mortality, and subsequently confirmed its virulence in artificial infection of BALB/c mice. The bacterial isolate was identified as A. veronii based on physiological, biochemical, and phenotypic features, and homology of the 16S rRNA, cpn60, rpoB, dnaJ and gyrB genes. Our results expand the known host spectrum of A. veronii, which is of great importance for the etiology of porpoise, dolphin, and other cetacean diseases.
Collapse
|
|
7 |
10 |
4
|
Kong Y, Li M, Tian J, Zhao L, Kang Y, Zhang L, Wang G, Shan X. Effects of recombinant Lactobacillus casei on growth performance, immune response and disease resistance in crucian carp, Carassius auratus. FISH & SHELLFISH IMMUNOLOGY 2020; 99:73-85. [PMID: 32032762 DOI: 10.1016/j.fsi.2020.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In the present study, we constructed two recombinant Lactobacillus casei (L. casei) Lc-pPG-1-AcrV (surface-displayed) and Lc-pPG-2-AcrV (secretory) constitutively expressing AcrV protein of Aeromonas veronii (A. veronii). Expression of recombinant AcrV protein was verified by western blot and immunofluorescence technique. Compared with PBS group, the final weight (FW), weight gain (WG) and specific growth rate (SGR) of fish fed Lc-pPG-1-AcrV, Lc-pPG-2-AcrV and Lc-pPG diets after 56 days observed significantly increase (p < 0.05), while the feed conversion ratio (FCR) showed a significantly decrease (p < 0.05). The recombinant L. casei strains were orally administrated to crucian carp, and significant increased (p < 0.05) the immunoglobulin M (IgM), elevated the acid phosphatase (ACP), alkaline phosphatase (AKP), lysozyme (LZM) and superoxide dismutase (SOD) activity in serum. Moreover, leukocytes phagocytosis percentage and index of the recombinant L. casei were both enhanced. The results demonstrated that the recombinant L. casei could elicit systemic immune responses and increase the serum immunological index. The Interleukin-10 (IL-10), Interleukin-1β (IL-1β), interferon-γ (IFN-γ) and Tumor Necrosis Factor-α (TNF-α) levels in liver, spleen, kidney and intestine have up regulated significantly in tissues (p < 0.05), suggesting that the recombinant L. casei has the ability to induce expression of cytokines and enhance the innate immune response. Higher survival rates were exhibited that crucian carp immunized with Lc-pPG-1-AcrV (67.5%) and Lc-pPG-2-AcrV (52.5%) after challenge with A. veronii. In conclusion, these two recombinant L. casei vaccine were effective in improving crucian carp growth, immunity response and disease resistance. The recombinant L. casei strains may be a promising candidate for the development of an oral vaccine against A. veronii.
Collapse
|
|
5 |
10 |
5
|
Sukkarun P, Kitiyodom S, Yostawornkul J, Chaiin P, Yata T, Rodkhum C, Boonrungsiman S, Pirarat N. Chitosan-polymer based nanovaccine as promising immersion vaccine against Aeromonas veronii challenge in red tilapia (Oreochromis sp.). FISH & SHELLFISH IMMUNOLOGY 2022; 129:30-35. [PMID: 35988712 DOI: 10.1016/j.fsi.2022.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Red tilapia (Oreochromis sp.), one of the important freshwater fish species in fish farming in Thailand, has for long been suffering from a serious bacterial disease named epizootic ulcerative syndrome and hemorrhagic septicemia. The disease is mainly caused by Aeromonas veronii. Vaccine is proposed to be a major impact tool for sustainable control and prevention strategies. Vaccination by immersion has many benefits over injection. However, the conventional immersion method suffers from a low potency due to the inefficient uptake of antigens across mucosal tissue. Here, we developed a chitosan-polymer based nanovaccine together with an efficient delivery vehicle to enhance the immunogenicity of immersion vaccination, increasing bioavailability and inducing local immune responses during transit to mucosal inductive immune sites. The physiochemical properties of nanovaccine, which was modified on surface particle by using a mucoadhesive polymer, were assessed for size, zeta potential, and particle distribution. Our study demonstrated by SEM image and microscopic fluorescence image that nanovaccine greatly increased the binding and penetrating ability into gills when compared with formalin killed vaccine. The nano-sized particles were well dispersed in water and trapped in core nanoparticle as confirmed by TEM image. The efficacy of vaccine was performed by immersion challenge with virulent A.veronii after 30 days post vaccination in tilapia. The result revealed a high level of mortality in the control, empty-polymeric nanovaccine and formalin killed bacterin vaccine groups. A high relative percentage survival (RPS) of vaccinated fish was noted with chitosan-polymer based nanovaccine. Our studies indicated that this chitosan-polymer based nanovaccine derived from cell fragments and supernatant was the improved version of the conventional formalin killed vaccine. The chitosan polymer based particle could increase the efficacy of nanovaccine toward the target mucosal membrane and enhance protection against A. veronii infection in red tilapia.
Collapse
|
|
3 |
8 |
6
|
Han C, Li Q, Chen Q, Zhou G, Huang J, Zhang Y. Transcriptome analysis of the spleen provides insight into the immunoregulation of Mastacembelus armatus under Aeromonas veronii infection. FISH & SHELLFISH IMMUNOLOGY 2019; 88:272-283. [PMID: 30772397 DOI: 10.1016/j.fsi.2019.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Mastacembelus armatus, also known as the zigzag eel, is an economically important species of freshwater fish that is very popular with consumers as a high-grade table fish in China. Recently, the wild population of this fish has declined gradually due to overfishing and various types of ecological imbalance. Meanwhile, the aquaculture of this spiny eel has flourished in southern China. To understand the immune response of zigzag eel to Aeromonas veronii, we carried out transcriptome sequencing of zigzag eel spleens after artificial bacterial infection. After assembly, 110,328 unigenes were obtained with 44.42% GC content. A total of 27,098 unigenes were successfully annotated by four public protein databases, namely, Nr, UniProt, KEGG and KOG. Differential expression analysis revealed the existence of 1278 significantly differentially expressed unigenes at 24 h post infection, with 767 unigenes upregulated and 511 unigenes downregulated. After GO and KEGG enrichment analyses, many immune-related GO categories and pathways were significantly enriched. The typical significantly enriched pathways included toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and TNF signaling pathway. In addition, 40,027 microsatellites (SSRs) and 52,716 candidate single nucleotide polymorphisms (SNPs) were identified from the infection and control transcriptome libraries. Overall, this transcriptomic analysis provided valuable information for studying the immune response of zigzag eels against bacterial infection.
Collapse
|
|
6 |
5 |
7
|
Jie TTZ, Shelat VG. Aeromonas caviae and Aeromonas veronii Causing Acute Cholecystitis. Surg Infect (Larchmt) 2021; 22:873-874. [PMID: 33533674 DOI: 10.1089/sur.2020.474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
|
4 |
5 |
8
|
Promrug D, Wittayacom K, Nathapanan N, Dong HT, Thongyoo P, Unajak S, Reamtong O, Boonyuen U, Aroonnual A, Shioda T, Thirapanmethee K, Arthan D. Cocultures of Enterococcus faecium and Aeromonas veronii Induce the Secretion of Bacteriocin-like Substances against Aeromonas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16194-16203. [PMID: 37779478 PMCID: PMC10623555 DOI: 10.1021/acs.jafc.3c04019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023]
Abstract
Lactic acid bacteria (LAB) were screened from Lutjanus russellii (red sea bass), and their antimicrobial activities were evaluated against two Aeromonas species isolated from the Nile tilapia, namely, Aeromonas veronii (AV) and Aeromonas jandaei (AJ). Three LAB isolates, Enterococcus faecium MU8 (EF_8), Enterococcus faecalis MU2 (EFL_2), and E. faecalis MU9 (EFL_9), were found to inhibit both AV and AJ; however, their cell-free supernatant (CFS) did not do so. Interestingly, bacteriocin-like substances (BLS) induced by cocultures of EF_8 with AV exhibited the highest antimicrobial activity against both Aeromonas sp. The size of BLS was less than 1.0 kDa; the purified BLS were susceptible to proteinase K digestion, indicating that they are peptides. BLS contained 13 identified peptides derived from E. faecium, as determined by liquid chromatography-tandem mass spectrometry. Cocultures of Gram-positive-producing and -inducing LAB strains have been used to increase bacteriocin yields. To our knowledge, this is the first report describing inducible BLS produced by cocultures of Gram-positive-producing and Gram-negative-inducing strains.
Collapse
|
research-article |
2 |
4 |
9
|
Li Y, Han S, Wang Y, Qin M, Lu C, Ma Y, Yang W, Liu J, Xia X, Wang H. Autoinducer-2 promotes adherence of Aeromonas veronii through facilitating the expression of MSHA type IV pili genes mediated by c-di-GMP. Appl Environ Microbiol 2023; 89:e0081923. [PMID: 37902393 PMCID: PMC10686060 DOI: 10.1128/aem.00819-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Aeromonas veronii can adhere to host cells through different adherence factors including outer-membrane proteins (OMPs), lipopolysaccharide (LPS), and pili, but its adherence mechanisms are still unclear. Here, we evaluated the effect of autoinducer-2 (AI-2) on adherence of A. veronii and its regulation mechanism. After determination of the promotion effect of AI-2 on adherence, we investigated which adherence factor was regulated by AI-2, and the results show that AI-2 only limits the formation of pili. Among the four distinct pili systems, only the mannose-sensitive hemagglutinin (MSHA) type IV pili genes were significantly downregulated after deficiency of AI-2. MshE, an ATPase belonged to MSHA type IV pilin, was confirmed as c-di-GMP receptor, that can bind with c-di-GMP which is positively regulated by AI-2, and the increase of c-di-GMP can promote the expression of MSHA type IV pili genes and adherence of A. veronii. Therefore, this study confirms that c-di-GMP positively regulated by AI-2 binds with MshE, then increases the expression of MSHA pili genes, finally promoting adherence of A. veronii, suggesting a multilevel positive regulatory adhesion mechanism that is responsible for A. veronii adherence.
Collapse
|
research-article |
2 |
4 |
10
|
Zhu L, Gu Y, Zhao C, Wang X, Hou L, Jiang X, Zhao X, Pei C, Kong X. Induction and potential molecular mechanism of the enhanced immune response in Procambarus clarkii after secondary encountered with Aeromonas veronii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104599. [PMID: 36511345 DOI: 10.1016/j.dci.2022.104599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
For a long time, it was believed that invertebrates do not possess acquired immunity and mainly rely on innate immunity for protection against pathogens infection. However, an increasing number of studies have suggested that some form of "immune memory" can be initiated in invertebrates after primary exposure to the pathogen, which was defined as "specific immune priming". In the present study, two experiments were carried out to determine whether specific immune priming can be induced in crayfish (Procambarus clarkii) by Aeromonas veronii, if so, to identify the underlying mechanism. Once being "preimmunization" by formalin-killed A. veronii, the survival rate, in vitro antibacterial activity and haemocyte phagocytosis rate of crayfish were enhanced, which indicated that better immune protection was obtained. Furthermore, at some time points, the expression of antimicrobial peptide (AMP) and Down syndrome cell adhesion molecule (Dscam) genes was significantly higher in P. clarkii individuals that underwent stimulation twice than in those that were only stimulated once. Taken together, the results suggest that enhanced specific immune protection can be obtained in primed crayfish and that the Dscam molecule, haemocyte phagocytosis function, and AMPs may be involved in this immune priming. The present study provides a better understanding of the molecular mechanism of immune priming in invertebrates.
Collapse
|
|
2 |
3 |
11
|
Smyrli M, Anka IZ, Koutsoni O, Dotsika E, Kyriazis ID, Pavlidis M, Katharios P. Development of autogenous vaccines for farmed European seabass against Aeromonas veronii using zebrafish as a model for efficacy assessment. FISH & SHELLFISH IMMUNOLOGY 2022; 123:381-387. [PMID: 35318138 DOI: 10.1016/j.fsi.2022.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Aeromonas veronii bv. sobria is an emerging pathogen for the European seabass cultured in the Aegean Sea (Mediterranean) causing significant problems in the Greek and Turkish aquaculture industry since no licensed vaccine is currently available for the disease. A bivalent vaccine was developed based on two phenotypically distinct strains of the pathogen, PDB (motile, pigment-producing strain) and NS (non-motile, non-pigment-producing). The two strains comprising the bivalent vaccine were evaluated as monovalent products in zebrafish before the seabass trials. Challenges using the homologous or the heterologous strain showed that both vaccines were protective with RPS values ranging between 66 and 100% in zebrafish. The bivalent vaccine was then tested in European seabass following dip or intraperitoneal administration. Efficacy was evaluated separately against both strains comprising the bivalent vaccine. Dip vaccination applied to juvenile seabass of 2.5 g average weight provided protection following challenge tests 30 days post vaccination only in one of the two strains tested (strain PDB, RPS: 88%). This was also the case in the injection vaccination of adult seabass of 60 g average weight where the vaccine was effective only against the PDB strain (RPS: 63%). High antibody titers against both strains were found at 30 and 60 days after intraperitoneal vaccination in the adult seabass. The use of zebrafish as a model for vaccine development for aquaculture species is discussed.
Collapse
|
|
3 |
3 |
12
|
Elabd H, Wang HP, Shaheen A, Matter A. Nano spirulina dietary supplementation augments growth, antioxidative and immunological reactions, digestion, and protection of Nile tilapia, Oreochromis niloticus, against Aeromonas veronii and some physical stressors. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2143-2155. [PMID: 32829476 DOI: 10.1007/s10695-020-00864-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The current study evaluated the effects of nano delivery of Spirulina platensis on growth performance, digestive enzymes, and biochemical, immunological, and antioxidative status, as well as resistance to Aeromonas veronii and some physical stressor challenges in Nile tilapia, Oreochromis niloticus. Three experimental fish groups (n = 270) with mean weights of 26 ± 0.30 g and mean lengths of 10 ± 0.5 cm were used; the first additive-free basal diet served as the control group, whereas the following two groups were supplemented with spirulina nanoparticles (SPNP) at 0 (control), 0.25, and 0.5%/kg diet for 4 weeks. Following the feeding trial, fish were challenged with hypoxia, cold stresses, and pathogenic bacteria (A. veronii) infection (9 × 108 CFU/ml). SPNP supplementation, especially 0.5%, (p < 0.05) significantly increased growth performance (specific growth rate % day-1, feed conversion ratio, and length gain rate %), immunological (plasma lysozyme and liver nitrous oxide) antioxidants (superoxide dismutase, catalase, and glutathione peroxidase in liver), biochemical (aspartate aminotransferase, alanine transaminase, glucose, and cortisol concentrations in plasma) assays, and digestive enzymes (lipase and amylase in plasma). The expression of liver's heat shock protein 70 (HSP70) and interleukin 1, beta (IL-1β) genes showed a significant upregulation outline of 0.5% SPNP > 0.25% SPNP > 0% SPNP compared with the control. Protection in the incorporated fish groups exposed to A. veronii was 100% compared with the control group, which showed 50% cumulative mortalities. In conclusion, dietary SPNP supplementation improved growth performance, antioxidant activity, immune response, digestive enzymes, related gene expression, and resistance of Nile Tilapia to hypoxia, cold, and A. veronii infection. Thus, SPNP could be used as a natural therapy for controlling those stressors.
Collapse
|
Randomized Controlled Trial, Veterinary |
5 |
2 |
13
|
Zheng S, Tang X, Yang Q, Zhou X, Li Y, Wu Z. Aeromonas veronii tolC modulates its virulence and the immune response of freshwater pearl mussels, Hyriopsis cumingii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105137. [PMID: 38224762 DOI: 10.1016/j.dci.2024.105137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/17/2024]
Abstract
Aeromonas veronii is an opportunistic pathogen that causes diseases in aquatic animals, but its key virulence factors remain unclear. We screened the gene tolC with significantly different expression levels in the two isolates, A. veronii GL2 (higher virulence) and A. veronii FO1 (lower virulence). Therefore, we constructed mutant strain ΔtolC and analyzed its immunological properties. ΔtolC exhibited the reduced ability of biofilms formation, inhibited envelope stress response mediated by several antibiotics except cefuroxime, implying the ability to evade host immunity might be restrained. Challenge tests showed that the LD50 of ΔtolC was 10.89-fold than that of GL2. Enzymatic activities of ΔtolC group were significantly lower and peak time was delayed to 12 h, as demonstrated by qRT-PCR results. Histopathological examination displayed that the degree of tissue damage in ΔtolC group was alleviated. The results show that tolC is an important virulence factor of A. veronii, which provides references for live-attenuated vaccine.
Collapse
|
|
1 |
2 |
14
|
Ibrahim RE, Elshobaky G, ElHady M, Abdelwarith AA, Younis EM, Rhouma NR, Murad SK, Yassin EMM, Khamis T, Ismail SH, Davies SJ, Abdel Rahman AN. Nelumbo nucifera synthesized selenium nanoparticles modulate the immune-antioxidants, biochemical indices, and pro/anti-inflammatory cytokines pathways in Oreochromis niloticus infected with Aeromonas veronii. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109287. [PMID: 38092091 DOI: 10.1016/j.fsi.2023.109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
Bacterial infection is considered one of the major issues in fish culturing that results in economic losses. Metal nanoparticles are a cutting-edge and effective disease management and preventive strategy because of their antibacterial ability. In this investigation, the selenium nanoparticles were prepared by a biological method using Nelumbo nucifera leaves extract. The in-vitro antibacterial activity of N. nucifera synthesized selenium nanoparticles (NN-SeNPs) was tested against Aeromonas veronii. A treatment assay was conducted on 210 Oreochromis niloticus (average body weight: 27 ± 2.00 g). A preliminary approach was conducted on 90 fish for determination of the therapeutic concentration of NN-SeNPs which was found to be 4 mg/L. Fish (n = 120) were categorized into four groups for 10 days; G1 (control) and G2 (NN-SeNPs) were non-challenged and treated with 0 and 4 mg/L NN-SeNPs, respectively. While, G3 and G4 were infected with 2 × 106 CFU/mL of A. veronii and treated with 0 and 4 mg/L NN-SeNPs, respectively. NN-SeNPs exhibited an inhibition zone against A. veronii with a diameter of 16 ± 1.25 mm. The A. veronii infection increased the hepato-renal biomarkers (alanine and aspartate aminotransferases and creatinine) than the control group. An oxidative stress was the consequence of A. veronii infection (higher malondialdehyde and hydrogen peroxide levels with lower glutathione peroxidase superoxide, dismutase, and catalase activity). A. veronii infection resulted in lower immunological biomarker values (immunoglobulin M, lysozyme, and complement 3) with higher expression of the inflammatory cytokines (interleukin-1β and tumor necrosis factor-ɑ) as well as lower expression of the anti-inflammatory cytokines (interleukin-10 and transforming growth factor-β). Therapeutic application with 4 mg/L NN-SeNPs prevented the disease progression; and modulated the hepato-renal function disruptions, oxidant-immune dysfunction, as well as the pro/anti-inflammatory cytokines pathway in the A. veronii-infected fish. These findings suggest that NN-SeNPs, employed as a water therapy, can safeguard fish from the harmful effects of A. veronii and serve as a promising antibacterial agent for sustainable aquaculture.
Collapse
|
|
1 |
|
15
|
He Y, Ma L, Zeng X, Xie J, Ning X. Systematic identification and analysis of immune-related circRNAs of Pelteobagrus fulvidraco involved in Aeromonas veronii infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101256. [PMID: 38797004 DOI: 10.1016/j.cbd.2024.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Circular RNA (circRNA) represents a type of newly discovered non-coding RNA, distinguished by its closed loop structure formed through covalent bonds. Recent studies have revealed that circRNAs have crucial influences on host anti-pathogen responses. Yellow catfish (Pelteobagrus fulvidraco), an important aquaculture fish with great economic value, is susceptible to Aeromonas veronii, a common aquatic pathogen that can cause acute death. Here, we reported the first systematic investigation of circRNAs in yellow catfish, especially those associated with A. veronii infection at different time points. A total of 1205 circRNAs were identified, which were generated from 875 parental genes. After infection, 47 circRNAs exhibited differential expression patterns (named DEcirs). The parental genes of these DEcirs were functionally engaged in immune-related processes. Accordingly, seven DEcirs (novel_circ_000226, 278, 401, 522, 736, 843, and 975) and six corresponding parental genes (ADAMTS13, HAMP1, ANG3, APOA1, FGB, and RALGPS1) associated with immunity were obtained, and their expression was confirmed by RT-qPCR. Moreover, we found that these DEcir-gene pairs likely acted through pathways, such as platelet activation, antimicrobial humoral response, and regulation of Ral protein signal transduction, to influence host immune defenses. Additionally, integrated analysis showed that, of the 7 immune-related DEcirs, three targeted 16 miRNAs, which intertwined into circRNA-miRNA networks. These findings revealed that circRNAs, by targeting genes or miRNAs are highly involved in anti-bacterial responses in yellow catfish. Our study comprehensively illustrates the roles of circRNAs in yellow catfish immune defenses. The identified DEcirs and the circRNA-miRNA network will contribute to the further investigations on the molecular mechanisms underlying yellow catfish immune responses.
Collapse
|
|
1 |
|
16
|
Raslan WS, Shehab A, Matter AF, Youssuf HA, Farid OA, Sabek A, Magdy Y, Kadah A. Impact of essential oil and probiotics supplementation on growth performance, serum biomarkers, antioxidants status, bioenergetics and histomorphometry of intestine of Nile tilapia fingerlings challenged with Aeromonas veronii. BMC Vet Res 2025; 21:6. [PMID: 39773641 PMCID: PMC11706111 DOI: 10.1186/s12917-024-04433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Probiotics and essential oils feed supplements are widely used in the aquaculture sector. This study was conducted to evaluate the effects of dietary supplementation with probiotics, essential oils and their combination on growth performance, serum biochemical parameters, antioxidant capacity, resistance against Aeromonas veronii, and intestinal histomorphology of Nile tilapia (Oreochromis niloticus). A total of 360 O. niloticus fingerlings were randomly assigned to four groups (3 replicates/ group; each replicate contains 30 fish) based on the different dietary treatments. The first group was fed a basal control diet (G1), the second group was fed a basal diet supplemented with 0.015% probiotic (Klu-zetar®) (G2), the third group was fed a basal diet with 0.015% essential oil (ACTIVO®) (G3), and the fourth group was fed a basal diet mixed with 0.015% Klu-zetar® and 0.015% ACTIVO®, (G4) for 6 weeks. At the end of the trial fish were intraperitoneally injected with pathogenic bacteria Aeromonas veronii and the fish mortality rate was recorded for 7 days post infection. RESULTS The results revealed that using probiotics and or essential oils in Nile tilapia diets improved growth performance, reduced oxidative stress, enhanced immunity, maintained intestinal integrity, and enhanced resistance to pathogenic infection (P ≤ 0.05). CONCLUSIONS It is concluded that the use of probiotics and/ or essential oils enhance the overall outcomes of Nile tilapia, so it is highly recommended to be used in aquaculture management.
Collapse
|
research-article |
1 |
|
17
|
Ma X, Hu K, Xiong Y, Li H, Li J, Tang Y, Liu Z. Local Regulator AcrR Regulates Persister Formation by Repression of AcrAB Efflux Pump during Exponential Growth in Aeromonas veronii. Antimicrob Agents Chemother 2023; 67:e0096922. [PMID: 36853030 PMCID: PMC10019292 DOI: 10.1128/aac.00969-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/26/2023] [Indexed: 03/01/2023] Open
Abstract
Bacterial persisters refer to a small fraction of dormant variants that survive treatment with high concentrations of antibiotics. Increasing research indicates that multidrug efflux pumps play a major role in persister formation in many Gram-negative organisms. In the present study, the roles of the repressor of the AcrAB efflux pump, AcrR, in the regulation of the activity and function of the efflux, as well as in the production of persisters, were investigated in the pathogen Aeromonas veronii, which causes huge economic losses in the aquatic industry and threatens human health. We observed that exclusively in exponential-phase cells, not in stationary-phase cells, the deletion of the acrR gene significantly (P < 0.05) promoted the expression of the acrA and acrB genes and reduced the intracellular accumulation of the efflux substrate Hoechst 33342. Moreover, overexpression of acrR triggered decreased transcription of the promoter of the acrAB operon. The persister assay indicated that the loss of the AcrAB pump decreased the formation of persisters under challenge with all tested antibiotic types of chloramphenicol, fluoroquinolone, tetracycline, and β-lactam, while deletion of acrR caused an exponential-phase-specific increase in persister formation against chloramphenicol, tetracycline, and β-lactam. Our results provide molecular insights into the mechanism of bacterial persistence by demonstrating for the first time that the local regulator AcrR is involved in the modulation of persister formation in A. veronii through its repressive activity on the function of the AcrAB efflux pump during the exponential growth period.
Collapse
|
research-article |
2 |
|
18
|
Lin J, Zhong H, Chen Q, Cui L, Xu F, Tang F. Aeromonas veronii-associated endogenous endophthalmitis: a case report. J Med Case Rep 2024; 18:171. [PMID: 38504363 PMCID: PMC10953058 DOI: 10.1186/s13256-024-04412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/25/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Aeromonas veronii is a very rare and highly pathogenic microorganism. We investigate the clinical characteristics and significance of endogenous endophthalmitis caused by Aeromonas veronii in our patient. CASE PRESENTATION A 30-year-old Asian women with systemic lupus erythematosus, uremia, and hypertension developed acute infectious endophthalmitis caused by Aeromonas veronii. After emergency vitrectomy and antibiotic therapy, the clinical condition worsened requiring enucleation. CONCLUSIONS Aeromonas veronii can cause infection in the human eye, which can manifest as acute endophthalmitis. Early diagnosis and targeted therapy are important for successful treatment.
Collapse
|
Case Reports |
1 |
|
19
|
Sukkarun P, Kitiyodom S, Kamble MT, Bunnoy A, Boonanuntanasarn S, Yata T, Boonrungsiman S, Thompson KD, Rodkhum C, Pirarat N. Systemic and mucosal immune responses in red tilapia (Oreochromis sp.) following immersion vaccination with a chitosan polymer-based nanovaccine against Aeromonas veronii. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109383. [PMID: 38246266 DOI: 10.1016/j.fsi.2024.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
A mucoadhesive chitosan polymer-based nanoplatform has been increasingly recognized as an effective mucosal vaccine delivery system for fish. The present study aimed to investigate the effectiveness of immersion vaccination with a chitosan polymer-based nanovaccine to elicit an immune response in serum and mucus of red tilapia and evaluate its protective efficacy after immersion challenge with a heterogenous strain of Aeromonas veronii UDRT09. Six hundred red tilapia (22 ± 1.8 g) were randomly allocated into four experimental groups: control, empty-polymeric nanoparticle (PC), formalin-killed vaccine (FKV), and chitosan polymer-based nanovaccine (CS-NV) in triplicate. The specific IgM antibody levels and their bactericidal activity were assessed in serum and mucus for 28 days after immersion vaccination and followed by immersion challenge with A. veronii. The immersion vaccine was found to be safe for red tilapia, with no mortalities occurring during the vaccination procedure. The specific IgM antibody levels and bactericidal activity against A. veronii in both serum and mucus were significantly higher in red tilapia vaccinated with CS-NV compared to the FKV and control groups at all time points. Furthermore, the serum lysozyme activity, ACH50, and total Ig levels demonstrated a significant elevation in the groups vaccinated with CS-NV compared to the FKV and control groups. Importantly, the Relative Percentage Survival (RPS) value of the CS-NV group (71 %) was significantly higher than that of the FKV (15.12 %) and PC (2.33 %) groups, respectively. This indicates that the chitosan polymer-based nanovaccine platform is an effective delivery system for the immersion vaccination of tilapia.
Collapse
|
Randomized Controlled Trial, Veterinary |
1 |
|
20
|
Yao YY, Xia R, Yang YL, Hao Q, Ran C, Zhang Z, Zhou ZG. Study about the combination strategy of Bacillus subtilis wt55 with AiiO-AIO6 to improve the resistance of zebrafish to Aeromonas veronii infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:447-454. [PMID: 35985627 DOI: 10.1016/j.fsi.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Disease problems will seriously restrict the sustainable development of aquaculture, and the environmental-friendly prevention strategies are urgently needed. Probiotics and quorum-quenching enzyme are innovative strategies to control bacterial diseases. Firstly, the bacteriostatic activity of Bacillus subtilis wt55 strain and quenching enzyme AiiO-AIO6 on the growth of Aeromonas veronii were tested in vitro, and the results showed wt55 inhibit the growth of A. veronii, but AiiO-AIO6 did not. Then, the synergistic effects of simple combination of B. subtilis wt55 and AiiO-AIO6 were evaluated next. The results showed this combination could improve the survival rate and significantly reduce the number of invasive A. veronii in gut after challenge compared to the other groups, corresponding to the lower intestinal alkaline phosphatase activity. One of its effect mechanisms is the combination could inhibit the growth of A. veronii in vitro; the other is direct immersion of germ-free zebrafish proved AiiO-AIO6 did not directly regulate the innate immune response of the host, but wt55 did it, and the simple combination group could significantly reduce the expression of nuclear factor kappa-B (NF-κB) and proinflammatory cytokine interleukin-1β (IL-1β), increase the expression of lysozyme gene; and the third is intestinal microbiota also plays a regulatory role: the gut microbiota from combination group could significantly inhibit the expression of IL-1β and NF-κB, and increased the expression of transforming growth factor-β (TGF-β) and lysozyme. Given the effectiveness of this simple combination, a B. subtilis quorum-quenching recombinant expression strain in which AiiO-AIO6 was surface displayed on the spores and secreted by vegetative cells was built. The results showed that the survival rate after challenge was lower than that of the group treated with AiiO-AIO6 or wt55 alone, and the expression of proinflammatory cytokine IL-1β and NF-κB were significantly higher. Our study demonstrated the effectiveness of B. subtilis and AiiO-AIO6 simple combination and established an efficient B. subtilis expression system.
Collapse
|
|
3 |
|
21
|
Yunis-Aguinaga J, Sotil G, Morey GAM, Fernandez-Espinel C, Flores-Dominick V, Rengifo-Marin G, da Silva Claudiano G, Medina-Morillo M. Susceptibility of the cultured Amazonian fish, Colossoma macropomum, to experimental infection with Aeromonas species from ornamental fish. Microb Pathog 2024; 186:106461. [PMID: 38048837 DOI: 10.1016/j.micpath.2023.106461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/21/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
The global ornamental fish trade carries important risk factors for spreading pathogens between different countries and regions, not only for ornamental fish but also for cultured fish and even other animal species. In the current study, we reported the capacity of Aeromonas veronii and A. hydrophila isolated from ornamental fish to experimentally infect the reared Amazonian fish Colossoma macropomum. For this, those bacteria were identified, and a primary characterization was performed. Fish were inoculated with 0.1 mL of increasing concentrations of A. hydrophila or A. veronii (C1 = 1 × 102; C2 = 1.8 × 104; C3 = 2.1 × 106; C4 = 2.4 × 108 bacterial cells per mL) in the coelomic cavity. In the control group, fish received the same volume of sterile saline solution (0.9 %). Fish presented petechiae, skin suffusions, and mortality rates up to 100 % according to the inoculum concentration. Histopathologically, fish presented necrosis with karyolysis, loss of the cytoplasmic delimitation of cells of the renal tubules and hepatocytes, hemorrhage, cellular edema, and the presence of bacterial cells. The LD50-96h of A. veronii on C. macropomum was estimated at 2.4 × 106 CFU mL-1 and of A. hydrophila at 1.408 × 105 CFU mL-1. The results demonstrated that it is possible that Aeromonas species isolated from ornamental fish affect C. macropomum, causing similar clinical signs and lesions. This shows the importance of promoting risk control measures worldwide regarding the trade of ornamental fish.
Collapse
|
|
1 |
|
22
|
Saha TK, Mariom, Rahman T, Moniruzzaman M, Min T, Hossain Z. Immuno-physiological effects of dietary reishi mushroom powder as a source of beta-glucan on Rohu, Labeo rohita challenged with Aeromonas veronii. Sci Rep 2023; 13:14652. [PMID: 37670115 PMCID: PMC10480226 DOI: 10.1038/s41598-023-41557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
Beta-glucans have immense potential to stimulate immune modulation in fish by being injected intramuscularly, supplemented with feed or immersion routes of administration. We studied how supplementing Labeo rohita's diet with reishi mushroom powder containing beta-glucan influenced immunological function. A supplemented diet containing 10% reishi mushroom powder was administered for 120 days. Afterwards, analyses were conducted on different immunological parameters such as antioxidants, respiratory burst, reactive oxygen species (ROS), alternative complement activity, and serum immunoglobulin, which resulted significant increases (p < 0.05; p < 0.01) for the reishi mushroom-fed immune primed L. rohita. Additionally, analyzing various hematological parameters such as erythrocytes and leukocytes count were assessed to elucidate the immunomodulatory effects, indicating positive effects of dietary reishi mushroom powder on overall fish health. Furthermore, the bacterial challenge-test with 1.92 × 104 CFU/ml intramuscular dose of Aeromonas veronii showed enhanced disease-defending system as total serum protein and lysozyme activity levels accelerated significantly (p < 0.01). Nevertheless, reishi mushroom powder contained with beta-glucan ameliorated the stress indicating parameters like acetylcholinesterase (AChE), serum-glutamic pyruvic transaminase (SGPT) and serum-glutamic oxaloacetic transaminase (SGOT) enzyme activities results suggested the fish's physiology was unaffected. Therefore, the results indicated that adding dietary reishi mushroom as a source of beta-glucan could significantly boost the immune responses in Rohu.
Collapse
|
research-article |
2 |
|
23
|
Wang F, Zhong ZR, Xie Q, Ou J, Xiong NX, Huang MZ, Li SY, Hu G, Qin ZL, Luo SW. Multiomics Analyses Explore the Immunometabolic Interplay in the Liver of White Crucian Carp (Carassius cuvieri) After Aeromonas veronii Challenge. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:790-809. [PMID: 39042324 DOI: 10.1007/s10126-024-10347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024]
Abstract
Aeromonas veronii is one of the predominant pathogenic species that can imperil the survival of farmed fish. However, the interactive networks of immune regulation and metabolic response in A. veronii-infected fish are still unclear. In this investigation, we aimed to explore immunometabolic interplay in white crucian carp (WCC) after the A. veronii challenge. Elevated levels of immune-related genes were observed in various tissues after A. veronii infection, along with the sharp alteration of disease-related enzymatic activities. Besides, decreased levels of antioxidant status were observed in the liver, but most metabolic gene expressions increased dramatically. Multiomics analyses revealed that metabolic products of amino acids, such as formiminoglutamic acid (FIGLU), L-glutamate (L-Glu), and 4-hydroxyhippuric acid, were considered the crucial liver biomarkers in A. veronii-infected WCC. In addition, A. veronii infection may dysregulate endoplasmic reticulum (ER) function to affect the metabolic process of lipids, carbohydrates, and amino acids in the liver of WCC. These results may have a comprehensive implication for understanding immunometabolic response in WCC upon A. veronii infection.
Collapse
|
|
1 |
|
24
|
Wang Y, Gao C, Niu W, Han S, Qin M, Tian Z, Zuo W, Xia X, Wang H, Li Y. Polystyrene microplastics promote intestinal colonization of Aeromonas veronii through inducing intestinal microbiota dysbiosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133976. [PMID: 38461664 DOI: 10.1016/j.jhazmat.2024.133976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
The premise that pathogen colonized microplastics (MPs) can promote the spread of pathogens has been widely recognized, however, their role in the colonization of pathogens in a host intestine has not been fully elucidated. Here, we investigated the effect of polystyrene MPs (PS-MPs) on the colonization levels of Aeromonas veronii, a typical aquatic pathogen, in the loach (Misgurnus anguillicaudatus) intestine. Multiple types of MPs were observed to promote the intestinal colonization of A. veronii, among which PS-MPs exhibited the most significant stimulating effect (67.18% increase in A. veronii colonization). PS-MPs inflicted serious damage to the intestinal tracts of loaches and induced intestinal microbiota dysbiosis. The abundance of certain intestinal bacteria with resistance against A. veronii colonization decreased, with Lactococcus sp. showing the strongest colonization resistance (73.64% decline in A. veronii colonization). Fecal microbiota transplantation was performed, which revealed that PS-MPs induced intestinal microbiota dysbiosis was responsible for the increased colonization of A. veronii in the intestine. It was determined that PS-MPs reshaped the intestinal microbiota community to attenuate the colonization resistance against A. veronii colonization, resulting in an elevated intestinal colonization levels of A. veronii.
Collapse
|
|
1 |
|
25
|
Xia Y, Zhu X, Wu C. Metformin-associated severe lactic acidosis combined with multi-organ insufficiency induced by infection with Aeromonas veronii: A case report. Medicine (Baltimore) 2023; 102:e32659. [PMID: 36637931 PMCID: PMC9839295 DOI: 10.1097/md.0000000000032659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RATIONALE Lactic acidosis is a disease in which lactic acid accumulates in the blood and causes acidosis in the patient. The criteria for diagnosis are a lactate level of >2 mmol/L in the blood and a blood pH of <7.2. PATIENT CONCERNS A 72-year-old Asian female with a history of diabetes for 20+ years was admitted to the hospital with the chief complaint of "dry mouth, polydipsia for 20+ years, loss of appetite for 5+ days, vomiting for 1-day." She was admitted with a blood gas pH of 6.795, and a lactate level of >30 mmol/L. DIAGNOSES Type 2 diabetes mellitus with lactic acidosis, ketoacidosis, chronic renal insufficiency, hypertensive disease, and coronary arteriosclerotic heart disease. INTERVENTIONS She was treated with symptomatic rehydration and ketone reduction immediately, but then became unconscious and was admitted to the intensive care unit, where she was administered symptomatic support and continuous renal replacement therapy. As the blood culture showed Aeromonas veronii, she was administered a sensitive antibiotic in conjunction. OUTCOMES However, after achieving a stable internal environment and good infection control, the patient's family decided to discontinue treatment because of persistent heart failure with acute exacerbation of chronic renal insufficiency complicated by gastrointestinal bleeding. LESSONS Lactic acidosis has low incidence, poor prognosis, and high morbidity and mortality rates. Special attention should be paid to infection-induced acidosis, especially in patients with combined multi-organ insufficiency. Early diagnosis and active management can improve the patient prognosis.
Collapse
|
Case Reports |
2 |
|