1
|
Sarrias MR, Grønlund J, Padilla O, Madsen J, Holmskov U, Lozano F. The Scavenger Receptor Cysteine-Rich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system. Crit Rev Immunol 2005; 24:1-37. [PMID: 14995912 DOI: 10.1615/critrevimmunol.v24.i1.10] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Scavenger Receptor Cysteine-Rich (SRCR) domain is an ancient and highly conserved protein module of ~100-110 amino acids, which defines a superfamily (SRCR-SF) of either soluble or membrane-bound receptors expressed by hematopoietic and nonhematopoietic cells, at either embryonic or adult stages. The existence of two types of SRCR domains allows the division of the SRCR-SF into two groups. Members of group A contain SRCR domains with 6 cysteine residues and are encoded by two exons, whereas those of group B usually contain 8 cysteines and are encoded by a single exon. Group A members usually present as multidomain mosaic proteins containing single SRCR domains associated to other functional domains, such as enzymatic (protease) domains or collagenous regions. On the contrary, group B members generally present as proteins exclusively composed of tandem repeats of SRCR domains, with or without the presence of CUB and ZP domains thought to be involved in oligomerization but never associated to protease domains. Representatives of either group are found in different animal species, from low invertebrates (sponges) to high vertebrates (mammals). Although no unifying function has been defined for SRCR-SF members, accumulated data, together with the high degree of structural and phylogenetic conservation of SRCR domains indicates that they might subserve basic homeostatic functions, including innate immune defense.
Collapse
MESH Headings
- Agglutinins/chemistry
- Agglutinins/immunology
- Agglutinins/physiology
- Amino Acid Oxidoreductases/physiology
- Amino Acid Sequence
- Animals
- Antigens, CD/immunology
- Antigens, CD/physiology
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/physiology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/physiology
- CD36 Antigens/immunology
- CD36 Antigens/physiology
- CD5 Antigens/immunology
- CD5 Antigens/physiology
- Calcium-Binding Proteins
- DNA-Binding Proteins
- Fibronectins/physiology
- Gene Expression Regulation
- Glycoproteins/chemistry
- Glycoproteins/immunology
- Glycoproteins/physiology
- Humans
- Immunity, Innate/immunology
- Immunity, Innate/physiology
- Ligands
- Membrane Proteins/immunology
- Membrane Proteins/physiology
- Models, Molecular
- Molecular Sequence Data
- Mucins/chemistry
- Mucins/immunology
- Mucins/physiology
- Protein Structure, Tertiary/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/physiology
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/physiology
- Receptors, Scavenger
- Scavenger Receptors, Class A
- Sequence Homology
- Structural Homology, Protein
- Tumor Suppressor Proteins
Collapse
|
Review |
20 |
205 |
2
|
Prakobphol A, Xu F, Hoang VM, Larsson T, Bergstrom J, Johansson I, Frängsmyr L, Holmskov U, Leffler H, Nilsson C, Borén T, Wright JR, Strömberg N, Fisher SJ. Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340. J Biol Chem 2000; 275:39860-6. [PMID: 11007786 DOI: 10.1074/jbc.m006928200] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Salivary agglutinin is a high molecular mass component of human saliva that binds Streptococcus mutans, an oral bacterium implicated in dental caries. To study its protein sequence, we isolated the agglutinin from human parotid saliva. After trypsin digestion, a portion was analyzed by matrix-assisted laser/desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), which gave the molecular mass of 14 unique peptides. The remainder of the digest was subjected to high performance liquid chromatography, and the separated peptides were analyzed by MALDI-TOF/post-source decay; the spectra gave the sequences of five peptides. The molecular mass and peptide sequence information showed that salivary agglutinin peptides were identical to sequences in lung (lavage) gp-340, a member of the scavenger receptor cysteine-rich protein family. Immunoblotting with antibodies that specifically recognized either lung gp-340 or the agglutinin confirmed that the salivary agglutinin was gp-340. Immunoblotting with an antibody specific to the sialyl Le(x) carbohydrate epitope detected expression on the salivary but not the lung glycoprotein, possible evidence of different glycoforms. The salivary agglutinin also interacted with Helicobacter pylori, implicated in gastritis and peptic ulcer disease, Streptococcus agalactiae, implicated in neonatal meningitis, and several oral commensal streptococci. These results identify the salivary agglutinin as gp-340 and suggest it binds bacteria that are important determinants of either the oral ecology or systemic diseases.
Collapse
|
|
25 |
168 |
3
|
Hoyer LL, Scherer S, Shatzman AR, Livi GP. Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol 1995; 15:39-54. [PMID: 7752895 DOI: 10.1111/j.1365-2958.1995.tb02219.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transfer of budding Candida albicans yeast cells from the rich, complex medium YEPD to the defined tissue culture medium RPMI 1640 (RPMI) at 37 degrees C and 5% CO2 causes rapid onset of hyphal induction. Among the genes induced under these conditions are hyphal-specific genes as well as genes expressed in response to changes in temperature, CO2 and specific media components. A cDNA library constructed from cells incubated for 20 min in RPMI was differentially screened with yeast (YEPD)- and hyphal (RPMI)-specific probes resulting in identification of a gene expressed in response to culture conditions but not regulated by the yeast-hyphal transition. The deduced gene product displays significant identity to Saccharomyces cerevisiae alpha-agglutinin, encoded by AG alpha 1, an adhesion glycoprotein that mediates mating of haploid cells. The presence of this gene in C. albicans is curious since the organism has not been observed to undergo meiosis. We designate the C. albicans gene ALS1 (for agglutinin-like sequence). While the N- and C-termini of the predicted 1260-amino-acid ALS1 protein resemble those of the 650-amino-acid AG alpha 1, ALS1 contains a central domain of tandem repeats consisting of a highly conserved 36-amino-acid sequence not present in AG alpha 1. These repeats are also present on the nucleotide level as a highly conserved 108 bp motif. Southern and Northern blot analyses indicate a family of C. albicans genes that contain the tandem repeat motif; at least one gene in addition to ALS1 is expressed under conditions similar to those for ALS1 expression. Genomic Southern blots from several C. albicans isolates indicate that the number of copies of the tandem repeat element in ALS1 differs across strains and, in some cases, between ALS1 alleles in the same strain, suggesting a strain-dependent variability in ALS1 protein size. Potential roles for the ALS1 protein are discussed.
Collapse
|
Comparative Study |
30 |
114 |
4
|
Tajiri M, Yoshida S, Wada Y. Differential analysis of site-specific glycans on plasma and cellular fibronectins: application of a hydrophilic affinity method for glycopeptide enrichment. Glycobiology 2005; 15:1332-40. [PMID: 16037490 DOI: 10.1093/glycob/cwj019] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Isolation of glycopeptides utilizing hydrogen bonding between glycopeptide glycans and a carbohydrate-gel matrix in the organic phase is useful for site-specific characterization of oligosaccharides of glycoproteins, when combined with mass spectrometry. In this study, recovery of glycopeptides was improved by including divalent cations or increasing the organic solvent in the binding solution, without losing specificity, whereas it was still less effective for those with a long peptide backbone exceeding 50 amino acid residues. The method was then applied to the analysis of glycan heterogeneities at seven N-glycosylation sites in each of the plasma and cellular fibronectins (FNs). There was a remarkable site-specific difference in fucosylation between these isoforms; Asn1244 selectively escaped the global fucosylation of cellular FN, whereas only Asn1007 and Asn2108 of the plasma isoform underwent modification. In addition, a new O-glycosylation site was identified at Thr279 in the connecting segment between the fibrin- and heparin-binding domain and the collagen-binding domain, and the glycopeptide was reactive to a peanut agglutinin lectin. Considering that another mucin-type O-glycosylation site lies within a different connecting segment, the O-glycosylation of FN was suggested to play a significant role in segregating the neighboring domains and thus maintaining the topology of FN and the domain functions. In addition, the method was applied to apolipoprotein B-100 (apoB100) whose N-glycan structures at 17 of 19 potential sites have been reported, and characterized the remaining sites. The results also demonstrated that the enriched glycopeptide provides resources for site-specific analysis of oligosaccharides in glycoproteomics.
Collapse
|
|
20 |
104 |
5
|
McGavin MH, Krajewska-Pietrasik D, Rydén C, Höök M. Identification of a Staphylococcus aureus extracellular matrix-binding protein with broad specificity. Infect Immun 1993; 61:2479-85. [PMID: 8500883 PMCID: PMC280872 DOI: 10.1128/iai.61.6.2479-2485.1993] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A staphylococal surface protein capable of binding several extracellular matrix glycoproteins was purified as a result of our attempts to identify a receptor(s) for bone sialoprotein (BSP) on Staphylococcus aureus cells. Proteins from different staphylococcal strains were solubilized in sodium lauryl sulfate, separated by polyacrylamide gel electrophoresis, blotted onto Immobilon P membranes, and probed with 125I-BSP. Several bacterial proteins bound the radiolabeled ligand, and various strains expressed different repertoirs of BSP-binding proteins. Major BSP-binding proteins with apparent M(r)s of 72,000 or 60,000 were present on most strains, and these proteins were further studied. The 72- and 60-kDa proteins were preferentially expressed when bacteria were cultured in Luria broth compared with when they were cultured on tryptic soy broth, and the abundance of the proteins could be correlated to an increased 125I-BSP binding. Both the 72-kDa and the 60-kDa proteins were solubilized by extraction of cells with 1 M LiCl and were purified by cation-exchange chromatography. Amino acid composition analysis of the purified 72-kDa protein indicated a high content of lysine (11.9%) and hydrophobic amino acids (28.0% combined). In Western ligand blotting (immunoblotting) experiments, the 72-kDa protein bound not only BSP but also radiolabeled fibronectin, fibrinogen, vitronectin, thrombospondin, and, to some extent, collagen. Addition of the purified 60-kDa protein to S. aureus cells did not inhibit binding of the different ligands but in some cases resulted in an augmentation of the binding of 125I-ligand. Purified 60-kDa protein could hemagglutinate sheep erythrocytes at a concentration of 61 micrograms/ml. The agglutination reaction was inhibited by high concentrations of fucose, mannose, or melibiose. These data suggest that the purified proteins may serve as bacterial receptors with broad specificity for matrix glycoproteins and that the proteins may act as carbohydrate-binding proteins.
Collapse
|
research-article |
32 |
103 |
6
|
Bikker FJ, Ligtenberg AJM, End C, Renner M, Blaich S, Lyer S, Wittig R, van't Hof W, Veerman ECI, Nazmi K, de Blieck-Hogervorst JMA, Kioschis P, Nieuw Amerongen AV, Poustka A, Mollenhauer J. Bacteria Binding by DMBT1/SAG/gp-340 Is Confined to the VEVLXXXXW Motif in Its Scavenger Receptor Cysteine-rich Domains. J Biol Chem 2004; 279:47699-703. [PMID: 15355985 DOI: 10.1074/jbc.m406095200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scavenger receptor cysteine-rich (SRCR) proteins form an archaic group of metazoan proteins characterized by the presence of SRCR domains. These proteins are classified in group A and B based on the number of conserved cysteine residues in their SRCR domains, i.e. six for group A and eight for group B. The protein DMBT1 (deleted in malignant brain tumors 1), which is identical to salivary agglutinin and lung gp-340, belongs to the group B SRCR proteins and is considered to be involved in tumor suppression and host defense by pathogen binding. In a previous study we used nonoverlapping synthetic peptides covering the SRCR consensus sequence to identify a 16-amino acid bacteria-binding protein loop (peptide SRCRP2; QGRVEVLYRGSWGTVC) within the SRCR domains. In this study, using overlapping peptides, we pinpointed the minimal bacteria-binding site on SRCRP2, and thus DMBT1, to an 11-amino acid motif (DMBT1 pathogen-binding site 1 or DMBT1pbs1; GRVEVLYRGSW). An alanine substitution scan revealed that VEVL and Trp are critical residues in this motif. Bacteria binding by DMBT1pbs1 was different from the bacteria binding by the macrophage receptor MARCO in which an RXR motif was critical. In addition, the homologous consensus sequences of a number of SRCR proteins were synthesized and tested for bacteria binding. Only consensus sequences of DMBT1 orthologues bound bacteria by this motif.
Collapse
|
|
21 |
101 |
7
|
van Rooyen R, Hahn-Hägerdal B, La Grange DC, van Zyl WH. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 2005; 120:284-95. [PMID: 16084620 DOI: 10.1016/j.jbiotec.2005.06.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 06/10/2005] [Accepted: 06/16/2005] [Indexed: 11/29/2022]
Abstract
Beta-glucosidase genes of fungal origins were isolated and heterologously expressed in Saccharomyces cerevisiae to enable growth on the disaccharide, cellobiose. To promote secretion of the beta-glucosidases, the genes were fused to the secretion signal of the Trichoderma reesei xyn2 gene and constitutively expressed from a multi-copy yeast expression vector under transcriptional control of the S. cerevisiae PGK1 promoter and terminator. The resulting recombinant enzymes were characterized with respect to pH and temperature optimum, as well as kinetic properties. The two most promising enzymes, BGL1 from Saccharomycopsis fibuligera and BglA from Aspergillus kawachii, were anchored to the yeast cell surface by fusing the mature proteins to the alpha-agglutinin (AGalpha1) or cell wall protein 2 (Cwp2) peptides. The maximum specific growth rates (mu(max)) of the recombinant S. cerevisiae strains were determined in batch cultivation. S. cerevisiae secreting the recombinant S. fibuligera BGL1 enzyme sustained growth aerobically and anaerobically, in minimal medium containing 5g L(-1) cellobiose at 0.23 h(-1) (compared to 0.29 h(-1) on glucose) and 0.18 h(-1) (compared to 0.25 h(-1) on glucose), respectively. Substrate consumption and product formation were determined to evaluate product yields in glucose and cellobiose.
Collapse
|
|
20 |
93 |
8
|
André S, Liu B, Gabius HJ, Roy R. First demonstration of differential inhibition of lectin binding by synthetic tri- and tetravalent glycoclusters from cross-coupling of rigidified 2-propynyl lactoside. Org Biomol Chem 2003; 1:3909-16. [PMID: 14664382 DOI: 10.1039/b307802g] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interplay of mammalian lectins such as galectins with cellular glycoconjugates is intimately involved in crucial reaction pathways including tumor cell adhesion, migration or growth regulation. These clinically relevant functions explain the interest in designing glycoclusters with potent activity to interfere with lectin binding. In view of the perspective for medical applications the following objective arises: to correlate topological factors of ligand display most favorably to reactivity against endogenous lectins. To date, plant agglutinins have commonly been used as models. Properly addressing this issue we first prepared di- to tetravalent clusters from 2-propynyl lactoside under mild oxidative homocoupling conditions and using the Sonogashira palladium-catalyzed cross-coupling reaction with triiodobenzene or pentaerythritol cores. These products were tested for bioactivity in a competitive solid-phase assay using different labeled sugar receptors as probes, i,e. the beta-trefoil mistletoe lectin, the natural lactoside-binding immunoglobulin G fraction from human serum and three mammalian galectins from two subgroups. The lactose headgroups in the derivatives retained ligand properties. Differences in inhibitory capacity were marked between the galectins. In contrast to homodimeric proto-type galectins-1 and -7 significant inhibition of galectin-3 binding with a 7-fold increase in relative potency was observed for the trivalent compound. In comparison, the binding of the beta-trefoil mistletoe agglutinin was reduced best by tetravalent substances The result for galectin-3 was independently confirmed by haemagglutination and cytofluorometric cell binding assays. These data underline the feasibility of galectin-type target selectivity by compound design despite using an identical headgroup (lactose) in synthesis.
Collapse
|
|
22 |
90 |
9
|
Bourne Y, Zamboni V, Barre A, Peumans WJ, Van Damme EJ, Rougé P. Helianthus tuberosus lectin reveals a widespread scaffold for mannose-binding lectins. Structure 1999; 7:1473-82. [PMID: 10647178 DOI: 10.1016/s0969-2126(00)88338-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Heltuba, a tuber lectin from the Jerusalem artichoke Helianthus tuberosus, belongs to the mannose-binding subgroup of the family of jacalin-related plant lectins. Heltuba is highly specific for the disaccharides Man alpha 1-3Man or Man alpha 1-2Man, two carbohydrates that are particularly abundant in the glycoconjugates exposed on the surface of viruses, bacteria and fungi, and on the epithelial cells along the gastrointestinal tract of lower animals. Heltuba is therefore a good candidate as a defense protein against plant pathogens or predators. RESULTS The 2.0 A resolution structure of Heltuba exhibits a threefold symmetric beta-prism fold made up of three four-stranded beta sheets. The crystal structures of Heltuba in complex with Man alpha 1-3Man and Man alpha 1-2Man, solved at 2.35 A and 2.45 A resolution respectively, reveal the carbohydrate-binding site and the residues required for the specificity towards alpha 1-3 or alpha 1-2 mannose linkages. In addition, the crystal packing reveals a remarkable, donut-shaped, octahedral assembly of subunits with the mannose moieties at the periphery, suggesting possible cross-linking interactions with branched oligomannosides. CONCLUSIONS The structure of Heltuba, which is the prototype for an extended family of mannose-binding agglutinins, shares the carbohydrate-binding site and beta-prism topology of its galactose-binding counterparts jacalin and Maclura pomifera lectin. However, the beta-prism elements recruited to form the octameric interface of Heltuba, and the strategy used to forge the mannose-binding site, are unique and markedly dissimilar to those described for jacalin. The present structure highlights a hitherto unrecognized adaptability of the beta-prism building block in the evolution of plant proteins.
Collapse
|
|
26 |
87 |
10
|
Li Y, Spellerberg MB, Stevenson FK, Capra JD, Potter KN. The I binding specificity of human VH 4-34 (VH 4-21) encoded antibodies is determined by both VH framework region 1 and complementarity determining region 3. J Mol Biol 1996; 256:577-89. [PMID: 8604140 DOI: 10.1006/jmbi.1996.0110] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Essentially all cold agglutinins (CA) with red blood cell I/i specificity isolated from patients with CA disease stemming from lymphoproliferative disorders utilize the VH 4-34 (VH 4-21) gene segment. This near universality of the restricted use of a single gene segment is substantially greater than that demonstrated for other autoantibodies. The monoclonal antibody 9G4 exclusively binds VH 4-34 encoded antibodies and serves as a marker for the VH 4-34 gene segment. Previous studies form our laboratory localized the 9G4 reactive area to framework region 1 (FR1). In the present study, the relative roles of VH FR1, heavy (H) chain complementarity determining region 3 (CDRH 3) and the light (L) chain in I antigen binding were investigated. Mutants containing FR1 sequences from the other VH families, CDRH 3 exchanges, and combinatorial antibodies involving L chain interchanges were produced in the baculovirus system and tested in an I binding assay. The data indicate that FR1 of the VH 4-34 gene segment and the CDRH 3 are essential for the interaction between CA and the I antigen, with the CDRH 3 being fundamental in determining the fine specificity of antigen binding (I versus i). Mutants with substantially altered CDRH 1 and CDRH 2 regions bind I as long as the FR1 is VH 4-34 encoded and the CDRH 3 has a permissive sequence. Light chain swaps indicate that even though antigen binding is predominantly mediated by the H chain, the association with antigen can be abrogated by an incompatible L chain. The necessity for VH 4-34 FR1 explains the almost exclusive use of the VH 4-34 gene segment in cold agglutinins. We hypothesize that, as a general phenomenon, the H chain FR1 of many antibodies may be important in providing the contact required for the close association of antibody with antigen, while the CDRH 3 dictates the fine specificity and strenght of binding.
Collapse
|
|
29 |
76 |
11
|
Chandra NR, Ramachandraiah G, Bachhawat K, Dam TK, Surolia A, Vijayan M. Crystal structure of a dimeric mannose-specific agglutinin from garlic: quaternary association and carbohydrate specificity. J Mol Biol 1999; 285:1157-68. [PMID: 9887270 DOI: 10.1006/jmbi.1998.2353] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A mannose-specific agglutinin, isolated from garlic bulbs, has been crystallized in the presence of a large excess of alpha-d-mannose, in space group C2 and cell dimensions, a=203.24, b=43.78, c=79.27 A, beta=112.4 degrees, with two dimers in the asymmetric unit. X-ray diffraction data were collected up to a nominal resolution of 2.4 A and the structure was solved by molecular replacement. The structure, refined to an R-factor of 22.6 % and an Rfree of 27.8 % reveals a beta-prism II fold, similar to that in the snowdrop lectin, comprising three antiparallel four-stranded beta-sheets arranged as a 12-stranded beta-barrel, with an approximate internal 3-fold symmetry. This agglutinin is, however, a dimer unlike snowdrop lectin which exists as a tetramer, despite a high degree of sequence similarity between them. A comparison of the two structures reveals a few substitutions in the garlic lectin which stabilise it into a dimer and prevent tetramer formation. Three mannose molecules have been identified on each subunit. In addition, electron density is observed for another possible mannose molecule per dimer resulting in a total of seven mannose molecules in each dimer. Although the mannose binding sites and the overall structure are similar in the subunits of snowdrop and garlic lectin, their specificities to glycoproteins such as GP120 vary considerably. These differences appear, in part, to be a direct consequence of the differences in oligomerisation, implying that variation in quaternary association may be a mode of achieving oligosaccharide specificity in bulb lectins.
Collapse
|
|
26 |
72 |
12
|
Matranga V, Pinsino A, Celi M, Natoli A, Bonaventura R, Schröder HC, Müller WEG. Monitoring chemical and physical stress using sea urchin immune cells. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 39:85-110. [PMID: 17152695 DOI: 10.1007/3-540-27683-1_5] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Coelomocytes are the cells freely circulating in the body fluid contained in echinoderm coelom and constitute the defence system, which, in response to injuries, host invasion, and adverse conditions, is capable of chemotaxis, phagocytosis, and production of cytotoxic metabolites. Red and colourless amoebocytes, petaloid and philopodial phagocytes, and vibratile cells are the cell types that, in different proportions, constitute the mixed coelomocyte cell population found in sea urchins. Advances in cellular and molecular biology have made it possible to identify a number of specific proteins expressed in coelomocytes under resting conditions or when activated by experimentally induced stress. Only recently, coelomocytes have been used for pollution studies with the aim of introducing a new biosensor for detection of stress at both cellular and molecular levels, as sentinel of sea health. In this chapter, we briefly review the important features of these valuable cells and describe studies on their use in the laboratory and in the field for the assessment of chemical and physical pollution of the sea.
Collapse
|
Review |
20 |
63 |
13
|
Gabius HJ, Manning JC, Kopitz J, André S, Kaltner H. Sweet complementarity: the functional pairing of glycans with lectins. Cell Mol Life Sci 2016; 73:1989-2016. [PMID: 26956894 PMCID: PMC11108359 DOI: 10.1007/s00018-016-2163-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Carbohydrates establish the third alphabet of life. As part of cellular glycoconjugates, the glycans generate a multitude of signals in a minimum of space. The presence of distinct glycotopes and the glycome diversity are mapped by sugar receptors (antibodies and lectins). Endogenous (tissue) lectins can read the sugar-encoded information and translate it into functional aspects of cell sociology. Illustrated by instructive examples, each glycan has its own ligand properties. Lectins with different folds can converge to target the same epitope, while intrafamily diversification enables functional cooperation and antagonism. The emerging evidence for the concept of a network calls for a detailed fingerprinting. Due to the high degree of plasticity and dynamics of the display of genes for lectins the validity of extrapolations between different organisms of the phylogenetic tree yet is inevitably limited.
Collapse
|
Review |
9 |
62 |
14
|
Yan L, Wilkins PP, Alvarez-Manilla G, Do SI, Smith DF, Cummings RD. Immobilized Lotus tetragonolobus agglutinin binds oligosaccharides containing the Le(x) determinant. Glycoconj J 1997; 14:45-55. [PMID: 9076513 DOI: 10.1023/a:1018508914551] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A defined set of oligosaccharides and glycopeptides containing alpha-linked fucose were used to examine the specificity of the immobilized fucose-binding lectin Lotus tetragonolobus agglutinin (LTA1), also known as lotus lectin. Glycans containing the Lewis x determinant (Le(x)) Gal beta 1-4[Fuc alpha 1-3]GlcNAc beta 1-3-R were significantly retarded in elution from high density LTA-Emphaze columns. The lectin also bound the fucosylated lacdiNAc trisaccharide GalNAc beta 1-4[Fuc alpha 1-3]GlcNAc. The lectin did not bind glycans containing either sialylLe(x) or VIM-2 determinants, nor did it bind the isomeric Le(x), Gal beta 1-3[Fuc alpha 1-4]GlcNAc-R. Although 2'-fucosyllactose Fuc alpha 1-2Gal beta 1-4Glc) was retarded in elution from the columns, larger glycans containing the H-antigen Fuc alpha 1-2Gal beta 1-3(4)GlcNAc-R interacted poorly with immobilized LTA. Our results demonstrate that immobilized LTA is effective in isolating glycans containing the Le(x) antigen and is useful in analyzing specific fucosylation of glycoconjugates.
Collapse
|
|
28 |
59 |
15
|
Liu XY, Mal SF, Miao DQ, Liu DJ, Bao S, Tan JH. Cortical granules behave differently in mouse oocytes matured under different conditions. Hum Reprod 2005; 20:3402-13. [PMID: 16172151 DOI: 10.1093/humrep/dei265] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To better understand the differences between in vivo (IVO) and in vitro (IVM) matured oocytes, we studied the chronological changes in cortical granule (CG) distribution and nuclear progression during maturation, and the competence of CG release and embryo development of mouse oocytes matured under different conditions. METHODS Oocytes matured in vivo or in different culture media were used and CG distribution and release were assessed by fluorescein isothiocyanate-labelled Lens culinaris agglutinin and laser confocal microscopy. RESULTS Tempos of nuclear maturation and CG redistribution were slower, and competence for CG exocytosis, cleavage and blastulation were lower in the IVM oocytes than in the IVO oocytes. These parameters also differed among oocytes matured in different culture media. Hypoxanthine (HX, 4 mM) blocked germinal vesicle breakdown (GVBD), postponed CG migration and prevented CG-free domain (CGFD) formation. Cycloheximide (CHX) facilitated both GVBD and CG migration, but inhibited CGFD formation. The presence of serum in maturation media enhanced CG release after aging or activation of oocytes. Maintenance of germinal vesicle intact for some time by a trace amount (0.18 mM) of HX was beneficial to oocyte cytoplasmic maturation. CONCLUSION CGs behaved differently in mouse oocytes matured under different conditions, and cytoplasmic maturity was not fully achieved in the IVM oocytes.
Collapse
|
|
20 |
55 |
16
|
Avbelj F, Fele L. Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins. J Mol Biol 1998; 279:665-84. [PMID: 9641985 DOI: 10.1006/jmbi.1998.1792] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiochemical bases of amino acid preferences for alpha-helical, beta-strand, and other main-chain conformational states in proteins is controversial. Hydrophobic effect, side-chain conformational entropy, steric factors, and main-chain electrostatic interactions have all been advanced as the dominant physical factors which determine these preferences. Many attempts to resolve the controversy have focused on small model systems. The disadvantage of such systems is that the amino acids in small molecules are largely exposed to the solvent. In proteins, however, the amino acids are in contact with the solvent to a different degree, causing a large variability of strengths of all interactions. The estimates of mean strengths of interactions in the actual protein environment are therefore essential to resolve the controversy. In this work the experimental protein structures are used to estimate the mean strengths of various interactions in proteins. The free energy contributions of the interactions are implemented into the Lifson-Roig theory to calculate the helix and strand free energy profiles. From the profiles the secondary structures of proteins and peptides are predicted using simple rules. The role of hydrophobic effect, side-chain conformational entropy, and main-chain electrostatic interactions in determining the secondary structure of proteins is assessed from the abilities of different models, describing stability of secondary structures, to correctly predict alpha-helices, beta-strands and coil in 130 proteins. The three-state accuracy of the model, which contains only the free energy terms due to the main-chain electrostatics with 40 coefficients, is 68.7%. This accuracy is approaching to the accuracy of currently the best secondary structure prediction algorithm based on neural networks (72%); however, many thousands of parameters have to be optimized during the training of the neural networks to reach this level of accuracy. The correlation coefficient between the calculated and the experimental helix contents of 37 alanine based peptides is 0.91. If the hydrophobic and the side-chain conformational entropy terms are included into the helix-coil transition parameters, the accuracy of the algorithm does not improve significantly. However, if the main-chain electrostatic interactions are excluded from the helix-coil and strand-coil transition parameters, the accuracy of the algorithm reaches only 59.5%. These results support the dominant role of the short-range main-chain electrostatics in determining the secondary structure of proteins and peptides. The role of the hydrophobic effect and the side-chain conformational entropy is small.
Collapse
|
|
27 |
55 |
17
|
Nakamura S, Yagi F, Totani K, Ito Y, Hirabayashi J. Comparative analysis of carbohydrate-binding properties of two tandem repeat-type Jacalin-related lectins, Castanea crenata agglutinin and Cycas revoluta leaf lectin. FEBS J 2005; 272:2784-99. [PMID: 15943812 DOI: 10.1111/j.1742-4658.2005.04698.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lectins belonging to the jacalin-related lectin family are distributed widely in the plant kingdom. Recently, two mannose-specific lectins having tandem repeat-type structures were discovered in Castanea crenata (angiosperm) and Cycas revoluta (gymnosperm). The occurrence of such similar molecules in taxonomically less related plants suggests their importance in the plant body. To obtain clues to understand their physiological roles, we performed detailed analysis of their sugar-binding specificity. For this purpose, we compared the dissociation constants (K(d)) of Castanea crenata agglutinin (CCA) and Cycas revoluta leaf lectin (CRLL) by using 102 pyridylaminated and 13 p-nitrophenyl oligosaccharides with a recently developed automated system for frontal affinity chromatography. As a result, we found that the basic carbohydrate-binding properties of CCA and CRLL were similar, but differed in their preference for larger N-linked glycans (e.g. Man7-9 glycans). While the affinity of CCA decreased with an increase in the number of extended alpha1-2 mannose residues, CRLL could recognize these Man7-9 glycans with much enhanced affinity. Notably, both lectins also preserved considerable affinity for mono-antennary, complex type N-linked glycans, though the specificity was much broader for CCA. The information obtained here should be helpful for understanding their functions in vivo as well as for development of useful probes for animal cells. This is the first systematic approach to elucidate the fine specificities of plant lectins by means of high-throughput, automated frontal affinity chromatography.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
55 |
18
|
Aykaç A, Martos-Maldonado MC, Casas-Solvas JM, Quesada-Soriano I, García-Maroto F, García-Fuentes L, Vargas-Berenguel A. β-Cyclodextrin-bearing gold glyconanoparticles for the development of site specific drug delivery systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:234-242. [PMID: 24313322 DOI: 10.1021/la403454p] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three novel gold nanoparticles containing multiple long, flexible linkers decorated with lactose, β-cyclodextrin, and both simultaneously have been prepared. The interaction of such nanoparticles with β-d-galactose-recognizing lectins peanut agglutinin (PNA) and human galectin-3 (Gal-3) was demonstrated by UV-vis studies. Gal-3 is well-known to be overexpressed in several human tumors and can act as a biorecognizable target. This technique also allowed us to estimate their loading capability toward the anticancer drug methotrexate (MTX). Both results make these glyconanoparticles potential site-specific delivery systems for anticancer drugs.
Collapse
|
|
11 |
54 |
19
|
Nakajima K, Oda Y, Kinoshita M, Kakehi K. Capillary affinity electrophoresis for the screening of post-translational modification of proteins with carbohydrates. J Proteome Res 2003; 2:81-8. [PMID: 12643546 DOI: 10.1021/pr020009v] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glycosylation is one of the most important post-translational events for proteins, affecting their functions in health and disease, and plays significant roles in various information traffics for intracellular and intercellular biological events (Hancock, W. S. J. Proteome Res. 2002, 1, 297). We have attempted to obtain the information on the numbers and amounts of carbohydrate chains. Interaction between carbohydrate chains and proteins that recognize them is a target to understand the biological roles of glycosylation. To date, there have been a few strategies for simultaneous analysis of the interactions between complex mixtures of carbohydrates and proteins. Here, we report an approach to categorize carbohydrate chains using a few glycoprotein samples as models for the studies on the analysis of post-translational modification of proteins with carbohydrates. A combination of some specific lectins was used as carbohydrate-binding proteins. The method is based on high-resolution separation of fluorescent-labeled carbohydrates by capillary electrophoresis with laser-induced fluorescent detection in the presence of carbohydrate-binding proteins at different concentrations. The present technique affords (1) simultaneous determination of carbohydrate chains, (2) binding specificity of the constituent carbohydrate chains to specific proteins, and (3) kinetic data such as the association constant of each carbohydrate. We found that the lectins employed in the present study could discriminate subtle difference in linkages and resolved the carbohydrate mixtures. The results will be useful, for example, to understand the biological events expressed with carbohydrate changes on the cell surface.
Collapse
|
|
22 |
52 |
20
|
Chen MH, Shen ZM, Bobin S, Kahn PC, Lipke PN. Structure of Saccharomyces cerevisiae alpha-agglutinin. Evidence for a yeast cell wall protein with multiple immunoglobulin-like domains with atypical disulfides. J Biol Chem 1995; 270:26168-77. [PMID: 7592821 DOI: 10.1074/jbc.270.44.26168] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
alpha-Agglutinin of Saccharomyces cerevisiae is a cell wall-associated protein that mediates cell interaction in mating. Although the mature protein includes about 610 residues, the NH2-terminal half of the protein is sufficient for binding to its ligand a-agglutinin. alpha-Agglutinin20-351, a fully active fragment of the protein, has been purified and analyzed. Circular dichroism spectroscopy, together with sequence alignments, suggest that alpha-agglutinin20-351 consists of three immunoglobulin variable-like domains: domain I, residues 20-104; domain II, residues 105-199; and domain III, residues 200-326. Peptide sequencing data established the arrangement of the disulfide bonds in alpha-agglutinin20-351. Cys97 is disulfide-bonded to Cys114, forming an interdomain bond between domains I and II. Cys202 is bonded to Cys300, in an atypical intradomain disulfide bond between the A and F strands of domain III. Cys227 and Cys256 have free sulfhydryls. Sequencing also showed that at least two of three potential N-glycosylation sites with sequence Asn-Xaa-Thr are glycosylated. At least one of three Asn-Xaa-Ser sequences is not glycosylated. No residues NH2-terminal to Ser282 were O-glycosylated, whereas Ser282, and all hydroxy amino acid residues COOH-terminal to this position were modified. Therefore O-glycosylated Ser and Thr residues cluster in the COOH-terminal region of domain III, and the O-glycosylation continues into a Ser/Thr-rich sequence that extends from domain III to the COOH-terminal of the full-length protein.
Collapse
|
Comparative Study |
30 |
50 |
21
|
Winter HC, Mostafapour K, Goldstein IJ. The mushroom Marasmius oreades lectin is a blood group type B agglutinin that recognizes the Galalpha 1,3Gal and Galalpha 1,3Galbeta 1,4GlcNAc porcine xenotransplantation epitopes with high affinity. J Biol Chem 2002; 277:14996-5001. [PMID: 11836253 DOI: 10.1074/jbc.m200161200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A blood group B-specific lectin from the mushroom Marasmius oreades (MOA) was investigated with respect to its molecular structure and carbohydrate binding properties. SDS-PAGE mass spectrometric analysis showed it to consist of an intact (H; 33 kDa) and truncated (L; 23 kDa) subunit in addition to a small polypeptide (P; 10 kDa). Isolation in the presence of EDTA produced only the H subunits, indicating that the latter two are formed by metalloprotease cleavage of the intact H subunit. Tryptic digestion of the H, L, and P polypeptide chains followed by mass spectral analysis supports this view. The lectin strongly precipitated blood group type B substance, was nonreactive with type A substance, and reacted weakly with type H substance. Carbohydrate binding studies reveal a high affinity for Galalpha1,3Gal (but not for the isomeric alpha1,2-, alpha1,4-, and alpha1,6-disaccharides); Galalpha1,3Galbeta1,4GlcNAc; and the type B branched trisaccharide. MOA also reacts strongly with murine laminin from the Engelbreth-Holm-Swarm sarcoma and bovine thyroglobulin, both of which contain multiple Galalpha1,3Galbeta1,4GlcNAc end groups. This linear B trisaccharide is a component of porcine tissues and organs, preventing their transplantation into humans. MOA also shares carbohydrate recognition of this trisaccharide with toxin A elaborated by Clostridium difficile.
Collapse
|
|
23 |
49 |
22
|
Wood KM, Stone GM, Peppas NA. The effect of complexation hydrogels on insulin transport in intestinal epithelial cell models. Acta Biomater 2010; 6:48-56. [PMID: 19481619 PMCID: PMC3042261 DOI: 10.1016/j.actbio.2009.05.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/04/2009] [Accepted: 05/21/2009] [Indexed: 12/12/2022]
Abstract
A novel class of pH-sensitive complexation hydrogels composed of methacrylic acid and functionalized poly(ethylene glycol) (PEG) tethers, referred to as P(MAA-g-EG) WGA, was investigated as an oral protein delivery system. The PEG tethers were functionalized with wheatgerm agglutinin (WGA), a lectin that can bind to carbohydrates in the intestinal mucosa, to improve residence time of the carrier and absorption of the drug at the delivery site. The ability of P(MAA-g-EG) WGA to improve insulin absorption was observed in two different intestinal epithelial models. In Caco-2 cells P(MAA-g-EG) WGA improved insulin permeability 9-fold as compared with an insulin only solution, which was similar to the improvement by P(MAA-g-EG). P(MAA-g-EG) and P(MAA-g-EG) WGA were also evaluated in a mucus-secreting culture that contained Caco-2 and HT29-MTX cells. Insulin permeability was increased 5-fold in the presence of P(MAA-g-EG) and P(MAA-g-EG) WGA. Overall, it is clear that P(MAA-g-EG) WGA enhances insulin absorption and holds great promise as an oral insulin delivery system.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
47 |
23
|
Sinha S, Mitra N, Kumar G, Bajaj K, Surolia A. Unfolding studies on soybean agglutinin and concanavalin a tetramers: a comparative account. Biophys J 2005; 88:1300-10. [PMID: 15542553 PMCID: PMC1305132 DOI: 10.1529/biophysj.104.051052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 11/03/2004] [Indexed: 11/18/2022] Open
Abstract
The unfolding pathway of two very similar tetrameric legume lectins soybean agglutinin (SBA) and Concanavalin A (ConA) were determined using GdnCl-induced denaturation. Both proteins displayed a reversible two-state unfolding mechanism. The analysis of isothermal denaturation data provided values for conformational stability of the two proteins. It was found that the DeltaG of unfolding of SBA was much higher than ConA at all the temperatures at which the experiments were done. ConA had a T(g) 18 degrees C less than SBA. The higher conformational stability of SBA in comparison to ConA is largely due to substantial differences in their degrees of subunit interactions. Ionic interactions at the interface of the two proteins especially at the noncanonical interface seem to play a significant role in the observed stability differences between these two proteins. Furthermore, SBA is a glycoprotein with a GlcNac2Man9 chain attached to Asn-75 of each subunit. The sugar chain in SBA lies at the noncanonical interface of the protein, and it is found to interact with the amino acid residues in the adjacent noncanonical interface. These interactions further stabilize SBA with respect to ConA, which is not glycosylated.
Collapse
|
Comparative Study |
20 |
44 |
24
|
Ligtenberg TJ, Bikker FJ, Groenink J, Tornoe I, Leth-Larsen R, Veerman EC, Nieuw Amerongen AV, Holmskov U. Human salivary agglutinin binds to lung surfactant protein-D and is identical with scavenger receptor protein gp-340. Biochem J 2001; 359:243-8. [PMID: 11563989 PMCID: PMC1222141 DOI: 10.1042/0264-6021:3590243] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Salivary agglutinin is a 300-400 kDa salivary glycoprotein that binds to antigen B polypeptides of oral streptococci, thereby playing a role in their colonization and the development of caries. A mass spectrum was recorded of a trypsin digest of agglutinin. A dominant peak of 1460 Da was sequenced by quadrupole time-of-flight (Q-TOF) tandem MS. The sequence showed 100% identity with part of the scavenger receptor cysteine-rich ('SRCR') domain found in gp-340/DMBT1 (deleted in malignant brain tumours-1). The mass spectrum revealed 11 peaks with an identical mass as a computer-simulated trypsin digest of gp-340. gp-340 is a 340 kDa glycoprotein isolated from bronchoalveolar lavage fluid that binds specifically to lung surfactant protein-D. DMBT1 is a candidate tumour suppressor gene. A search in the human genome revealed only one copy of this gene. The molecular mass, as judged from SDS/PAGE and the amino acid composition of agglutinin, was found to be nearly identical with that of gp-340. It was shown by Western blotting that monoclonal antibodies against gp-340 reacted with salivary agglutinin, and monoclonals against agglutinin reacted with gp-340. It was demonstrated that gp-340 and agglutinin bound in a similar way to Streptococcus mutans and surfactant protein-D. Histochemically, the distribution of gp-340 in the submandibular salivary glands was identical with the agglutinin distribution, as shown in a previous paper [Takano, Bogert, Malamud, Lally and Hand (1991) Anat. Rec. 230, 307-318]. We conclude that agglutinin is identical with gp-340, and that this molecule interacts with S. mutans and surfactant protein-D.
Collapse
MESH Headings
- Agglutinins/chemistry
- Agglutinins/metabolism
- Antibodies, Monoclonal/immunology
- Blotting, Western
- Brain Neoplasms/chemistry
- Calcium-Binding Proteins
- DNA-Binding Proteins
- Genome, Human
- Humans
- Lung/metabolism
- Lung/microbiology
- Membrane Proteins
- Parotid Gland/metabolism
- Protein Binding
- Pulmonary Surfactant-Associated Protein D/metabolism
- Pulmonary Surfactants/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Receptors, Lipoprotein
- Receptors, Scavenger
- Saliva/metabolism
- Scavenger Receptors, Class B
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Streptococcus mutans/metabolism
- Tumor Suppressor Proteins
Collapse
|
research-article |
24 |
43 |
25
|
Bianchet MA, Odom EW, Vasta GR, Amzel LM. A novel fucose recognition fold involved in innate immunity. NATURE STRUCTURAL BIOLOGY 2002; 9:628-34. [PMID: 12091873 DOI: 10.1038/nsb817] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anguilla anguilla agglutinin (AAA), a fucolectin found in the serum of European eel, participates in the recognition of bacterial liposaccharides by the animal innate immunity system. Because AAA specifically recognizes fucosylated terminals of H and Lewis (a) blood groups, it has been used extensively as a reagent in blood typing and histochemistry. AAA contains a newly discovered carbohydrate recognition domain present in proteins of organisms ranging from bacteria to vertebrates. The crystal structure of the complex of AAA with alpha-L-fucose characterizes the novel fold of this entire lectin family, identifying the residues that provide the structural determinants of oligosaccharide specificity. Modification of these residues explains how the different isoforms in serum can provide a diverse pathogen-specific recognition.
Collapse
|
Comparative Study |
23 |
40 |