1
|
|
Research Support, N.I.H., Extramural |
15 |
5303 |
2
|
Colby DA, Bergman RG, Ellman JA. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem Rev 2010; 110:624-55. [PMID: 19438203 PMCID: PMC2820156 DOI: 10.1021/cr900005n] [Citation(s) in RCA: 3328] [Impact Index Per Article: 221.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
Research Support, N.I.H., Extramural |
15 |
3328 |
3
|
Martin R, Buchwald SL. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc Chem Res 2008; 41:1461-73. [PMID: 18620434 PMCID: PMC2645945 DOI: 10.1021/ar800036s] [Citation(s) in RCA: 2018] [Impact Index Per Article: 118.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cores of many types of polymers, ligands, natural products, and pharmaceuticals contain biaryl or substituted aromatic structures, and efficient methods of synthesizing these structures are crucial to the work of a broad spectrum of organic chemists. Recently, Pd-catalyzed carbon-carbon bond-forming processes, particularly the Suzuki-Miyaura cross-coupling reaction (SMC), have risen in popularity for this purpose. The SMC has many advantages over other methods for constructing these moieties, including mild conditions, high tolerance toward functional groups, the commercial availability and stability of its reagents, and the ease of handling and separating byproducts from its reaction mixtures. Until 1998, most catalysts for the SMC employed triarylphosphine ligands. More recently, new bulky and electron-rich phosphine ligands, which can dramatically improve the efficiency and selectivity of such cross-coupling reactions, have been introduced. In the course of our studies on carbon-nitrogen bond-forming reactions, we found that the use of electron-rich and bulky phosphines enhanced the rate of both the oxidative addition and reductive elimination processes; this was the beginning of our development of a new family of ligands, the dialkylbiarylphosphines L1-L12. These ligands can be used for a wide variety of palladium-catalyzed carbon-carbon, carbon-nitrogen, and carbon-oxygen bond-forming processes as well as serving as supporting ligands for a number of other reactions. The enhanced reactivity of these catalysts has expanded the scope of cross-coupling partners that can be employed in the SMC. With use of such dialkylbiarylphosphine ligands, the coupling of unactivated aryl chlorides, aryl tosylates, heteroaryl systems, and very hindered substrate combinations have become routine. The utility of these ligands has been successfully demonstrated in a wide number of synthetic applications, including industrially relevant processes. In this Account, we provide an overview of the use and impact of dialkylbiarylphosphine ligands in the SMC. We discuss our studies on the mechanistic framework of the reaction, which have allowed us to rationally modify the ligand structures in order to tune their properties. We also describe selected applications in the synthesis of natural products and new materials to illustrate the utility of these dialkylbiarylphosphine ligands in various "real-world" synthetic applications.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
2018 |
4
|
Nicewicz DA, MacMilla DWC. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 2008; 322:77-80. [PMID: 18772399 PMCID: PMC2723798 DOI: 10.1126/science.1161976] [Citation(s) in RCA: 1754] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Photoredox catalysis and organocatalysis represent two powerful fields of molecule activation that have found widespread application in the areas of inorganic and organic chemistry, respectively. We merged these two catalysis fields to solve problems in asymmetric chemical synthesis. Specifically, the enantioselective intermolecular alpha-alkylation of aldehydes has been accomplished using an interwoven activation pathway that combines both the photoredox catalyst Ru(bpy)3Cl2 (where bpy is 2,2'-bipyridine) and an imidazolidinone organocatalyst. This broadly applicable, yet previously elusive, alkylation reaction is now highly enantioselective and operationally trivial.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
1754 |
5
|
Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, Jedrychowski MP, Costa ASH, Higgins M, Hams E, Szpyt J, Runtsch MC, King MS, McGouran JF, Fischer R, Kessler BM, McGettrick AF, Hughes MM, Carroll RG, Booty LM, Knatko EV, Meakin PJ, Ashford MLJ, Modis LK, Brunori G, Sévin DC, Fallon PG, Caldwell ST, Kunji ERS, Chouchani ET, Frezza C, Dinkova-Kostova AT, Hartley RC, Murphy MP, O'Neill LA. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 2018; 556:113-117. [PMID: 29590092 PMCID: PMC6047741 DOI: 10.1038/nature25986] [Citation(s) in RCA: 1261] [Impact Index Per Article: 180.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/09/2018] [Indexed: 02/02/2023]
Abstract
The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.
Collapse
|
research-article |
7 |
1261 |
6
|
Abstract
Quinones represent a class of toxicological intermediates which can create a variety of hazardous effects in vivo, including acute cytotoxicity, immunotoxicity, and carcinogenesis. The mechanisms by which quinones cause these effects can be quite complex. Quinones are Michael acceptors, and cellular damage can occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species (ROS), including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can cause severe oxidative stress within cells through the formation of oxidized cellular macromolecules, including lipids, proteins, and DNA. Formation of oxidatively damaged bases such as 8-oxodeoxyguanosine has been associated with aging and carcinogenesis. Furthermore, ROS can activate a number of signaling pathways, including protein kinase C and RAS. This review explores the varied cytotoxic effects of quinones using specific examples, including quinones produced from benzene, polycyclic aromatic hydrocarbons, estrogens, and catecholamines. The evidence strongly suggests that the numerous mechanisms of quinone toxicity (i.e., alkylation vs oxidative stress) can be correlated with the known pathology of the parent compound(s).
Collapse
|
Review |
25 |
1146 |
7
|
Abstract
DNA is the molecular target for many of the drugs that are used in cancer therapeutics, and is viewed as a non-specific target of cytotoxic agents. Although this is true for traditional chemotherapeutics, other agents that were discovered more recently have shown enhanced efficacy. Furthermore, a new generation of agents that target DNA-associated processes are anticipated to be far more specific and effective. How have these agents evolved, and what are their molecular targets?
Collapse
|
Review |
23 |
1076 |
8
|
Abstract
With the exception of palladium-catalyzed cross-couplings, no other group of reactions has had such a profound impact on the formation of carbon-carbon bonds and the art of total synthesis in the last quarter of a century than the metathesis reactions of olefins, enynes, and alkynes. Herein, we highlight a number of selected examples of total syntheses in which such processes played a crucial role and which imparted to these endeavors certain elements of novelty, elegance, and efficiency. Judging from their short but impressive history, the influence of these reactions in chemical synthesis is destined to increase.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
988 |
9
|
Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000; 275:8945-51. [PMID: 10722742 DOI: 10.1074/jbc.275.12.8945] [Citation(s) in RCA: 830] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mdm2 has been shown to regulate p53 stability by targeting the p53 protein for proteasomal degradation. We now report that Mdm2 is a ubiquitin protein ligase (E3) for p53 and that its activity is dependent on its RING finger. Furthermore, we show that Mdm2 mediates its own ubiquitination in a RING finger-dependent manner, which requires no eukaryotic proteins other than ubiquitin-activating enzyme (E1) and an ubiquitin-conjugating enzyme (E2). It is apparent, therefore, that Mdm2 manifests an intrinsic capacity to mediate ubiquitination. Mutation of putative zinc coordination residues abrogated this activity, as did chelation of divalent cations. After cation chelation, the full activity could be restored by addition of zinc. We further demonstrate that the degradation of p53 and Mdm2 in cells requires additional potential zinc-coordinating residues beyond those required for the intrinsic activity of Mdm2 in vitro. Replacement of the Mdm2 RING with that of another protein (Praja1) reconstituted ubiquitination and proteasomal degradation of Mdm2. However, this RING was ineffective in ubiquitination and proteasomal targeting of p53, suggesting that there may be specificity at the level of the RING in the recognition of heterologous substrates.
Collapse
|
|
25 |
830 |
10
|
Lafrance M, Fagnou K. Palladium-catalyzed benzene arylation: incorporation of catalytic pivalic acid as a proton shuttle and a key element in catalyst design. J Am Chem Soc 2007; 128:16496-7. [PMID: 17177387 DOI: 10.1021/ja067144j] [Citation(s) in RCA: 805] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-pivalic acid cocatalyst system has been developed that exhibits unprecedented reactivity in direct arylation. This reactivity is illustrated with the first examples of high yielding direct metalation-arylation reactions of a completely unactivated arene, benzene. Experimental and computational evidence indicates that the pivalate anion is a key component in the palladation/C-H bond breaking event, that it lowers the energy of C-H bond cleavage and acts as a catalytic proton shuttle from benzene to the stoichiometric carbonate base. Eight examples of substituted aryl bromides are included which undergo direct arylation with benzene in 55-85% yield.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
805 |
11
|
Shabashov D, Daugulis O. Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp2 and sp3 carbon-hydrogen bonds. J Am Chem Soc 2010; 132:3965-72. [PMID: 20175511 PMCID: PMC2841226 DOI: 10.1021/ja910900p] [Citation(s) in RCA: 783] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have developed a method for auxiliary-directed, palladium-catalyzed beta-arylation and alkylation of sp(3) and sp(2) C-H bonds in carboxylic acid derivatives. The method employs a carboxylic acid 2-methylthioaniline- or 8-aminoquinoline amide substrate, aryl or alkyl iodide coupling partner, palladium acetate catalyst, and an inorganic base. By employing 2-methylthioaniline auxiliary, selective monoarylation of primary sp(3) C-H bonds can be achieved. If arylation of secondary sp(3) C-H bonds is desired, 8-aminoquinoline auxiliary may be used. For alkylation of sp(3) and sp(2) C-H bonds, 8-aminoquinoline auxiliary affords the best results. Some functional group tolerance is observed and amino- and hydroxy-acid derivatives can be functionalized. Preliminary mechanistic studies have been performed. A palladacycle intermediate has been isolated, characterized by X-ray crystallography, and its reactions have been studied.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
783 |
12
|
Ma JA, Cahard D. Asymmetric fluorination, trifluoromethylation, and perfluoro alkylation reactions. Chem Rev 2005; 104:6119-46. [PMID: 15584697 DOI: 10.1021/cr030143e] [Citation(s) in RCA: 762] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
Review |
20 |
762 |
13
|
Simon RJ, Kania RS, Zuckermann RN, Huebner VD, Jewell DA, Banville S, Ng S, Wang L, Rosenberg S, Marlowe CK. Peptoids: a modular approach to drug discovery. Proc Natl Acad Sci U S A 1992; 89:9367-71. [PMID: 1409642 PMCID: PMC50132 DOI: 10.1073/pnas.89.20.9367] [Citation(s) in RCA: 725] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peptoids, oligomers of N-substituted glycines, are described as a motif for the generation of chemically diverse libraries of novel molecules. Ramachandran-type plots were calculated and indicate a greater diversity of conformational states available for peptoids than for peptides. The monomers incorporate t-butyl-based side-chain and 9-fluorenylmethoxy-carbonyl alpha-amine protection. The controlled oligomerization of the peptoid monomers was performed manually and robotically with in situ activation by either benzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophosphate or bromotris(pyrrolidino)phosphonium hexaflurophosphate. Other steps were identical to peptide synthesis using alpha-(9-fluorenylmethoxycarbonyl)amino acids. A total of 15 monomers and 10 oligomers (peptoids) are described. Preliminary data are presented on the stability of a representative oligopeptoid to enzymatic hydrolysis. Peptoid versions of peptide ligands of three biological systems (bovine pancreatic alpha-amylase, hepatitis A virus 3C proteinase, and human immunodeficiency virus transactivator-responsive element RNA) were found with affinities comparable to those of the corresponding peptides. The potential use of libraries of these compounds in receptor- or enzyme-based assays is discussed.
Collapse
|
research-article |
33 |
725 |
14
|
Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:4504-26. [PMID: 14705871 DOI: 10.1021/jf030204+] [Citation(s) in RCA: 722] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Acrylamide (CH2=CH-CONH2), an industrially produced alpha,beta-unsaturated (conjugated) reactive molecule, is used worldwide to synthesize polyacrylamide. Polyacrylamide has found numerous applications as a soil conditioner, in wastewater treatment, in the cosmetic, paper, and textile industries, and in the laboratory as a solid support for the separation of proteins by electrophoresis. Because of the potential of exposure to acrylamide, effects of acrylamide in cells, tissues, animals, and humans have been extensively studied. Reports that acrylamide is present in foods formed during their processing under conditions that also induce the formation of Maillard browning products heightened interest in the chemistry, biochemistry, and safety of this vinyl compound. Because exposure of humans to acrylamide can come from both external sources and the diet, a need exists to develop a better understanding of its formation and distribution in food and its role in human health. To contribute to this effort, this integrated review presents data on the chemistry, analysis, metabolism, pharmacology, and toxicology of acrylamide. Specifically covered are the following aspects: nonfood and food sources; exposure from the environment and the diet; mechanism of formation in food from asparagine and glucose; asparagine-asparaginase relationships; Maillard browning-acrylamide relationships; quenching of protein fluorescence; biological alkylation of amino acids, peptides, proteins, and DNA by acrylamide and its epoxide metabolite glycidamide; risk assessment; neurotoxicity, reproductive toxicity, and carcinogenicity; protection against adverse effects; and possible approaches to reducing levels in food. Further research needs in each of these areas are suggested. Neurotoxicity appears to be the only documented effect of acrylamide in human epidemiological studies; reproductive toxicity, genotoxicity/clastogenicity, and carcinogenicity are potential human health risks on the basis of only animal studies. A better understanding of the chemistry and biology of pure acrylamide in general and its impact in a food matrix in particular can lead to the development of improved food processes to decrease the acrylamide content of the diet.
Collapse
|
Review |
22 |
722 |
15
|
Loveless A. Possible relevance of O-6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides. Nature 1969; 223:206-7. [PMID: 5791738 DOI: 10.1038/223206a0] [Citation(s) in RCA: 680] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
|
56 |
680 |
16
|
Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem 2005; 12:887-916. [PMID: 15853704 DOI: 10.2174/0929867053507315] [Citation(s) in RCA: 678] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Coumarins, also known as benzopyrones, are present in remarkable amounts in plants, although their presence has also been detected in microorganisms and animal sources. The structural diversity found in this family of compounds led to the division into different categories, from simple coumarins to many other kinds of policyclic coumarins, such as furocoumarins and pyranocoumarins. Simple coumarins and analogues are a large class of compounds that have attracted their interest for a long time due to their biological activities: they have shown to be useful as antitumoural, anti-HIV agents and as CNS-active compounds. Furthermore, they have been reported to have multiple biological activities (anticoagulant, anti-inflammatory), although all these properties have not been evaluated systematically. In addition, their enzyme inhibition properties, antimicrobial and antioxidant activities are other foremost topics of this field of research. The present work is to survey the information published or abstracted from 1990 till 2003, which is mainly related to the occurrence, synthesis and biological importance of simple coumarins and some analogues, such as biscoumarins and triscoumarins. Data are also highlighted, concerning the development of new synthetic strategies that could help in drug design and in the work on SAR or QSAR.
Collapse
|
Review |
20 |
678 |
17
|
Beranek DT. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res 1990; 231:11-30. [PMID: 2195323 DOI: 10.1016/0027-5107(90)90173-2] [Citation(s) in RCA: 656] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alkylating agents, because of their ability to react directly with DNA either in vitro or in vivo, or following metabolic activation as in the case of the dialkylnitrosamines, have been used extensively in studying the mechanisms of mutagenicity and carcinogenicity. Their occurrence is widespread in the environment and human exposure from natural and pollutant sources is universal. Since most of these chemicals show varying degrees of both carcinogenicity and mutagenicity, and exhibit compound-specific binding patterns, they provide an excellent model for studying molecular dosimetry. Molecular dosimetry defines dose as the number of adducts bound per macromolecule and relates the binding of these adducts to the human mutagenic or carcinogenic response. This review complies DNA alkylation data for both methylating and ethylating agents in a variety of systems and discusses the role these alkylation products plays in molecular mutagenesis.
Collapse
|
Review |
35 |
656 |
18
|
Schmidt RR, Kinzy W. Anomeric-oxygen activation for glycoside synthesis: the trichloroacetimidate method. Adv Carbohydr Chem Biochem 1994; 50:21-123. [PMID: 7942254 DOI: 10.1016/s0065-2318(08)60150-x] [Citation(s) in RCA: 643] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
Review |
31 |
643 |
19
|
Abstract
Dimethyl carbonate (DMC) is a versatile compound that represents an attractive eco-friendly alternative to both methyl halides (or dimethyl sulfate) and phosgene for methylation and carbonylation processes, respectively. In fact, the reactivity of DMC is tunable: at T = 90 degrees C, methoxycarbonylations take place, whereas at higher reaction temperatures, methylation reactions are observed with a variety of nucleophiles. In the particular case of substrates susceptible to multiple alkylations (e.g., CH(2)-active compounds and primary amines), DMC allows unprecedented selectivity toward mono-C- and mono-N-methylation reactions. Nowadays produced by a clean process, DMC possesses properties of nontoxicity and biodegradability which makes it a true green reagent to use in syntheses that prevent pollution at the source. Moreover, DMC-mediated methylations are catalytic reactions that use safe solids (alkaline carbonates or zeolites), thereby avoiding the formation of undesirable inorganic salts as byproducts. The reactivity of other carbonates is reported as well: higher homologues of DMC (i.e., diethyl and dibenzyl carbonate), are excellent mono-C- and mono-N-alkylating agents, whereas asymmetrical methyl alkyl carbonates (ROCO(2)Me with R > or = C(3)) undergo methylation processes with a chemoselectivity up to 99%.
Collapse
|
Review |
23 |
618 |
20
|
Kataoka N, Shelby Q, Stambuli JP, Hartwig JF. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C[bond]C, C[bond]N, and C[bond]O bond-forming cross-couplings. J Org Chem 2002; 67:5553-66. [PMID: 12153253 DOI: 10.1021/jo025732j] [Citation(s) in RCA: 611] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pentaphenylferrocenyl di-tert-butylphosphine has been prepared in high yield from a two-step synthetic procedure, and the scope of various cross-coupling processes catalyzed by complexes bearing this ligand has been investigated. This ligand creates a remarkably general palladium catalyst for aryl halide amination and for Suzuki coupling. Turnovers of roughly 1000 were observed for aminations with unactivated aryl bromides or chlorides. In addition, complexes of this ligand catalyzed the formation of selected aryl ethers under mild conditions. The reactions encompassed electron-rich and electron-poor aryl bromides and chlorides. In the presence of catalysts containing this ligand, these aryl halides coupled with acyclic or cyclic secondary alkyl- and arylamines, with primary alkyl- and arylamines, and with aryl- and primary alkylboronic acids. These last couplings provide the first general procedure for reaction of terminal alkylboronic acids with aryl halides without toxic or expensive bases. The ligand not only generates highly active palladium catalysts, but it is air stable in solution and in the solid state. Palladium(0) complexes of this ligand are also air stable as a solid and react only slowly with oxygen in solution.
Collapse
|
|
23 |
611 |
21
|
|
|
21 |
601 |
22
|
Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 2002; 419:174-8. [PMID: 12226667 DOI: 10.1038/nature00908] [Citation(s) in RCA: 581] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methylating agents generate cytotoxic and mutagenic DNA damage. Cells use 3-methyladenine-DNA glycosylases to excise some methylated bases from DNA, and suicidal O(6)-methylguanine-DNA methyltransferases to transfer alkyl groups from other lesions onto a cysteine residue. Here we report that the highly conserved AlkB protein repairs DNA alkylation damage by means of an unprecedented mechanism. AlkB has no detectable nuclease, DNA glycosylase or methyltransferase activity; however, Escherichia coli alkB mutants are defective in processing methylation damage generated in single-stranded DNA. Theoretical protein fold recognition had suggested that AlkB resembles the Fe(ii)- and alpha-ketoglutarate-dependent dioxygenases, which use iron-oxo intermediates to oxidize chemically inert compounds. We show here that purified AlkB repairs the cytotoxic lesions 1-methyladenine and 3-methylcytosine in single- and double-stranded DNA in a reaction that is dependent on oxygen, alpha-ketoglutarate and Fe(ii). The AlkB enzyme couples oxidative decarboxylation of alpha-ketoglutarate to the hydroxylation of these methylated bases in DNA, resulting in direct reversion to the unmodified base and the release of formaldehyde.
Collapse
|
|
23 |
581 |
23
|
LAWLEY PD, BROOKES P. FURTHER STUDIES ON THE ALKYLATION OF NUCLEIC ACIDS AND THEIR CONSTITUENT NUCLEOTIDES. Biochem J 1996; 89:127-38. [PMID: 14097355 PMCID: PMC1202281 DOI: 10.1042/bj0890127] [Citation(s) in RCA: 572] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
Journal Article |
29 |
572 |
24
|
Abstract
Living organisms dependent on water and oxygen for their existence face the major challenge of faithfully maintaining their genetic material under a constant attack from spontaneous hydrolysis and active oxygen species and from other intracellular metabolites that can modify DNA bases. Repair of endogenous DNA base damage by the ubiquitous base-excision repair pathway largely accounts for the significant turnover of DNA even in nonreplicating cells, and must be sufficiently accurate and efficient to preserve genome stability compatible with long-term cellular viability. The size of the mammalian genome has necessitated an increased complexity of repair and diversification of key enzymes, as revealed by gene knock-out mouse models. The genetic instability characteristic of cancer cells may be due, in part, to mutations in genes whose products normally function to ensure DNA integrity.
Collapse
|
|
21 |
562 |
25
|
|
|
57 |
539 |