1
|
Sivonen K, Namikoshi M, Evans WR, Carmichael WW, Sun F, Rouhiainen L, Luukkainen R, Rinehart KL. Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. Appl Environ Microbiol 1992; 58:2495-500. [PMID: 1514796 PMCID: PMC195810 DOI: 10.1128/aem.58.8.2495-2500.1992] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatotoxins (microcystins) from seven freshwater Anabaena strains originating from three different Finnish lakes and one lake in Norway were isolated by high-performance liquid chromatography and characterized by amino acid analysis and fast atom bombardment mass spectrometry. All strains produced three to seven different microcystins. A total of 17 different compounds were isolated, of which 8 were known microcystins. The known compounds identified from six strains were MCYST (microcystin)-LR, [D-Asp3]MCYST-LR, [Dha7]MCYST-LR, [D-Asp3,Dha7]MCYST-LR, MCYST-RR, [D-Asp3]MCYST-RR, [Dha7]MCYST-RR, and [D-Asp3,Dha7]MCYST-RR. With the exception of MCYST-LR and [D-Asp3]MCYST-LR, this is the first time that isolation of these toxins from Anabaena strains has been reported. Three of the strains produced one to three toxins as minor components which could not be identified. Anabaena sp. strain 66 produced four unidentified toxins. The other Anabaena strains always contained both MCYST-LR and MCYST-RR and/or their demethyl variants. Quantitative differences between toxins within and between strains were detected; at times MCYST-LR and at other times MCYST-RR or demethyl derivatives thereof were the most abundant toxins found in a strain.
Collapse
|
research-article |
33 |
117 |
2
|
Shishido TK, Humisto A, Jokela J, Liu L, Wahlsten M, Tamrakar A, Fewer DP, Permi P, Andreote APD, Fiore MF, Sivonen K. Antifungal compounds from cyanobacteria. Mar Drugs 2015; 13:2124-40. [PMID: 25871291 PMCID: PMC4413203 DOI: 10.3390/md13042124] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/05/2022] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
63 |
3
|
Spoof L, Berg KA, Rapala J, Lahti K, Lepistö L, Metcalf JS, Codd GA, Meriluoto J. First observation of cylindrospermopsin in Anabaena lapponica isolated from the boreal environment (Finland). ENVIRONMENTAL TOXICOLOGY 2006; 21:552-60. [PMID: 17091499 DOI: 10.1002/tox.20216] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The cyanobacterial cytotoxin cylindrospermopsin has been mostly associated with cyanobacteria present in tropical and subtropical regions. Cylindrospermopsin has recently been found in cyanobacterial samples in central and southern Europe but the possible presence of the toxin in northern Europe has been unknown. Fifty-eight field and laboratory culture samples of Finnish cyanobacteria were analyzed by high-performance liquid chromatography combined with UV diode-array detection, multiple reactant monitoring in a triple-quadrupole mass spectrometer (MS), and accurate mass measurements using a time-of-flight MS instrument. Cylindrospermopsin was confirmed by all three techniques in a culture sample of Anabaena lapponica at a concentration of 242 microg cylindrospermopsin per g freeze-dried cyanobacterial material.
Collapse
|
|
19 |
63 |
4
|
Chislock MF, Sarnelle O, Jernigan LM, Wilson AE. Do high concentrations of microcystin prevent Daphnia control of phytoplankton? WATER RESEARCH 2013; 47:1961-1970. [PMID: 23395484 DOI: 10.1016/j.watres.2012.12.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 06/01/2023]
Abstract
Toxin-producing cyanobacteria have frequently been hypothesized to limit the ability of herbivorous zooplankton (such as Daphnia) to control phytoplankton biomass by inhibiting feeding, and in extreme cases, causing zooplankton mortality. Using limnocorral experiments in hyper-eutrophic ponds located in Alabama and Michigan (U.S.A.), we tested the hypothesis that high levels of cyanobacteria and microcystin, a class of hepatotoxins produced by several cyanobacterial genera, prevent Daphnia from strongly reducing phytoplankton abundance. At the start of the first experiment (Michigan), phytoplankton communities were dominated by toxic Microcystis and Anabaena (∼96% of total phytoplankton biomass), and concentrations of microcystin were ∼3 μg L⁻¹. Two weeks after adding Daphnia pulicaria from a nearby eutrophic lake, microcystin levels increased to ∼6.5 μg L⁻¹, yet Daphnia populations increased exponentially (r = 0.24 day⁻¹). By the third week, Daphnia had suppressed phytoplankton biomass by ∼74% relative to the no Daphnia controls and maintained reduced phytoplankton biomass until the conclusion of the five-week experiment. In the second experiment (Alabama), microcystin concentrations were greater than 100 μg L⁻¹, yet a mixture of three D. pulicaria clones from eutrophic lakes in southern MI increased and again reduced phytoplankton biomass, in this case by over 80%. The ability of Daphnia to increase in abundance and suppress phytoplankton biomass, despite high initial levels of cyanobacteria and microcystin, indicates that the latter does not prevent strong control of phytoplankton biomass by Daphnia genotypes that are adapted to environments with abundant cyanobacteria and associated cyanotoxins.
Collapse
|
|
12 |
58 |
5
|
Hussain A, Krischke M, Roitsch T, Hasnain S. Rapid determination of cytokinins and auxin in cyanobacteria. Curr Microbiol 2010; 61:361-9. [PMID: 20339849 DOI: 10.1007/s00284-010-9620-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/10/2010] [Indexed: 11/27/2022]
Abstract
Five cyanobacterial strains, Anabaena sp. Ck1, Oscillatoria sp. Ck2, Phormidium sp. Ck3, Chroococcidiopsis sp. Ck4, and Synechosystis sp. Ck5 were selected for their positive cytokinins-like activity using cucumber cotyledon bioassay and GUS assay in Arabidopsis ARR5::GUS. Classical cucumber cotyledon bioassay was modified for direct screening of cyanobacteria avoiding need for extraction and purification. Cytokinins from cyanobacteria were absorbed onto filter paper which was then assayed for cytokinins-like activity. A rapid chromatographic method was developed for the simultaneous determination of cytokinins and indole-3-acetic acid (IAA). Cyanobacterial biomass (50-100 mg) and cell-free culture filtrate were extracted in Bieleski buffer and purified by solid-phase extraction. The extract was used to determine phytohormones by ultra performance liquid chromatography and electrospray ionization-tandem mass spectrometry in positive and negative modes, respectively, with multiple reactions monitoring. Stable isotope-labeled cytokinins and IAA standards were added in the samples to follow recovery of the compounds and method validation. Five cytokinins determined in the selected strains were Zeatin (cis and trans isomers), Zeatin riboside, Dihydrozeatin riboside, and zeatin-o-glucoside. The strains were shown to accumulate as well as release the phytohormones.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
53 |
6
|
Hotto AM, Satchwell MF, Boyer GL. Molecular characterization of potential microcystin-producing cyanobacteria in Lake Ontario embayments and nearshore waters. Appl Environ Microbiol 2007; 73:4570-8. [PMID: 17526791 PMCID: PMC1932839 DOI: 10.1128/aem.00318-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution and genotypic variation of potential microcystin (MC) producers along the southern and eastern shores of Lake Ontario in 2001 and 2003 were examined using a suite of PCR primers. Cyanobacterial, Microcystis sp., and Microcystis-specific toxin primer sets identified shoreline distribution of cyanobacterial DNA (in 97% of the stations) and MC synthetase genes (in 50% of the stations). Sequence analysis of a partial mcyA amplicon targeting Microcystis, Anabaena, and Planktothrix species indicated that the Microcystis sp. genotype was the dominant MC genotype present and revealed a novel Microcystis-like sequence containing a 6-bp insert. Analysis of the same samples with genus-specific mcyE primers confirmed that the Microcystis sp. genotype was the dominant potential MC producer. Genotype compositions within embayments were relatively homogenous compared to those for shoreline and tributary samples. MC concentrations along the shoreline exhibited both temporal and spatial differences as evidenced by the protein phosphatase inhibition assay, at times exceeding the World Health Organization guideline value for drinking water of 1.0 microg MC-LReq liter(-1). MC genotypes are widespread along the New York State shoreline of Lake Ontario, appear to originate nearshore, and can be carried through the lake via wind and surface water current patterns.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
49 |
7
|
Sipari H, Rantala-Ylinen A, Jokela J, Oksanen I, Sivonen K. Development of a chip assay and quantitative PCR for detecting microcystin synthetase E gene expression. Appl Environ Microbiol 2010; 76:3797-805. [PMID: 20400558 PMCID: PMC2893508 DOI: 10.1128/aem.00452-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 04/10/2010] [Indexed: 11/20/2022] Open
Abstract
The chip and quantitative real-time PCR (qPCR) assays were optimized to study the expression of microcystin biosynthesis genes (mcy) with RNA samples extracted from cyanobacterial strains and environmental water samples. Both microcystin-producing Anabaena and Microcystis were identified in Lake Tuusulanjärvi samples. Microcystis transcribed the mcyE genes throughout the summer of 2006, while expression by Anabaena became evident later in August and September. Active mcyE gene expression was also detectable when microcystin concentrations were very low. Detection of Anabaena mcyE transcripts by qPCR, as well as certain cyanobacterial 16S rRNAs with the chip assay, showed slightly reduced sensitivity compared with the DNA analyses. In contrast, even groups undetectable or present in low quantities as determined by microscopy could be identified with the chip assay from DNA samples. The methods introduced add to the previously scarce repertoire of applications for mcy expression profiling in environmental samples and enable in situ studies of regulation of microcystin synthesis in response to environmental factors.
Collapse
|
Evaluation Study |
15 |
49 |
8
|
Bouma-Gregson K, Kudela RM, Power ME. Widespread anatoxin-a detection in benthic cyanobacterial mats throughout a river network. PLoS One 2018; 13:e0197669. [PMID: 29775481 PMCID: PMC5959195 DOI: 10.1371/journal.pone.0197669] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022] Open
Abstract
Benthic algae fuel summer food webs in many sunlit rivers, and are hotspots for primary and secondary production and biogeochemical cycling. Concerningly, riverine benthic algal assemblages can become dominated by toxic cyanobacteria, threatening water quality and public health. In the Eel River in Northern California, over a dozen dog deaths have been attributed to cyanotoxin poisonings since 2000. During the summers of 2013–2015, we documented spatial and temporal patterns of cyanotoxin concentrations in the watershed, showing widespread distribution of anatoxin-a in benthic cyanobacterial mats. Solid phase adsorption toxin tracking (SPATT) samplers were deployed weekly to record dissolved microcystin and anatoxin-a levels at 10 sites throughout the watershed, and 187 Anabaena-dominated or Phormidium-dominated cyanobacterial mat samples were collected from 27 locations to measure intracellular anatoxin-a (ATX) and microcystins (MCY). Anatoxin-a levels were higher than microcystin for both SPATT (mean MCY = 0.8 and ATX = 4.8 ng g resin-1 day-1) and cyanobacterial mat samples (mean MCY = 0.074 and ATX = 1.89 μg g-1 DW). Of the benthic mats sampled, 58.9% had detectable anatoxin-a (max = 70.93 μg g-1 DW), while 37.6% had detectable microcystins (max = 2.29 μg g-1 DW). SPATT cyanotoxin levels peaked in mid-summer in warm mainstem reaches of the watershed. This is one of the first documentations of widespread anatoxin-a occurrence in benthic cyanobacterial mats in a North American watershed.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
45 |
9
|
Okello W, Portmann C, Erhard M, Gademann K, Kurmayer R. Occurrence of microcystin-producing cyanobacteria in Ugandan freshwater habitats. ENVIRONMENTAL TOXICOLOGY 2010; 25:367-80. [PMID: 19609871 PMCID: PMC3024051 DOI: 10.1002/tox.20522] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 06/07/2009] [Indexed: 05/10/2023]
Abstract
Microcystins (MCs) are cyclic heptapeptides, which are the most abundant toxins produced by cyanobacteria in freshwater. The phytoplankton of many freshwater lakes in Eastern Africa is dominated by cyanobacteria. Less is known, however, on the occurrence of MC producers and the production of MCs. Twelve Ugandan freshwater habitats ranging from mesotrophic to hypertrophic conditions were sampled in May and June of 2004 and April of 2008 and were analyzed for their physicochemical parameters, phytoplankton composition, and MC concentrations. Among the group of the potential MC-producing cyanobacteria, Anabaena (0-10(7) cells ml(-1)) and Microcystis (10(3)-10(7) cells ml(-1)) occurred most frequently and dominated in eutrophic systems. A significant linear relationship (n = 31, r(2) = 0.38, P < 0.001) between the Microcystis cell numbers and MC concentration (1.3-93 fg of MC cell(-1)) was observed. Besides [MeAsp(3), Mdha(7)]-MC-RR, two new MCs, [Asp(3)]-MC-RY and [MeAsp(3)]-MC-RY, were isolated and their constitution was assigned by LC-MS(2). To identify the MC-producing organism in the water samples, (i) the conserved aminotransferase domain part of the mcyE gene that is indicative of MC production was amplified by general primers and cloned and sequenced, and (ii) genus-specific primers were used to amplify the mcyE gene of the genera Microcystis, Anabaena, and Planktothrix. Only mcyE genotypes that are indicative of Microcystis sp. were obtained via the environmental cloning approach (337 bp, 96.1-96.7% similarity to the Microcystis aeruginosa strain PCC7806). Accordingly, only the mcyE primers, which are specific for Microcystis, revealed PCR products. We concluded that Microcystis is the major MC-producer in Ugandan freshwater.
Collapse
|
research-article |
15 |
43 |
10
|
Kokociński M, Mankiewicz-Boczek J, Jurczak T, Spoof L, Meriluoto J, Rejmonczyk E, Hautala H, Vehniäinen M, Pawełczyk J, Soininen J. Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:5243-64. [PMID: 23378259 PMCID: PMC3713259 DOI: 10.1007/s11356-012-1426-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/11/2012] [Indexed: 05/06/2023]
Abstract
The cyanobacterial cytotoxin cylindrospermopsin (CYN) has become increasingly common in fresh waters worldwide. It was originally isolated from Cylindrospermopsis raciborskii in Australia; however, in European waters, its occurrence is associated with other cyanobacterial species belonging to the genera Aphanizomenon and Anabaena. Moreover, cylindrospermopsin-producing strains of widely distributed C. raciborskii have not yet been observed in European waters. The aims of this work were to assess the occurrence of CYN in lakes of western Poland and to identify the CYN producers. The ELISA tests, high-performance liquid chromatography (HPLC)-DAD, and HPLC-mass spectrometry (MS)/MS were conducted to assess the occurrence of CYN in 36 lakes. The cyrJ, cyrA, and pks genes were amplified to identify toxigenic genotypes of cyanobacteria that are capable of producing CYN. The toxicity and toxigenicity of the C. raciborskii and Aphanizomenon gracile strains isolated from the studied lakes were examined. Overall, CYN was detected in 13 lakes using HPLC-MS/MS, and its concentrations varied from trace levels to 3.0 μg L(-1). CYN was widely observed in lakes of western Poland during the whole summer under different environmental conditions. Mineral forms of nutrients and temperature were related to CYN production. The molecular studies confirmed the presence of toxigenic cyanobacterial populations in all of the samples where CYN was detected. The toxicity and toxigenicity analyses of isolated cyanobacteria strains revealed that A. gracile was the major producer of CYN.
Collapse
|
research-article |
12 |
42 |
11
|
Halinen K, Jokela J, Fewer DP, Wahlsten M, Sivonen K. Direct evidence for production of microcystins by Anabaena strains from the Baltic Sea. Appl Environ Microbiol 2007; 73:6543-50. [PMID: 17766456 PMCID: PMC2075070 DOI: 10.1128/aem.01377-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anabaena is a filamentous, N(2)-fixing, and morphologically diverse genus of cyanobacteria found in freshwater and brackish water environments worldwide. It contributes to the formation of toxic blooms in freshwater bodies through the production of a range of hepatotoxins or neurotoxins. In the Baltic Sea, Anabaena spp. form late summer blooms, together with Nodularia spumigena and Aphanizomenon flos-aquae. It has been long suspected that Baltic Sea Anabaena may produce microcystins. The presence of microcystins has been reported for the coastal regions of the Baltic proper, and a recent report also indicated the presence of the toxin in the open Gulf of Finland. However, at present there is no direct evidence linking Baltic Sea Anabaena spp. to microcystin production. Here we report on the isolation of microcystin-producing strains of the genus Anabaena in the open Gulf of Finland. The dominant microcystin variants produced by these strains included the highly toxic MCYST-LR as well as [d-Asp(3)]MCYST-LR, [d-Asp(3)]MCYST-HtyR, MCYST-HtyR, [d-Asp(3),Dha(7)]MCYST-HtyR, and [Dha(7)]MCYST-HtyR variants. Toxic strains were isolated from the coastal Gulf of Finland as well as from the easternmost open-sea sampling station, where there were lower salinities than at other stations. This result suggests that lower salinity may favor microcystin-producing Anabaena strains. Furthermore, we sequenced 16S rRNA genes and found evidence for pronounced genetic heterogeneity of the microcystin-producing Anabaena strains. Future studies should take into account the potential presence of microcystin-producing Anabaena sp. in the Gulf of Finland.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
40 |
12
|
Islam MS, Rahim Z, Alam MJ, Begum S, Moniruzzaman SM, Umeda A, Amako K, Albert MJ, Sack RB, Huq A, Colwell RR. Association of Vibrio cholerae O1 with the cyanobacterium, Anabaena sp., elucidated by polymerase chain reaction and transmission electron microscopy. Trans R Soc Trop Med Hyg 1999; 93:36-40. [PMID: 10492786 DOI: 10.1016/s0035-9203(99)90171-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been hypothesized that Vibrio cholerae is an autochthonous flora of the estuarine and brackish water environment. Zooplankton and phytoplankton have been considered as possible reservoirs. The present study was carried out in microcosms to confirm the role of a cyanobacterium, Anabaena sp., as a reservoir of V. cholerae O1 using culture, polymerase chain reaction (PCR) and immunoelectron microscopy. Survival of culturable V. cholerae in microcosms was monitored by using tellurite taurocholate gelatin agar. Culturable V. cholerae were detected for up to 1 h in association with Anabaena sp. from a microcosm. However, viable but nonculturable (VBNC) V. cholerae O1 were detected for up to 25 months using PCR and immunoelectron microscopy. Results also showed that VBNC V. cholerae can multiply and maintain their progeny in the mucilaginous sheath of Anabaena sp. This is the first time that PCR and immunoelectron microscopy have been used to detect nonculturable V. cholerae in association with Anabaena sp. This study further clarifies the role of Anabaena sp. as a possible reservoir of cholera.
Collapse
|
|
26 |
39 |
13
|
Fastner J, Rücker J, Stüken A, Preussel K, Nixdorf B, Chorus I, Köhler A, Wiedner C. Occurrence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. ENVIRONMENTAL TOXICOLOGY 2007; 22:26-32. [PMID: 17295278 DOI: 10.1002/tox.20230] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The frequent occurrence of the cyanobacterial toxin cylindrospermopsin (CYN) in the (sub)tropics has been largely associated with cyanobacteria of the order Nostocales of tropical origin, in particular Cylindrospermopsis raciborskii. C. raciborskii is currently observed to spread northwards into temperate climatic zones. In addition, further cyanobacteria of the order Nostocales typically inhabiting water bodies in temperate regions are being identified as CYN-producers. Therefore, data on the distribution of CYN in temperate regions are necessary for a first assessment of potential risks due to CYN in water used for drinking and recreation. A total of 127 lakes situated in the north-eastern part of Germany were investigated in 2004 for the presence of the toxin CYN and the phytoplankton composition. The toxin could be detected in half of the lakes (n = 63) and in half of 165 samples (n = 88). Concentrations reached up to 73.2 microg CYN/g DW. CYN thus proved more widely distributed than previously demonstrated. The analyses of phytoplankton data suggest Aphanizomenon sp. and Anabaena sp. as important CYN producers in Germany, and confirm recent findings of Aphanizomenon flos-aquae as CYN-producing species frequently inhabiting water bodies in temperate climatic regions. The data shown here suggest that CYN may be an important cyanobacterial toxin in German water bodies and that further data are needed to assess this.
Collapse
|
|
18 |
38 |
14
|
Gugger M, Lyra C, Henriksen P, Couté A, Humbert JF, Sivonen K. Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. Int J Syst Evol Microbiol 2002; 52:1867-80. [PMID: 12361299 DOI: 10.1099/00207713-52-5-1867] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Morphological analysis and sequencing of the 165 rRNA gene, the spacer region of the ribosomal operon (ITS1) and the rbcLX (RubisCO) region was performed on 26 Anabaena strains and 14 Aphanizomenon strains isolated from several lakes in Denmark, Finland and France. Based on their morphology, Anabaena strains differed from strains of Aphanizomenon: the vegetative cells, heterocysts and akinetes were significantly wider in Anabaena than in Aphanizomenon. Phylogenetic trees based on the 16S rDNA, ITS1 and rbcLX regions showed that the planktic Anabaena strains were not distinguishable from Aphanizomenon strains. The results of the clustering of Anabaena and Aphanizomenon strains based on 16S rDNA sequences showed that these two genera are not monophyletic. Sequence analysis of the 16S rDNA, ITS1-S and rbcLX regions of the planktic Anabaena strains showed that this genus is heterogeneous. In all methods, Anabaena strains that produced different toxic compounds (e.g. anatoxin-a, microcystin and an unknown neurotoxin) were clustered separately from each other but were grouped either with non-toxic Anabaena and/or Aphanizomenon strains. Our data suggest that the planktic Anabaena and Aphanizomenon isolates belong to the same genus, regardless of their morphological differences. Thus, a taxonomic revision of the two genera is required.
Collapse
|
Comparative Study |
23 |
33 |
15
|
Brient L, Lengronne M, Bormans M, Fastner J. First occurrence of cylindrospermopsin in freshwater in France. ENVIRONMENTAL TOXICOLOGY 2009; 24:415-20. [PMID: 18825725 DOI: 10.1002/tox.20439] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Eleven waterbodies in Western France dominated by cyanobacteria of the genera Aphanizomenon and Anabaena were analyzed in September 2006 for microcystins (MC) and cylindrospermopsin (CYN). CYN was detected for the first time in France in four of them in the presence of Aphanizomenon flos-aquae and in the presence of Anabaena planctonica in the other. The intracellular concentrations of CYN measured by LC-MS/MS ranged between 1.55 and 1.95 microg/L. The occurrence of CYN represents an additional health hazard to MC especially because Aphanizomenon flos-aquae is the third most common species in freshwaters in France.
Collapse
|
|
16 |
30 |
16
|
Baker AC, Goddard VJ, Davy J, Schroeder DC, Adams DG, Wilson WH. Identification of a diagnostic marker to detect freshwater cyanophages of filamentous cyanobacteria. Appl Environ Microbiol 2006; 72:5713-9. [PMID: 16957185 PMCID: PMC1563665 DOI: 10.1128/aem.00270-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanophages are viruses that infect the cyanobacteria, globally important photosynthetic microorganisms. Cyanophages are considered significant components of microbial communities, playing major roles in influencing host community diversity and primary productivity, terminating cyanobacterial water blooms, and influencing biogeochemical cycles. Cyanophages are ubiquitous in both marine and freshwater systems; however, the majority of molecular research has been biased toward the study of marine cyanophages. In this study, a diagnostic probe was developed to detect freshwater cyanophages in natural waters. Oligonucleotide PCR-based primers were designed to specifically amplify the major capsid protein gene from previously characterized freshwater cyanomyoviruses that are infectious to the filamentous, nitrogen-fixing cyanobacterial genera Anabaena and Nostoc. The primers were also successful in yielding PCR products from mixed virus communities concentrated from water samples collected from freshwater lakes in the United Kingdom. The probes are thought to provide a useful tool for the investigation of cyanophage diversity in freshwater environments.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
26 |
17
|
Lee TA, Rollwagen-Bollens G, Bollens SM, Faber-Hammond JJ. Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:318-325. [PMID: 25060409 DOI: 10.1016/j.ecoenv.2014.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
The increasing frequency of harmful cyanobacterial blooms in freshwater systems is a commonly recognized problem due to detrimental effects on water quality. Vancouver Lake, a shallow, tidally influenced lake in the flood plain of the Columbia River within the city of Vancouver, WA, USA, has experienced numerous summertime cyanobacterial blooms, dominated by Aphanizomenon sp. and Anabaena sp. Cyanobacteria abundance and toxin (microcystin) levels have been monitored in this popular urban lake for several years; however, no previous studies have identified which cyanobacteria species produce toxins, nor analyzed how changes in environmental variables contribute to the fluctuations in toxic cyanobacteria populations. We used a suite of molecular techniques to analyze water samples from Vancouver Lake over two summer bloom cycles (2009 and 2010). Both intracellular and extracellular microcystin concentrations were measured using an ELISA kit. Intracellular microcystin concentrations exceeded WHO guidelines for recreational waters several times throughout the sampling period. PCR results demonstrated that Microcystis sp. was the sole microcystin-producing cyanobacteria species present in Vancouver Lake, although Microcystis sp. was rarely detected in microscopical counts. qPCR results indicated that the majority of the Microcystis sp. population contained the toxin-producing gene (mcyE), although Microcystis sp. abundance rarely exceeded 1 percent of overall cyanobacteria abundance. Non-metric multidimensional scaling (NMDS) revealed that PO4-P was the main environmental variable influencing the abundance of toxic and non-toxic cyanobacteria, as well as intracellular microcystin concentrations. Our study underscores the importance of using molecular genetic techniques, in addition to traditional microscopy, to assess the importance of less conspicuous species in the dynamics of harmful algal blooms.
Collapse
|
|
10 |
20 |
18
|
Floriano B, Herrero A, Flores E. Isolation of arginine auxotrophs, cloning by mutant complementation, and sequence analysis of the argC gene from the cyanobacterium Anabaena species PCC 7120. Mol Microbiol 1992; 6:2085-94. [PMID: 1406250 DOI: 10.1111/j.1365-2958.1992.tb01381.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Arginine auxotrophs of the dinitrogen-fixing cyanobacterium Anabaena species strain PCC 7120 were isolated after ultraviolet light mutagenesis and penicillin enrichment. Two of these auxotrophs were complemented by a cosmid gene library of the wild-type strain established in Escherichia coli that was transferred en masse to the mutants by conjugation. The gene complementing one of those mutants was found to complement an E. coli argC mutant. Sequencing analysis of the gene showed that it encodes a 322-residue polypeptide that is homologous to the ArgC protein of E. coli, Bacillus subtilis and Streptomyces clavuligerus and to the C-terminal moiety of the Saccharomyces cerevisiae ARG5,6 gene product, N-acetylglutamate semialdehyde dehydrogenase. A cysteine residue present in a highly conserved domain in the five proteins is probably located in the active site of the enzyme. Conserved among the ArgC proteins, sequences resembling the primary structure of nucleotide-binding domains are also found. Downstream of the Anabaena argC gene seven nearly perfect repeats of a heptanucleotide (consensus sequence:5'-CTAATGA-3') are found.
Collapse
|
|
33 |
18 |
19
|
Jančula D, Straková L, Sadílek J, Maršálek B, Babica P. Survey of cyanobacterial toxins in Czech water reservoirs--the first observation of neurotoxic saxitoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8006-8015. [PMID: 24659433 DOI: 10.1007/s11356-014-2699-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
The environmental occurrence and concentrations of cyanobacterial toxins (cyanotoxins) were investigated in the Czech Republic. Concentrations of microcystins (MCs), cylindrospermopsin (CYN) or saxitoxins (STXs) were determined immunochemically by ELISA assays in 30 water samples collected from the surface layers of 19 reservoirs during the summer season of 2010. MCs were detected in 18 reservoirs and 83 % of samples, with median and maximal concentration being 1.5 and 18.6 μg/L, respectively. The high frequency of MC occurrence coincided with prevalence of cyanobacterium Microcystis sp., which was detected in 87 % samples, followed by Dolichospermum (Anabaena) sp. observed in 33 % samples. CYN was detected by ELISA only in one sample at a concentration of 1.2 μg/L. STXs presence was indicated for the first time in Czech water reservoirs when the toxins were found at low concentrations (0.03-0.04 μg/L) in two samples (7 %) collected from two different reservoirs, where STXs co-occurred with MCs and eventually also with CYN. In both STX-positive samples, the phytoplankton community was dominated by Microcystis sp., but Dolichospermum sp. and/or Aphanizomenon sp. were also present as putative producers of STX and/or CYN. Cyanotoxins commonly occurred in Czech water reservoirs, and MCs frequently at concentrations possibly associated with human health risks. MCs were the most prevalent and abundant cyanotoxins, but also other cyanotoxins were detected, though sporadically. Further research and regulatory monitoring of cyanotoxins other than MCs is therefore required.
Collapse
|
|
11 |
17 |
20
|
Hur M, Lee I, Tak BM, Lee HJ, Yu JJ, Cheon SU, Kim BS. Temporal shifts in cyanobacterial communities at different sites on the Nakdong River in Korea. WATER RESEARCH 2013; 47:6973-6982. [PMID: 24169512 DOI: 10.1016/j.watres.2013.09.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/08/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
The studies of cyanobacterial blooms resulting from eutrophication or climate change and investigation of changes in the cyanobacterial community in freshwater environments are critical for the management of drinking water. Therefore, we investigated the cyanobacterial communities at 6 sites along the Nakdong River in South Korea from May 2012 to October 2012 by using high-throughput sequencing techniques and studied their relationship with various geochemical factors at sampling sites. Diverse genera (total of 175 genera) were detected within the cyanobacteria, and changes in their compositions were analyzed. The genus Prochlorococcus predominated in the May samples, especially in those obtained from the upstream part of the river, whereas the relative abundance of Microcystis and Anabaena increased with increase in water temperature. The relationship between the cyanobacterial community and environmental factors was analyzed by canonical correlation analysis, and the correlation between harmful cyanobacteria and chemical factors was analyzed by nonmetric multidimensional scaling ordination. Various environmental factors such as dissolved oxygen, pH, electric conductivity, temperature were found to affect the cyanobacterial communities in the river. The results of this study could help in the management of freshwater environments and in maintenance of drinking water quality.
Collapse
|
|
12 |
12 |
21
|
Peng L, Lei L, Xiao L, Han B. Cyanobacterial removal by a red soil-based flocculant and its effect on zooplankton: an experiment with deep enclosures in a tropical reservoir in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30663-30674. [PMID: 29946840 PMCID: PMC6828625 DOI: 10.1007/s11356-018-2572-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
As one kind of cheap, environmentally-friendly and efficient treatment materials for direct control of cyanobacterial blooms, modified clays have been widely concerned. The present study evaluated cyanobaterial removal by a red soil-based flocculant (RSBF) with a large enclosure experiment in a tropical mesotrophic reservoir, in which phytoplankton community was dominated by Microcystis spp. and Anabaena spp. The flocculant was composed of red soil, chitosan and FeCl3. Twelve enclosures were used in the experiment: three replicates for each of one control and three treatments RSBF15 (15 mg FeCl3 l-1), RSBF25 (25 mg FeCl3 l-1), and RSBF35 (35 mg FeCl3 l-1). The results showed that the red soil-based flocculant can significantly remove cyanobacterial biomass and reduce concentrations of nutrients including total nitrogen, nitrate, ammonia, total phosphorus, and orthophosphate. Biomass of Microcystis spp. and Anabaena spp. was reduced more efficiently (95%) than other filamentous cyanobacteria (50%). In the RSBF15 treatment, phytoplankton biomass recovered to the level of the control group after 12 days and cyanobacteria quickly dominated. Phytoplankton biomass in the RSBF25 treatment also recovered after 12 days, but green algae co-dominated with cyanobacteria. A much later recovery of phytoplankton until the day of 28 was observed under RSBF35 treatment, and cyanobacteria did no longer dominate the phytoplankton community. The application of red soil-based flocculant greatly reduces zooplankton, especially rotifers, however, Copepods and Cladocera recovered fast. Generally, the red soil-based flocculant can be effective for urgent treatments at local scales in cyanobacteria dominating systems.
Collapse
|
research-article |
6 |
8 |
22
|
Chaturvedi P, Kumar Agrawal M, Nath Bagchi S. Microcystin-producing and non-producing cyanobacterial blooms collected from the Central India harbor potentially pathogenic Vibrio cholerae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 115:67-74. [PMID: 25682583 DOI: 10.1016/j.ecoenv.2015.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
On the basis of relative abundance, frequency and biovolume, the important value index ranks were assigned to individual cyanobacteria in phytoplankton samples collected from fourteen water resources of Central India. The mcyABDE genes were detected in all the blooms with Microcystis (-aeruginosa, -viridis, -panniformis, -botrys) as being the major constituent morphospecies. On the other hand, blooms composed of primarily Oscillatoria (-limosa,-agardhii, -laetevirens) along with Anabaena, Nostoc, Phormidium and Spirulina as sub-dominant forms exhibited quite a patchy distribution of one or the other mcy genes. Fifty percent of Microcystis- but none of the Oscillatoria dominant blooms produced microcystins-RR and desmethyl-RR at 0.03-0.41mgg(-1) bloom dry mass. Traces of dissolved microcystin was detected in lake water, which is well below the WHO guideline. Irrespective of cyanobacterial composition and microcystin production ability, during the study period 43-64% of the cyanobacterial bloom samples exhibited association of viable but nonculturable forms of Vibrio cholerae O1 and O139, as evident from amplification of the antigen genes. We believe that spread of endemic cholera is the major threat associated with harmful algal blooms.
Collapse
|
|
10 |
8 |
23
|
Singh B, Chauhan VS, Singh S, Bisen PS. Isolation and partial characterization of Het- Fix- mutant strain of the diazotrophic cyanobacterium Anabaena variabilis showing chromatic adaptation. Curr Microbiol 2001; 43:265-70. [PMID: 11683361 DOI: 10.1007/s002840010299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We propose a model to describe the changes taking place in biochemical processes/events to explain the development of heterocyst and nitrogenase in a diazotrophic cyanobacterium Anabaena variabilis. For this purpose, a mutant strain of A. variabilis lacking heterocyst differentiation and incapable of growth with dinitrogen as the sole source of nitrogen has been isolated after nitrosoguanidine (NTG) mutagenesis and selection by penicillin enrichment. The mutant strain (Het- Fix-) thus isolated has morphological variation and was incapable of reducing acetylene under anaerobic conditions, indicating its mutational loss of the process of nitrogen fixation. The Het- Fix- mutant strain had reduced glutamine synthetase (transferase) activity compared with its wild-type counterpart, suggesting a link between nif gene expression and the expression of gln A, the structural gene of GS. The Het- Fix- mutant strain compared with its wild-type strain also had an extremely high level of phycobiliprotein and a low level of carotenoids. Furthermore, the coiling of vegetative filaments in the Het- Fix- mutant strain, which reduced the surface area to be exposed to light, was a direct indication of the chromatic adaptation, because the mutant strain was found to be photosensitive, showing bleaching of the cells under high light intensity.
Collapse
|
|
24 |
4 |
24
|
Rantala-Ylinen A, Sipari H, Sivonen K. Molecular methods: chip assay and quantitative real-time PCR: in detecting hepatotoxic cyanobacteria. Methods Mol Biol 2011; 739:73-86. [PMID: 21567319 DOI: 10.1007/978-1-61779-102-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Cyanobacterial mass occurrences are widespread and often contain hepatotoxic, i.e. microcystin- and nodularin-producing, species. Nowadays, detection of microcystin (mcy) and nodularin synthetase (nda) genes is widely used for the recognition of toxic cyanobacterial strains in environmental water samples. Chip assay presented here combines ligation detection reaction and hybridization on a universal microarray to detect and identify the mcyE/ndaF genes of five cyanobacterial genera specifically and sensitively. Thus, one chip assay can reveal the co-occurrence of several hepatotoxin producers. The presented quantitative real-time PCR method is used for the detection of either microcystin-producing Anabaena or Microcystis. Determination of the mcyE-gene copy numbers allows the identification of the dominant producer genus in the sample.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
2 |
25
|
Rudi K, Skulberg OM, Jakobsen KS. 16S rDNA analyses of the cyanobacterial microbiota through the water-column in a boreal lake with a metalimnic Planktothrix population. Prep Biochem Biotechnol 2005; 35:301-12. [PMID: 16239195 DOI: 10.1080/10826060500218131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The Planktothrix population in Lake Steinsfjord has attracted particular attention, due to the potential development of toxic blooms. This population is special in the sense that mass developments of Planktothrix occur in the metalimnion. We investigated the distribution of Planktothrix, as well as other cyanobacteria, through the water-column during a Planktothrix mass development at 10-16 m depth. The analyses were done by chlorophyll measurements, microscopy, and by a recently developed 16S rDNA array-based method. These analyses showed that Planktothrix dominated the cyanobacterial community at 11 m, while cyanobacteria belonging to the order Nostocales were predominant at 4 m. The combination of analytical methods presented in this work provides a powerful tool to analyze cyanobacterial communities. We have developed a concept that enables both relative (16S rDNA array analyses) and absolute quantification (chlorophyll a measurements) of cyanobacteria through water-columns. Such approaches will be important in better understanding cyanobacterial microbiota and bloom dynamics.
Collapse
|
|
20 |
1 |