1
|
Abstract
Matrix metalloproteinases (MMPs) are a family of enzymes that proteolytically degrade various components of the extracellular matrix (ECM). Angiogenesis is the process of forming new blood vessels from existing ones and requires degradation of the vascular basement membrane and remodeling of the ECM in order to allow endothelial cells to migrate and invade into the surrounding tissue. MMPs participate in this remodeling of basement membranes and ECM. However, it has become clear that MMPs contribute more to angiogenesis than just degrading ECM components. Specific MMPs have been shown to enhance angiogenesis by helping to detach pericytes from vessels undergoing angiogenesis, by releasing ECM-bound angiogenic growth factors, by exposing cryptic proangiogenic integrin binding sites in the ECM, by generating promigratory ECM component fragments, and by cleaving endothelial cell-cell adhesions. MMPs can also contribute negatively to angiogenesis through the generation of endogenous angiogenesis inhibitors by proteolytic cleavage of certain collagen chains and plasminogen and by modulating cell receptor signaling by cleaving off their ligand-binding domains. A number of inhibitors of MMPs that show antiangiogenic activity are already in early stages of clinical trials, primarily to treat cancer and cancer-associated angiogenesis. However, because of the multiple effects of MMPs on angiogenesis, careful testing of these MMP inhibitors is necessary to show that these compounds do not actually enhance angiogenesis.
Collapse
|
Review |
20 |
675 |
2
|
Abstract
The ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) are a group of proteases that are found both in mammals and invertebrates. Since the prototype ADAMTS-1 was first described in 1997, there has been a rapidly expanding body of literature describing this gene family and the proteins they encode. The complete human family has 19 ADAMTS genes, together with three members of a newly identified subgroup, the ADAMTSL (ADAMTS-like) proteins, which have several domains in common with the ADAMTSs. The ADAMTSs are extracellular, multidomain enzymes whose known functions include: (i) collagen processing as procollagen N-proteinase; (ii) cleavage of the matrix proteoglycans aggrecan, versican and brevican; (iii) inhibition of angiogenesis; and (iv) blood coagulation homoeostasis as the von Willebrand factor cleaving protease. Roles in organogenesis, inflammation and fertility are also apparent. Recently, some ADAMTS genes have been found to show altered expression in arthritis and various cancers. This review highlights progress in understanding the structural organization and functional roles of the ADAMTSs in normal and pathological conditions.
Collapse
|
Review |
20 |
546 |
3
|
Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5269-77. [PMID: 11046061 DOI: 10.4049/jimmunol.165.9.5269] [Citation(s) in RCA: 448] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that members of the ELR(+) CXC chemokine family, including IL-8; growth-related oncogenes alpha, beta, and gamma; granulocyte chemotactic protein 2; and epithelial neutrophil-activating protein-78, can mediate angiogenesis in the absence of preceding inflammation. To date, the receptor on endothelial cells responsible for chemotaxis and neovascularization mediated by these ELR(+) CXC chemokines has not been determined. Because all ELR(+) CXC chemokines bind to CXC chemokine receptor 2 (CXCR2), we hypothesized that CXCR2 is the putative receptor for ELR(+) CXC chemokine-mediated angiogenesis. To test this postulate, we first determined whether cultured human microvascular endothelial cells expressed CXCR2. CXCR2 was detected in human microvascular endothelial cells at the protein level by both Western blot analysis and immunohistochemistry using polyclonal Abs specific for human CXCR2. To determine whether CXCR2 played a functional role in angiogenesis, we determined whether this receptor was involved in endothelial cell chemotaxis. We found that microvascular endothelial cell chemotaxis in response to ELR(+) CXC chemokines was inhibited by anti-CXCR2 Abs. In addition, endothelial cell chemotaxis in response to ELR(+) CXC chemokines was sensitive to pertussis toxin, suggesting a role for G protein-linked receptor mechanisms in this biological response. The importance of CXCR2 in mediating ELR(+) CXC chemokine-induced angiogenesis in vivo was also demonstrated by the lack of angiogenic activity induced by ELR(+) CXC chemokines in the presence of neutralizing Abs to CXCR2 in the rat corneal micropocket assay, or in the corneas of CXCR2(-/-) mice. We thus conclude that CXCR2 is the receptor responsible for ELR(+) CXC chemokine-mediated angiogenesis.
Collapse
MESH Headings
- Administration, Topical
- Amino Acid Motifs
- Amino Acid Sequence
- Angiogenesis Inhibitors/physiology
- Animals
- Antibodies, Blocking/physiology
- Cell Migration Inhibition
- Cells, Cultured
- Chemokines, CXC/administration & dosage
- Chemokines, CXC/chemistry
- Chemokines, CXC/physiology
- Cornea/blood supply
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Humans
- Immune Sera/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microcirculation/cytology
- Microcirculation/immunology
- Microcirculation/metabolism
- Molecular Sequence Data
- Neovascularization, Physiologic/genetics
- Neovascularization, Physiologic/immunology
- Pertussis Toxin
- Rats
- Receptors, Interleukin-8B/biosynthesis
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/immunology
- Receptors, Interleukin-8B/metabolism
- Virulence Factors, Bordetella/pharmacology
Collapse
|
|
25 |
448 |
4
|
Qin Z, Blankenstein T. CD4+ T cell--mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 2000; 12:677-86. [PMID: 10894167 DOI: 10.1016/s1074-7613(00)80218-6] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunity against MHC class II tumors can be mediated by CD4+ T cells in the effector phase through an unknown mechanism. We show that this is IFN gamma dependent but does not require IFN gamma receptor (IFN gamma R) expression on tumor cells, T cells, or other hematopoietic cells and that IFN gamma R expression is not necessary in the priming phase. However, tumor immunity requires IFN gamma R expression on nonhematopoietic cells in the effector phase and involves inhibition of tumor-induced angiogenesis. This shows that an effective anti-tumor response involves communication between CD4+ T cells and nonhematopoietic cells, most likely within the tumor stroma, and that tumor immunity must not entirely rely on direct tumor cell killing.
Collapse
MESH Headings
- Angiogenesis Inhibitors/physiology
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Cell-Free System/physiology
- Female
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Graft Rejection/physiopathology
- Growth Inhibitors/physiology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Lymphocyte Activation/immunology
- Lymphocyte Depletion
- Mice
- Mice, Knockout
- Mice, Nude
- Neoplasm Transplantation
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Receptors, Interferon/biosynthesis
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/physiology
- T-Lymphocyte Subsets/immunology
- Tumor Cells, Cultured
- Interferon gamma Receptor
Collapse
|
|
25 |
402 |
5
|
Abstract
Angiogenesis, the formation of new blood vessels, is required for many pathologic processes, including invasive tumor growth as well as physiologic organ/tissue maintenance. Angiogenesis during development and adulthood is likely regulated by a balance between endogenous proangiogenic and antiangiogenic factors. It is speculated that tumor growth requires disruption of such balance; thus, the angiogenic switch must be turned "on" for cancer progression. If the angiogenic switch needs to be turned on to facilitate the tumor growth, the question remains as to what the physiologic status of this switch is in the adult human body; is it "off," with inhibitors outweighing the stimulators, or maintained at a fine "balance," keeping the proangiogenic properties of many factors at a delicate "activity" balance with endogenous inhibitors of angiogenesis. The physiologic status of this balance is important to understand as it might determine an individual's predisposition to turn the switch on during pathologic events dependent on angiogenesis. Conceivably, if the physiologic angiogenesis balance in human population exists somewhere between off and even balance, an individual's capacity and rate to turn the switch on might reflect their normal physiologic angiogenic status. In this regard, although extensive knowledge has been gained in our understanding of endogenous growth factors that stimulate angiogenesis, the activities associated with endogenous inhibitors are poorly understood. In this review, we will present an overview of the knowledge gained in studies related to the identification and characterization of 27 different endogenous inhibitors of angiogenesis.
Collapse
|
Review |
20 |
373 |
6
|
|
Journal Article |
21 |
362 |
7
|
Abstract
Considerable progress has been made towards understanding the function of thrombospondin-1 and-2. The description of the phenotype of mice with thrombospondin-1 and-2 knocked-out supports in vitro biochemical and cell-biological data and has opened new avenues of research. Recently, our understanding of the roles of thrombospondins in the activation of TGFbeta, inhibition of angiogenesis and the initiation of signal transduction has advanced.
Collapse
|
Review |
25 |
325 |
8
|
Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA. Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 2006; 42:768-78. [PMID: 16510280 DOI: 10.1016/j.ejca.2006.01.006] [Citation(s) in RCA: 316] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/11/2006] [Indexed: 12/12/2022]
Abstract
Chemokines have pleiotropic effects in regulating immunity, angiogenesis, stem cell trafficking, and mediating organ-specific metastases of cancer. In the context of angiogenesis, the CXC chemokine family is a unique group of cytokines known for their ability to behave in a disparate manner in the regulation of angiogenesis. The glutamic acid-leucine-arginine (ELR+) CXC chemokines are potent promoters of angiogenesis, and mediate their angiogenic activity via signal-coupling of CXCR2 on endothelium. By contrast, members of the CXC chemokine family, such as platelet factor-4 (PF4; CXCL4) and interferon-inducible CXC chemokines are potent inhibitors of angiogenesis, and use CXCR3 on endothelium to mediate their angiostatic activity. This review will discuss the biology of CXC chemokines in the context of angiogenesis related to cancer.
Collapse
|
Review |
19 |
316 |
9
|
Abstract
Preeclampsia, a hypertensive disorder peculiar to pregnancy, is a systemic syndrome that appears to originate in the placenta and is characterized by widespread maternal endothelial dysfunction. Until recently, the molecular pathogenesis of phenotypic preeclampsia was largely unknown, but recent observations support the hypothesis that altered expression of placental anti-angiogenic factors are responsible for the clinical manifestations of the disease. Soluble Flt1 and soluble endoglin, secreted by the placenta, are increased in the maternal circulation weeks before the onset of preeclampsia. These anti-angiogenic factors produce systemic endothelial dysfunction, resulting in hypertension, proteinuria, and the other systemic manifestations of preeclampsia. The molecular basis for placental dysregulation of these pathogenic factors remains unknown, and as of 2011 the role of angiogenic proteins in early placental vascular development was starting to be explored. The data linking angiogenic factors to preeclampsia have exciting clinical implications, and likely will transform the detection and treatment of preeclampsia.
Collapse
|
Review |
14 |
313 |
10
|
Simó R, Carrasco E, García-Ramírez M, Hernández C. Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2006; 2:71-98. [PMID: 18220619 DOI: 10.2174/157339906775473671] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy continues to be the leading cause of legal blindness among working-age individuals. The earliest histological features of diabetic retinopathy include neuroretinal damage, capillary basement membrane thickening, loss of pericytes and loss of endothelial cells. At advanced stages, neovascularization, the hallmark of proliferative diabetic retinopathy (PDR) occurs, and blindness can result from relentless abnormal fibrovascular proliferation with subsequent bleeding and retinal detachment. Macular oedema is another retinal complication of diabetes that is responsible for a major part of vision loss, particularly in type 2 diabetes. The breakdown of the blood retinal barrier and the consequent vascular leakage and thickening of retina are the main events involved in its pathogenesis. Although a tight control of both blood glucose levels and hypertension are essential to prevent or arrest progression of the disease, the recommended goals are difficult to achieve in many patients. Laser photocoagulation treatment soon after the onset of PDR significantly reduces the incidence of severe vision loss. However, the optimal timing for laser treatment is frequently passed and, in addition, it is not uniformly successful in halting visual decline. For all these reasons, new pharmacological treatments based on the understanding of the pathophysiological mechanisms of diabetic retinopathy have been developed in recent years. There is mounting evidence to suggest that angiogenic factors play a crucial role in PDR development, vascular endothelial growth factor (VEGF) being the most relevant. Other growth factors or cytokines such as insulin-like growth factor I (IGF-1), hepatocyte growth factor (HGF), basic fibroblast growth factor (b-FGF), platelet derived growth factor (PDGF), pro-inflammatory cytokines and angiopoetins, are also involved in the pathogenesis of PDR. However, the intraocular synthesis of angiogenic factors is counterbalanced by the synthesis of antiangiogenic factors. Therefore, the balance between the angiogenic and antiangiogenic factors rather than angiogenic factors themselves will be crucial in determining the progression of PDR. The main antiangiogenic factor is the pigment epithelium derived factor (PEDF) but the transforming growth factor beta (TGF-beta), thrombospondin (TSP) and somatostatin are also among the intraocullary synthesized antiangiogenic factors.
Collapse
|
Review |
19 |
280 |
11
|
Saunders WB, Bohnsack BL, Faske JB, Anthis NJ, Bayless KJ, Hirschi KK, Davis GE. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. ACTA ACUST UNITED AC 2006; 175:179-91. [PMID: 17030988 PMCID: PMC2064509 DOI: 10.1083/jcb.200603176] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endothelial cell (EC)–derived tissue inhibitor of metalloproteinase-2 (TIMP-2) and pericyte-derived TIMP-3 are shown to coregulate human capillary tube stabilization following EC–pericyte interactions through a combined ability to block EC tube morphogenesis and regression in three-dimensional collagen matrices. EC–pericyte interactions strongly induce TIMP-3 expression by pericytes, whereas ECs produce TIMP-2 in EC–pericyte cocultures. Using small interfering RNA technology, the suppression of EC TIMP-2 and pericyte TIMP-3 expression leads to capillary tube regression in these cocultures in a matrix metalloproteinase-1 (MMP-1)–, MMP-10–, and ADAM-15 (a disintegrin and metalloproteinase-15)–dependent manner. Furthermore, we show that EC tube morphogenesis (lumen formation and invasion) is primarily controlled by the TIMP-2 and -3 target membrane type (MT) 1 MMP. Additional targets of these inhibitors include MT2-MMP and ADAM-15, which also regulate EC invasion. Mutagenesis experiments reveal that TIMP-3 requires its proteinase inhibitory function to induce tube stabilization. Overall, these data reveal a novel role for both TIMP-2 and -3 in the pericyte-induced stabilization of newly formed vascular networks that are predisposed to undergo regression and reveal specific molecular targets of the inhibitors regulating these events.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
233 |
12
|
Abstract
When the FDA commissioner announced in February 2004 the approval of Avastin for the treatment of patients with colon cancer, he called angiogenesis inhibitors a fourth modality of anti-cancer therapy. Because angiogenesis inhibitors are relatively less toxic than conventional chemotherapy and have a lower risk of drug resistance, they may also represent a new class of anti-cancer agents, some of which have sufficiently reduced toxicity that they may be safely used long term. These include immunotherapy, vaccines, telomerase inhibitors, apoptosis inducers, low dose metronomic chemotherapy, novel hormonal therapies, gene therapy and others. However, at least 16 endogenous angiogenesis inhibitors have been discovered in the circulation, and/or in the extracellular matrix. These may become the safest and least toxic of anti-cancer therapies. Four are already being administered by injection in clinical trials for cancer. Recently, it has been reported that at least two endogenous angiogenesis inhibitors can be significantly increased in humans (endostatin), and in mice (thrombospondin), by oral administration of small molecules which themselves are already FDA approved for other uses. This finding suggests several new clinical applications for the future, including the possibility of guiding the use of angiogenesis inhibitors by blood or urinary biomarkers, currently being developed, that may detect the presence of cancer before it is symptomatic, or before it can be located by conventional methods.
Collapse
|
Review |
20 |
225 |
13
|
Ribatti D, Nico B, Vacca A, Roncali L, Burri PH, Djonov V. Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo. THE ANATOMICAL RECORD 2001; 264:317-24. [PMID: 11745087 DOI: 10.1002/ar.10021] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The chick embryo chorioallantoic membrane (CAM) is an extraembryonic membrane that is commonly used in vivo to study both angiogenesis and anti-angiogenesis. This review 1) summarizes the current knowledge about the structure of the CAM's capillary bed; 2) discusses the controversy about the existence of a single blood sinus or a capillary plexus underlying the chorionic epithelium; 3) describes a new model of the CAM vascular growth, namely the intussusceptive mode; 4) reports findings regarding the role played by endogenous fibroblast growth factor-2 in CAM vascularization; and 5) addresses the use and limitations of the CAM as a model for studying angiogenesis and anti-angiogenesis.
Collapse
|
Review |
24 |
193 |
14
|
Kessler O, Shraga-Heled N, Lange T, Gutmann-Raviv N, Sabo E, Baruch L, Machluf M, Neufeld G. Semaphorin-3F Is an Inhibitor of Tumor Angiogenesis. Cancer Res 2004; 64:1008-15. [PMID: 14871832 DOI: 10.1158/0008-5472.can-03-3090] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The neuropilin-1 (np1) and neuropilin-2 (np2) receptors form complexes with type-A plexins. These complexes serve as signaling receptors for specific class-3 semaphorins. Np1 and np2 function in addition as receptors for heparin-binding forms of vascular endothelial growth factor (VEGF), such as VEGF(165). Human umbilical vein endothelial cells (HUVEC) express tyrosine-kinase receptors for VEGF and basic fibroblast growth factor (bFGF), as well as np1, np2, and several type-A plexins. We have found that semaphorin-3F (s3f), a semaphorin which signals through the np2 receptor, was able to inhibit VEGF(165), as well as bFGF-induced proliferation of HUVECs. Furthermore, s3f inhibited VEGF as well as bFGF-induced phosphorylation of extracellular signal-regulated kinase-1/2. Our experiments indicate that bFGF does not bind to neuropilins, nor does s3f inhibit the binding of bFGF to FGF receptors. It is therefore possible that s3f inhibits the activity of bFGF by a mechanism that requires active s3f signal transduction rather than by inhibition of bFGF binding to FGF receptors. s3f also inhibited VEGF(165), as well as bFGF-induced in vivo angiogenesis as determined by the alginate micro-encapsulation and Matrigel plug assays. Overexpression of s3f in tumorigenic human HEK293 cells inhibited their tumor-forming ability but not their proliferation in cell culture. The tumors that did develop from s3f-expressing HEK293 cells developed at a much slower rate and had a significantly lower concentration of tumor-associated blood vessels, indicating that s3f is an inhibitor of tumor angiogenesis.
Collapse
MESH Headings
- Angiogenesis Inhibitors/biosynthesis
- Angiogenesis Inhibitors/genetics
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/physiology
- Animals
- CHO Cells
- Cells, Cultured
- Cricetinae
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Female
- Fibroblast Growth Factor 2/antagonists & inhibitors
- Fibroblast Growth Factor 2/metabolism
- Fibroblast Growth Factor 2/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/physiology
- Phosphorylation/drug effects
- Semaphorins/biosynthesis
- Semaphorins/genetics
- Semaphorins/pharmacology
- Semaphorins/physiology
- Transfection
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/pharmacology
Collapse
|
|
21 |
180 |
15
|
Ma L, Elliott SN, Cirino G, Buret A, Ignarro LJ, Wallace JL. Platelets modulate gastric ulcer healing: role of endostatin and vascular endothelial growth factor release. Proc Natl Acad Sci U S A 2001; 98:6470-5. [PMID: 11353854 PMCID: PMC33492 DOI: 10.1073/pnas.111150798] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bleeding and delayed healing of ulcers are well recognized clinical problems associated with the use of aspirin and other nonsteroidal antiinflammatory drugs, which have been attributed to their antiaggregatory effects on platelets. We hypothesized that antiplatelet drugs might interfere with gastric ulcer healing by suppressing the release of growth factors, such as vascular endothelial growth factor (VEGF), from platelets. Gastric ulcers were induced in rats by serosal application of acetic acid. Daily oral treatment with vehicle, aspirin, or ticlopidine (an ADP receptor antagonist) was started 3 days later and continued for 1 week. Ulcer induction resulted in a significant increase in serum levels of VEGF and a significant decrease in serum levels of endostatin (an antiangiogenic factor). Although both aspirin and ticlopidine markedly suppressed platelet aggregation, only ticlopidine impaired gastric ulcer healing and angiogenesis as well as reversing the ulcer-associated changes in serum levels of VEGF and endostatin. The effects of ticlopidine on ulcer healing and angiogenesis were mimicked by immunodepletion of circulating platelets, and ticlopidine did not influence ulcer healing when given to thrombocytopenic rats. Incubation of human umbilical vein endothelial cells with serum from ticlopidine-treated rats significantly reduced proliferation and increased apoptosis, effects reversed by an antibody directed against endostatin. Ticlopidine treatment resulted in increased platelet endostatin content and release. These results demonstrate a previously unrecognized contribution of platelets to the regulation of gastric ulcer healing. Such effects likely are mediated through the release from platelets of endostatin and possibly VEGF. As shown with ticlopidine, drugs that influence gastric ulcer healing may do so in part through altering the ability of platelets to release growth factors.
Collapse
|
Research Support, Non-U.S. Gov't |
24 |
175 |
16
|
Varey AHR, Rennel ES, Qiu Y, Bevan HS, Perrin RM, Raffy S, Dixon AR, Paraskeva C, Zaccheo O, Hassan AB, Harper SJ, Bates DO. VEGF 165 b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy. Br J Cancer 2008; 98:1366-79. [PMID: 18349829 PMCID: PMC2361696 DOI: 10.1038/sj.bjc.6604308] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/31/2008] [Accepted: 02/20/2008] [Indexed: 02/08/2023] Open
Abstract
Bevacizumab, an anti-vascular endothelial growth factor (VEGF-A) antibody, is used in metastatic colorectal carcinoma (CRC) treatment, but responses are unpredictable. Vascular endothelial growth factor is alternatively spliced to form proangiogenic VEGF(165) and antiangiogenic VEGF(165)b. Using isoform-specific enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, we found that over 90% of the VEGF in normal colonic tissue was VEGF(xxx)b, but there was a variable upregulation of VEGF(xxx) and downregulation of VEGF(xxx)b in paired human CRC samples. Furthermore, cultured colonic adenoma cells expressed predominantly VEGF(xxx)b, whereas colonic carcinoma cells expressed predominantly VEGF(xxx). However, adenoma cells exposed to hypoxia switched their expression from predominantly VEGF(xxx)b to predominantly VEGF(xxx). VEGF(165)b overexpression in LS174t colon cancer cells inhibited colon carcinoma growth in mouse xenograft models. Western blotting and surface plasmon resonance showed that VEGF(165)b bound to bevacizumab with similar affinity as VEGF(165). However, although bevacizumab effectively inhibited the rapid growth of colon carcinomas expressing VEGF(165), it did not affect the slower growth of tumours from colonic carcinoma cells expressing VEGF(165)b. Both bevacizumab and anti-VEGF(165)b-specific antibodies were cytotoxic to colonic epithelial cells, but less so to colonic carcinoma cells. These results show that the balance of antiangiogenic to proangiogenic isoforms switches to a variable extent in CRC, regulates tumour growth rates and affects the sensitivity of tumours to bevacizumab by competitive binding. Together with the identification of an autocrine cytoprotective role for VEGF(165)b in colonic epithelial cells, these results indicate that bevacizumab treatment of human CRC may depend upon this balance of VEGF isoforms.
Collapse
|
research-article |
17 |
167 |
17
|
Casares N, Arribillaga L, Sarobe P, Dotor J, Lopez-Diaz de Cerio A, Melero I, Prieto J, Borrás-Cuesta F, Lasarte JJ. CD4+/CD25+ Regulatory Cells Inhibit Activation of Tumor-Primed CD4+ T Cells with IFN-γ-Dependent Antiangiogenic Activity, as well as Long-Lasting Tumor Immunity Elicited by Peptide Vaccination. THE JOURNAL OF IMMUNOLOGY 2003; 171:5931-9. [PMID: 14634104 DOI: 10.4049/jimmunol.171.11.5931] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD25(+) regulatory T (T reg) cells suppress the activation/proliferation of other CD4(+) or CD8(+) T cells in vitro. Also, down-regulation of CD25(+) T reg cells enhance antitumor immune responses. In this study, we show that depletion of CD25(+) T reg cells allows the host to induce both CD4(+) and CD8(+) antitumoral responses following tumor challenge. Simultaneous depletion of CD25(+) and CD8(+) cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4(+) T cells, which emerged in the absence of CD25(+) T reg cells, were able to reject CT26 colon cancer cells, a MHC class II-negative tumor. The antitumoral effect mediated by CD4(+) T cells was dependent on IFN-gamma production, which exerted a potent antiangiogenic activity. The capacity of the host to mount this antitumor response is lost once the number of CD25(+) T reg cells is restored over time. However, CD25(+) T reg cell depletion before immunization with AH1 (a cytotoxic T cell determinant from CT26 tumor cells) permits the induction of a long-lasting antitumoral immune response, not observed if immunization is conducted in the presence of regulatory cells. A study of the effect of different levels of depletion of CD25(+) T reg cells before immunization with the peptide AH1 alone, or in combination with a Th determinant, unraveled that Th cells play an important role in overcoming the suppressive effect of CD25(+) T reg on the induction of long-lasting cellular immune responses.
Collapse
|
|
22 |
154 |
18
|
Rusnati M, Camozzi M, Moroni E, Bottazzi B, Peri G, Indraccolo S, Amadori A, Mantovani A, Presta M. Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis. Blood 2004; 104:92-9. [PMID: 15031207 DOI: 10.1182/blood-2003-10-3433] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The long pentraxin PTX3 is a soluble pattern recognition receptor produced by monocytes and endothelial cells that plays a nonredundant role in inflammation. Several pathologic conditions are characterized by local production of both PTX3 and the angiogenic fibroblast growth factor-2 (FGF2). Here, solid-phase binding assays demonstrated that PTX3 binds with high affinity to FGF2 but not to a panel of cytokines and growth factors, including FGF1, FGF4, and FGF8. Accordingly, PTX3 prevented (125)I-FGF2 binding to endothelial cell receptors, leading to specific inhibition of FGF2-induced proliferation. PTX3 hampered also the motogenic activity exerted by endogenous FGF2 on a wounded endothelial cell monolayer. Moreover, PTX3 cDNA transduction in FGF2-transformed endothelial cells inhibited their autocrine FGF2-dependent proliferation and morphogenesis in vitro and their capacity to generate vascular lesions when injected in nude mice. Finally, PTX3 suppressed neovascularization triggered by FGF2 in the chick embryo chorioallantoic membrane with no effect on physiologic angiogenesis. In contrast, the short pentraxin C-reactive protein was a poor FGF2 ligand/antagonist. These results establish the selective binding of a member of the pentraxin superfamily to a growth factor. PTX3/FGF2 interaction may modulate angiogenesis in various physiopathologic conditions driven by inflammation, innate immunity, and/or neoplastic transformation.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
150 |
19
|
Beatty G, Paterson Y. IFN-gamma-dependent inhibition of tumor angiogenesis by tumor-infiltrating CD4+ T cells requires tumor responsiveness to IFN-gamma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2276-82. [PMID: 11160282 DOI: 10.4049/jimmunol.166.4.2276] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The importance of CD4(+) T cells in the induction of an optimal antitumor immune response has largely been attributed to their ability to provide costimulatory signals for the priming of MHC class I-restricted CD8(+) CTL. However, many reports have demonstrated a requirement for CD4(+) T cells in the effector phase of tumor rejection indicating a greater responsibility for CD4(+) T cells in controlling tumor outgrowth. We demonstrate here a critical role for CD4(+) T cells in restraining initial tumor development through the inhibition of tumor angiogenesis. Using a tumor variant that is unresponsive to IFN-gamma, we show that tumor responsiveness to IFN-gamma is necessary for IFN-gamma-dependent inhibition of tumor angiogenesis by CD4(+) T cells. These studies reveal a pivotal role for CD4(+) T cells in controlling early tumor development through inhibition of tumor angiogenesis.
Collapse
MESH Headings
- Angiogenesis Inhibitors/immunology
- Angiogenesis Inhibitors/metabolism
- Angiogenesis Inhibitors/physiology
- Animals
- Antibodies, Monoclonal/administration & dosage
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Division/immunology
- Female
- Injections, Intraperitoneal
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interferon-gamma/physiology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Neoplasm Transplantation
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/prevention & control
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Tumor Cells, Cultured/transplantation
Collapse
|
|
24 |
149 |
20
|
Fleissner F, Jazbutyte V, Fiedler J, Gupta SK, Yin X, Xu Q, Galuppo P, Kneitz S, Mayr M, Ertl G, Bauersachs J, Thum T. Short communication: asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism. Circ Res 2010; 107:138-43. [PMID: 20489163 DOI: 10.1161/circresaha.110.216770] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE The endogenous nitric oxide synthase inhibitor asymmetrical dimethylarginine (ADMA) is increased in patients with coronary artery disease and may regulate function of circulating angiogenic progenitor cells (APCs) by small regulatory RNAs. OBJECTIVES To study the role of microRNAs in ADMA-mediated impairment of APCs. METHODS AND RESULTS By using microarray analyses, we established microRNA expression profiles of human APCs. We used ADMA to induce APC dysfunction and found 16 deregulated microRNAs. We focused on miR-21, which was 3-fold upregulated by ADMA treatment. Overexpression of miR-21 in human APCs impaired migratory capacity. To identify regulated miR-21 targets, we used proteome analysis, using difference in-gel electrophoresis followed by mass spectrometric analysis of regulated proteins. We found that transfection of miR-21 precursors significantly repressed superoxide dismutase 2 in APCs, which resulted in increased intracellular reactive oxygen species concentration and impaired nitric oxide bioavailability. MiR-21 further repressed sprouty-2, leading to Erk Map kinase-dependent reactive oxygen species formation and APC migratory defects. Small interference RNA-mediated superoxide dismutase 2 or sprouty-2 reduction also increased reactive oxygen species formation and impaired APC migratory capacity. ADMA-mediated reactive oxygen species formation and APC dysfunction was rescued by miR-21 blockade. APCs from patients with coronary artery disease and high ADMA plasma levels displayed >4-fold elevated miR-21 levels, low superoxide dismutase 2 expression, and impaired migratory capacity, which could be normalized by miR-21 antagonism. CONCLUSIONS We identified a novel miR-21-dependent mechanism of ADMA-mediated APC dysfunction. MiR-21 antagonism therefore emerges as an interesting strategy to improve dysfunctional APCs in patients with coronary artery disease.
Collapse
|
Comparative Study |
15 |
149 |
21
|
Abstract
Blood vessels nourish organs with vital nutrients and oxygen and, thus, new vessels form when the embryo needs to grow or wounds are to heal. However, forming new blood vessels is a complex and delicate process, which, unfortunately, is often derailed. Thus, when insufficient vessels form, the tissue becomes ischaemic and stops to function adequately. Conversely, when vessels grow excessively, malignant and inflamed tissues grow faster. It is now becoming increasingly evident that abnormal vessel growth contributes to the pathogenesis of numerous malignant, ischaemic, inflammatory, infectious and immune disorders. With an in-depth molecular understanding, we should be better armamented to combat such angiogenic disorders in the future. That such therapeutic strategies might change the face of medicine is witnessed by initial evidence of success in the clinic.
Collapse
|
Review |
21 |
135 |
22
|
Shimizu M, Shimamura M, Owaki T, Asakawa M, Fujita K, Kudo M, Iwakura Y, Takeda Y, Luster AD, Mizuguchi J, Yoshimoto T. Antiangiogenic and antitumor activities of IL-27. THE JOURNAL OF IMMUNOLOGY 2006; 176:7317-24. [PMID: 16751375 DOI: 10.4049/jimmunol.176.12.7317] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IL-27 is a novel IL-6/IL-12 family cytokine playing an important role in the early regulation of Th1 responses. We have recently demonstrated that IL-27 has potent antitumor activity, which is mainly mediated through CD8(+) T cells, against highly immunogenic murine colon carcinoma. In this study, we further evaluated the antitumor and antiangiogenic activities of IL-27, using poorly immunogenic murine melanoma B16F10 tumors, which were engineered to overexpress single-chain IL-27 (B16F10 + IL-27). B16F10 + IL-27 cells exerted antitumor activity against not only s.c. tumor but also experimental pulmonary metastasis. Similar antitumor and antimetastatic activities of IL-27 were also observed in IFN-gamma knockout mice. In NOD-SCID mice, these activities were decreased, but were still fairly well-retained, suggesting that different mechanisms other than the immune response are also involved in the exertion of these activities. Immunohistochemical analyses with Abs against vascular endothelial growth factor and CD31 revealed that B16F10 + IL-27 cells markedly suppressed tumor-induced neovascularization in lung metastases. Moreover, B16F10 + IL-27 cells clearly inhibited angiogenesis by dorsal air sac method, and IL-27 exhibited dose-dependent inhibition of angiogenesis on chick embryo chorioallantoic membrane. IL-27 was revealed to directly act on HUVECs and induce production of the antiangiogenic chemokines, IFN-gamma-inducible protein (IP-10) and monokine induced by IFN-gamma. Finally, augmented mRNA expression of IP-10 and monokine induced by IFN-gamma was detected at the s.c. B16F10 + IL-27 tumor site, and antitumor activity of IL-27 was partially inhibited by the administration of anti-IP-10. These results suggest that IL-27 possesses potent antiangiogenic activity, which plays an important role in its antitumor and antimetastatic activities.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
134 |
23
|
Abstract
Kallistatin is a unique serine proteinase inhibitor (serpin) and a heparin-binding protein. It has been localized in vascular smooth muscle cells and endothelial cells of human blood vessels, suggesting that kallistatin may be involved in the regulation of vascular function. Our previous study showed that kallistatin plays a role in neointima hyperplasia. In this study, we investigated the potential role of kallistatin in angiogenesis in vitro and in vivo. Purified human kallistatin significantly inhibited vascular endothelial growth factor (VEGF)- or basic fibroblast growth factor (bFGF)-induced proliferation, migration, and adhesion of cultured endothelial cells. Kallistatin attenuated VEGF- or bFGF-induced capillary density and hemoglobin content in subcutaneously implanted Matrigel plugs in mice. To further investigate the role of kallistatin in angiogenesis, we prepared adenovirus carrying the human kallistatin cDNA (Ad.HKBP) and evaluated the effect of kallistatin gene delivery on spontaneous angiogenesis in a rat model of hind-limb ischemia. Local kallistatin gene delivery significantly reduced capillary formation and regional blood perfusion recovery in the ischemic hind limb after removal of the femoral artery. Furthermore, a single intratumoral injection of Ad.HKBP into pre-established human breast tumor xenografts grown in athymic mice resulted in significant inhibition of tumor growth. CD31 immunostaining of tumor sections showed a decreased number of blood vessels in the kallistatin-treated group as compared to the control. These results demonstrate a novel role of kallistatin in the inhibition of angiogenesis and tumor growth.
Collapse
|
|
23 |
130 |
24
|
Sund M, Hamano Y, Sugimoto H, Sudhakar A, Soubasakos M, Yerramalla U, Benjamin LE, Lawler J, Kieran M, Shah A, Kalluri R. Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc Natl Acad Sci U S A 2005; 102:2934-9. [PMID: 15710885 PMCID: PMC549486 DOI: 10.1073/pnas.0500180102] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Disruption of the systemic angiogenesis balance to favor enhanced angiogenesis is speculated to represent a key step in the growth of tumors. Although a major emphasis has been placed on the increase of angiogenesis stimulators, such as VEGF, on the disruption of the angiogenic balance, the potential role of the physiological levels of endogenous inhibitors of angiogenesis on tumor growth is poorly understood. Here, we use three independent lines of mice deficient in tumstatin, endostatin, or thrombospondin-1 (TSP-1), to address the role that these endogenous angiogenesis inhibitors play in tumor growth. Our experiments demonstrate that normal physiological levels of these inhibitors serve to retard the growth of tumors, and that their absence leads to enhanced angiogenesis and a 2- to 3-fold increase in tumor growth. The tumor-suppressive action of TSP-1, endostatin, and tumstatin correlates with expression of CD36 receptor, alpha5beta1 integrin, and alphavbeta3 integrin on proliferating endothelial cells, respectively. Moreover, tumors grow 2-fold faster in the tumstatin/TSP-1 double-knockout mice, compared with either the tumstatin- or the TSP-1-deficient mice, strongly suggesting that ceiling rate of cancer growth is not completely dependent on the genetic defects of cancer cells but also depends on the host-derived tumor microenvironment. Additionally, tumor growth in transgenic mice overproducing endostatin specifically in the endothelial cells (a 1.6-fold increase in the circulating levels; mimicking Down's syndrome condition) is 3-fold slower than the tumor growth in wild-type mice. Collectively, our data suggest that physiological levels of endogenous inhibitors of angiogenesis can serve as endothelium-specific tumor suppressors.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
128 |
25
|
Di Carlo E, Comes A, Orengo AM, Rosso O, Meazza R, Musiani P, Colombo MP, Ferrini S. IL-21 induces tumor rejection by specific CTL and IFN-gamma-dependent CXC chemokines in syngeneic mice. THE JOURNAL OF IMMUNOLOGY 2004; 172:1540-7. [PMID: 14734732 DOI: 10.4049/jimmunol.172.3.1540] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-21 is an immune-stimulatory four alpha helix cytokine produced by activated T cells. To study the in vivo antitumor activities of IL-21, TS/A murine mammary adenocarcinoma cells were genetically modified to secrete IL-21 (TS/A-IL-21). These cells developed small tumors that were subsequently rejected by 90% of s.c. injected syngeneic mice. Five days after injection, TS/A-IL-21 tumors showed numerous infiltrating granulocytes, NK cells, and to a lesser extent CD8(+) T cells, along with the expression of TNF-alpha, IFN-gamma, and endothelial adhesion molecules ICAM-1 and VCAM-1. At day 7, CD8(+) and CD4(+) T cells increased together with IFN-gamma, and the CXC chemokines IFN-gamma-inducible protein 10, monokine induced by IFN-gamma, and IFN-inducible T cell alpha-chemoattractant. The TS/A-IL-21 tumor displayed a disrupted vascular network with abortive sprouting and signs of endothelial cell damage. In vivo depletion experiments by specific Abs showed that rejection of TS/A-IL-21 cells required CD8(+) T lymphocytes and granulocytes. When injected in IFN-gamma-deficient mice, TS/A-IL-21 cells formed tumors that regressed in only 29% of animals, indicating a role for IFN-gamma in IL-21-mediated antitumor response, but also the existence of IFN-gamma-independent effects. Most immunocompetent mice rejecting TS/A-IL-21 cells developed protective immunity against TS/A-pc (75%) and against the antigenically related C26 colon carcinoma cells (61%), as indicated by rechallenge experiments. A specific CTL response against the gp70-env protein of an endogenous murine retrovirus coexpressed by TS/A and C26 cells was detected in mice rejecting TS/A-IL-21 cells. These data suggest that IL-21 represents a suitable adjuvant in inducing specific CTL responses.
Collapse
MESH Headings
- Adenocarcinoma/blood supply
- Adenocarcinoma/immunology
- Adenocarcinoma/metabolism
- Adenocarcinoma/prevention & control
- Agranulocytosis/immunology
- Angiogenesis Inhibitors/physiology
- Animals
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/physiology
- Female
- Graft Rejection/genetics
- Graft Rejection/immunology
- Immunohistochemistry
- Interferon-gamma/biosynthesis
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/physiology
- Interleukins/administration & dosage
- Interleukins/genetics
- Interleukins/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Lymphopenia/immunology
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neoplasm Transplantation/immunology
- Protein Engineering/methods
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
128 |