1
|
Huang W, Shishehbor M, Guarín-Zapata N, Kirchhofer ND, Li J, Cruz L, Wang T, Bhowmick S, Stauffer D, Manimunda P, Bozhilov KN, Caldwell R, Zavattieri P, Kisailus D. A natural impact-resistant bicontinuous composite nanoparticle coating. NATURE MATERIALS 2020; 19:1236-1243. [PMID: 32807923 DOI: 10.1038/s41563-020-0768-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Nature utilizes the available resources to construct lightweight, strong and tough materials under constrained environmental conditions. The impact surface of the fast-striking dactyl club from the mantis shrimp is an example of one such composite material; the shrimp has evolved the capability to localize damage and avoid catastrophic failure from high-speed collisions during its feeding activities. Here we report that the dactyl club of mantis shrimps contains an impact-resistant coating composed of densely packed (about 88 per cent by volume) ~65-nm bicontinuous nanoparticles of hydroxyapatite integrated within an organic matrix. These mesocrystalline hydroxyapatite nanoparticles are assembled from small, highly aligned nanocrystals. Under impacts of high strain rates (around 104 s-1), particles rotate and translate, whereas the nanocrystalline networks fracture at low-angle grain boundaries, form dislocations and undergo amorphization. The interpenetrating organic network provides additional toughening, as well as substantial damping, with a loss coefficient of around 0.02. An unusual combination of stiffness and damping is therefore achieved, outperforming many engineered materials.
Collapse
|
|
5 |
72 |
2
|
Feng D, Li Q, Yu H, Kong L, Du S. Transcriptional profiling of long non-coding RNAs in mantle of Crassostrea gigas and their association with shell pigmentation. Sci Rep 2018; 8:1436. [PMID: 29362405 PMCID: PMC5780484 DOI: 10.1038/s41598-018-19950-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in diverse biological processes and have drawn extensive attention in the past few years. However, lncRNAs remain poorly understood about expression and roles in Crassostrea gigas, a potential model organism for marine molluscan studies. Here, we systematically identified lncRNAs in the mantles of C. gigas from four full-sib families characterized by white, black, golden, and partially pigmented shell. Using poly(A)-independent and strand-specific RNA-seq, a total of 441,205,852 clean reads and 12,243 lncRNA transcripts were obtained. LncRNA transcripts were relatively short with few exons and low levels of expression in comparison to protein coding mRNA transcripts. A total of 427 lncRNAs and 349 mRNAs were identified to differentially express among six pairwise groups, mainly involving in biomineralization and pigmentation through functional enrichment. Furthermore, a total of 6 mRNAs and their cis-acting lncRNAs were predicted to involve in synthesis of melanin, carotenoid, tetrapyrrole, or ommochrome. Of them, chorion peroxidase and its cis-acting lincRNA TCONS_00951105 are implicated in playing an essential role in the melanin synthetic pathway. Our studies provided the first systematic characterization of lncRNAs catalog expressed in oyster mantle, which may facilitate understanding the molecular regulation of shell colour diversity and provide new insights into future selective breeding of C. gigas for aquaculture.
Collapse
|
research-article |
7 |
46 |
3
|
He C, Lin H, Dai L, Qiu R, Tang Y, Wang Y, Duan PG, Ok YS. Waste shrimp shell-derived hydrochar as an emergent material for methyl orange removal in aqueous solutions. ENVIRONMENT INTERNATIONAL 2020; 134:105340. [PMID: 31775092 DOI: 10.1016/j.envint.2019.105340] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 05/03/2023]
Abstract
Shrimp processing and consumption generate large amounts of waste shrimp shell (WSS) rich in chitin and protein. Herein, we successfully synthesized WSS-based hydrochar (WSH) adsorbent through deproteinization and deacetylation followed by hydrothermal carbonization (HTC) and acid washing. For comparison, another hydrochar (CCH) adsorbent was synthesized from HTC of commercial chitosan under identical conditions. Specifically, WSH contained rich nitrogen-containing functional groups with a long aliphatic chains structure. Acid etching of calcium carbonate in WSS led to a higher specific surface area of WSH (12.65 m2/g) which was nearly 6 times higher than that of CCH (2.13 m2/g). The lower deacetylation degree of WSH was responsible for higher amide I and amino groups retained therein. Under an optimal initial solution pH of 4.0, WSH could rapidly achieve a superb adsorption capacity of 755.08 mg/g for methyl orange molecule. Moreover, the adsorption process followed a pseudo-second-order kinetics model and was well described by a monolayer adsorption pattern based on the Langmuir isotherm model with correlation coefficients higher than 0.9989. Prominent adsorption performance of WSH for methyl orange was mainly attributed to electrostatic interactions, while steric hindrance effect had a detrimental impact on the adsorption capacity of CCH. Superb adsorption capacity and excellent regeneration performance suggest WSH could be a promising and affordable adsorbent candidate for anionic dye removal.
Collapse
|
|
5 |
45 |
4
|
Moya A, Howes EL, Lacoue-Labarthe T, Forêt S, Hanna B, Medina M, Munday PL, Ong JS, Teyssié JL, Torda G, Watson SA, Miller DJ, Bijma J, Gattuso JP. Near-future pH conditions severely impact calcification, metabolism and the nervous system in the pteropod Heliconoides inflatus. GLOBAL CHANGE BIOLOGY 2016; 22:3888-3900. [PMID: 27279327 DOI: 10.1111/gcb.13350] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 06/06/2023]
Abstract
Shelled pteropods play key roles in the global carbon cycle and food webs of various ecosystems. Their thin external shell is sensitive to small changes in pH, and shell dissolution has already been observed in areas where aragonite saturation state is ~1. A decline in pteropod abundance has the potential to disrupt trophic networks and directly impact commercial fisheries. Therefore, it is crucial to understand how pteropods will be affected by global environmental change, particularly ocean acidification. In this study, physiological and molecular approaches were used to investigate the response of the Mediterranean pteropod, Heliconoides inflatus, to pH values projected for 2100 under a moderate emissions trajectory (RCP6.0). Pteropods were subjected to pHT 7.9 for 3 days, and gene expression levels, calcification and respiration rates were measured relative to pHT 8.1 controls. Gross calcification decreased markedly under low pH conditions, while genes potentially involved in calcification were up-regulated, reflecting the inability of pteropods to maintain calcification rates. Gene expression data imply that under low pH conditions, both metabolic processes and protein synthesis may be compromised, while genes involved in acid-base regulation were up-regulated. A large number of genes related to nervous system structure and function were also up-regulated in the low pH treatment, including a GABAA receptor subunit. This observation is particularly interesting because GABAA receptor disturbances, leading to altered behavior, have been documented in several other marine animals after exposure to elevated CO2 . The up-regulation of many genes involved in nervous system function suggests that exposure to low pH could have major effects on pteropod behavior. This study illustrates the power of combining physiological and molecular approaches. It also reveals the importance of behavioral analyses in studies aimed at understanding the impacts of low pH on marine animals.
Collapse
|
|
9 |
43 |
5
|
Chen IH, Yang W, Meyers MA. Leatherback sea turtle shell: A tough and flexible biological design. Acta Biomater 2015; 28:2-12. [PMID: 26391496 DOI: 10.1016/j.actbio.2015.09.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/19/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022]
Abstract
The leatherback sea turtle is unique among chelonians for having a soft skin which covers its osteoderms. The osteoderm is composed of bony plates that are interconnected with collagen fibers in a structure called suture. The soft dermis and suture geometry enable a significant amount of flexing of the junction between adjacent osteoderms. This design allows the body to contract better than a hard-shelled sea turtle as it dives to depths of over 1,000 m. The leatherback turtle has ridges along the carapace to enhance the hydrodynamic flow and provide a tailored stiffness. The osteoderms are of two types: flat and ridged. The structure of the two types of osteoderms is characterized and their mechanical properties are investigated with particular attention to the failure mechanisms. They both are bony structures with a porous core sandwiched between compact layers that form the outside and inside surfaces. The compressive strength is highly anisotropic by virtue of the interaction between loading orientation and arrangement of porous and compact components of osteoderms. The angle of interpenetration at the suture of osteoderms is analyzed and compared with analytical predictions. The sutures have a triangular shape with an angle of ∼30° which provides a balance between the tensile strength of the osteoderms and shear strength of the collagen fiber layer and is verified by Li-Ortiz-Boyce in a previous study. This is confirmed by an FEM analysis. A calculation is developed to quantify the flexibility of the carapace and plastron as a function of the angular displacement at the sutures, predicting the interdependence between geometrical parameters and flexibility. STATEMENT OF SIGNIFICANCE The leatherback turtle is a magnificent chelonian whose decreasing numbers have brought it to the brink of extinction in the Pacific Ocean. This first study of the structure of its shell provides important new insights that explain its amazing capacity for diving: depths of over 1,000 m have been recorded. This is enabled by the flexibility between the bony plates comprising its shell, which is covered by a skin and not by hard keratin as all other turtles. We use the arsenal of Materials Science characterization techniques to probe the structure of the shell and explain its amazing structure and capacity for flexing, while retaining its protection capability.
Collapse
|
|
10 |
43 |
6
|
Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y. A chitinase with two catalytic domains is required for organization of the cuticular extracellular matrix of a beetle. PLoS Genet 2018; 14:e1007307. [PMID: 29590098 PMCID: PMC5891080 DOI: 10.1371/journal.pgen.1007307] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/09/2018] [Accepted: 03/12/2018] [Indexed: 01/10/2023] Open
Abstract
Insect cuticle or exoskeleton is an extracellular matrix formed primarily from two different structural biopolymers, chitin and protein. During each molt cycle, a new cuticle is deposited simultaneously with degradation of the inner part of the chitinous procuticle of the overlying old exoskeleton by molting fluid enzymes including epidermal chitinases. In this study we report a novel role for an epidermal endochitinase containing two catalytic domains, TcCHT7, from the red flour beetle, Tribolium castaneum, in organizing chitin in the newly forming cuticle rather than in degrading chitin present in the prior one. Recombinant TcCHT7 expressed in insect cells is membrane-bound and capable of hydrolyzing an extracellular chitin substrate, whereas in vivo, this enzyme is also released from the plasma membrane and co-localizes with chitin in the entire procuticle. RNAi of TcCHT7 reveals that this enzyme is nonessential for any type of molt or degradation of the chitinous matrix in the old cuticle. In contrast, TcCHT7 is required for maintaining the integrity of the cuticle as a compact structure of alternating electron-dense and electron-lucent laminae. There is a reduction in thickness of elytral and leg cuticles after RNAi for TcCHT7. TcCHT7 is also required for formation of properly oriented long chitin fibers inside pore canals that are vertically oriented columnar structures, which contribute to the mechanical strength of a light-weight, yet rigid, adult cuticle. The conservation of CHT7-like proteins harboring such a unique domain configuration among many insect and other arthropod species indicates a critical role for the group III class of chitinases in the higher ordered organization of chitin fibers for development of the structural integrity of many invertebrate exoskeletons. Insect cuticle or exoskeleton is an extracellular matrix consisting of three major morphologically distinct layers, the water-proofing envelope, the protein-rich epicuticle and the chitin/protein-rich procuticle. To accommodate growth, insects must periodically replace their cuticles in a process called “molting or ecdysis”. During each molt cycle a new cuticle is deposited simultaneously with degradation of the inner part of the chitinous procuticle of the old one by molting fluid enzymes including epidermal chitinases. We show that a chitinase, CHT7, from the red flour beetle, Tribolium castaneum, belonging to a subfamily (group III) of chitinases that have two catalytic domains, is necessary for organization of chitin-containing structures in nascent cuticle, which contributes to the rigidity of the extracellular matrix. This unexpected function is distinct from that of other groups of epidermal chitinases that catalyze the turnover of chitin in old cuticle during the molting process. Because group III chitinases are highly conserved among insect and other arthropod species, we propose that these enzymes have a novel function in processing nascent chitin chains during cuticle assembly and organization into higher order structures that include horizontally stacked laminae and vertically oriented pore canals of many invertebrate cuticular extracellular matrices.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
42 |
7
|
Busch DS, Maher M, Thibodeau P, McElhany P. Shell condition and survival of Puget Sound pteropods are impaired by ocean acidification conditions. PLoS One 2014; 9:e105884. [PMID: 25162395 PMCID: PMC4146564 DOI: 10.1371/journal.pone.0105884] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 07/29/2014] [Indexed: 12/02/2022] Open
Abstract
We tested whether the thecosome pteropod Limacina helicina from Puget Sound, an urbanized estuary in the northwest continental US, experiences shell dissolution and altered mortality rates when exposed to the high CO2, low aragonite saturation state (Ωa) conditions that occur in Puget Sound and the northeast Pacific Ocean. Five, week-long experiments were conducted in which we incubated pteropods collected from Puget Sound in four carbon chemistry conditions: current summer surface (∼460–500 µatm CO2, Ωa≈1.59), current deep water or surface conditions during upwelling (∼760 and ∼1600–1700 µatm CO2, Ωa≈1.17 and 0.56), and future deep water or surface conditions during upwelling (∼2800–3400 µatm CO2, Ωa≈0.28). We measured shell condition using a scoring regime of five shell characteristics that capture different aspects of shell dissolution. We characterized carbon chemistry conditions in statistical analyses with Ωa, and conducted analyses considering Ωa both as a continuous dataset and as discrete treatments. Shell dissolution increased linearly as aragonite saturation state decreased. Discrete treatment comparisons indicate that shell dissolution was greater in undersaturated treatments compared to oversaturated treatments. Survival increased linearly with aragonite saturation state, though discrete treatment comparisons indicated that survival was similar in all but the lowest saturation state treatment. These results indicate that, under starvation conditions, pteropod survival may not be greatly affected by current and expected near-future aragonite saturation state in the NE Pacific, but shell dissolution may. Given that subsurface waters in Puget Sound’s main basin are undersaturated with respect to aragonite in the winter and can be undersaturated in the summer, the condition and persistence of the species in this estuary warrants further study.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
37 |
8
|
Telesca L, Peck LS, Sanders T, Thyrring J, Sejr MK, Harper EM. Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change. GLOBAL CHANGE BIOLOGY 2019; 25:4179-4193. [PMID: 31432587 DOI: 10.1111/gcb.14758] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Although geographical patterns of species' sensitivity to environmental changes are defined by interacting multiple stressors, little is known about compensatory processes shaping regional differences in organismal vulnerability. Here, we examine large-scale spatial variations in biomineralization under heterogeneous environmental gradients of temperature, salinity and food availability across a 30° latitudinal range (3,334 km), to test whether plasticity in calcareous shell production and composition, from juveniles to large adults, mediates geographical patterns of resilience to climate change in critical foundation species, the mussels Mytilus edulis and M. trossulus. We find shell calcification decreased towards high latitude, with mussels producing thinner shells with a higher organic content in polar than temperate regions. Salinity was the best predictor of within-region differences in mussel shell deposition, mineral and organic composition. In polar, subpolar, and Baltic low-salinity environments, mussels produced thin shells with a thicker external organic layer (periostracum), and an increased proportion of calcite (prismatic layer, as opposed to aragonite) and organic matrix, providing potentially higher resistance against dissolution in more corrosive waters. Conversely, in temperate, higher salinity regimes, thicker, more calcified shells with a higher aragonite (nacreous layer) proportion were deposited, which suggests enhanced protection under increased predation pressure. Interacting effects of salinity and food availability on mussel shell composition predict the deposition of a thicker periostracum and organic-enriched prismatic layer under forecasted future environmental conditions, suggesting a capacity for increased protection of high-latitude populations from ocean acidification. These findings support biomineralization plasticity as a potentially advantageous compensatory mechanism conferring Mytilus species a protective capacity for quantitative and qualitative trade-offs in shell deposition as a response to regional alterations of abiotic and biotic conditions in future environments. Our work illustrates that compensatory mechanisms, driving plastic responses to the spatial structure of multiple stressors, can define geographical patterns of unanticipated species resilience to global environmental change.
Collapse
|
|
6 |
36 |
9
|
Der Sarkissian C, Pichereau V, Dupont C, Ilsøe PC, Perrigault M, Butler P, Chauvaud L, Eiríksson J, Scourse J, Paillard C, Orlando L. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past. Mol Ecol Resour 2017; 17:835-853. [PMID: 28394451 DOI: 10.1111/1755-0998.12679] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 02/05/2023]
Abstract
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management.
Collapse
|
|
8 |
33 |
10
|
Chandra Rajan K, Meng Y, Yu Z, Roberts SB, Vengatesen T. Oyster biomineralization under ocean acidification: From genes to shell. GLOBAL CHANGE BIOLOGY 2021; 27:3779-3797. [PMID: 33964098 DOI: 10.1111/gcb.15675] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
Biomineralization is one of the key processes that is notably affected in marine calcifiers such as oysters under ocean acidification (OA). Understanding molecular changes in the biomineralization process under OA and its heritability, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. To do this, in this study, we have explicitly chosen the tissue involved in biomineralization (mantle) of an estuarine commercial oyster species, Crassostrea hongkongensis. The primary aim of this study is to understand the influence of DNA methylation over gene expression of mantle tissue under decreased ~pH 7.4, a proxy of OA, and to extrapolate if these molecular changes can be observed in the product of biomineralization-the shell. We grew early juvenile C. hongkongensis, under decreased ~pH 7.4 and control ~pH 8.0 over 4.5 months and studied OA-induced DNA methylation and gene expression patterns along with shell properties such as microstructure, crystal orientation and hardness. The population of oysters used in this study was found to be moderately resilient to OA at the end of the experiment. The expression of key biomineralization-related genes such as carbonic anhydrase and alkaline phosphatase remained unaffected; thus, the mechanical properties of the shell (shell growth rate, hardness and crystal orientation) were also maintained without any significant difference between control and OA conditions with signs of severe dissolution. In addition, this study makes three major conclusions: (1) higher expression of Ca2+ binding/signalling-related genes in the mantle plays a key role in maintaining biomineralization under OA; (2) DNA methylation changes occur in response to OA; however, these methylation changes do not directly control gene expression; and (3) OA would be more of a 'dissolution problem' rather than a 'biomineralization problem' for resilient species that maintain calcification rate with normal shell growth and mechanical properties.
Collapse
|
|
4 |
32 |
11
|
Awad YM, Lee SS, Kim KH, Ok YS, Kuzyakov Y. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: Effects of biochar, oyster shells, and polymers. CHEMOSPHERE 2018; 198:40-48. [PMID: 29421756 DOI: 10.1016/j.chemosphere.2018.01.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 06/08/2023]
Abstract
Biochar (BC) and polymers are cost-effective additives for soil quality improvement and long-term sustainability. The additional use of the oyster shells (OS) powder in BC- or polymer-treated soils is recommended as a nutrient source, to enhance aggregation and to increase enzyme activities. The effects of soil treatments (i.e., BC (5 Mg ha-1) and polymers (biopolymer at 0.4 Mg ha-1 or polyacrylamide at 0.4 Mg ha-1) with or without the OS (1%)) on the short-term changes were evaluated based on a 30-day incubation experiment with respect to several variables (e.g., CO2 release, NH4+ and NO3- concentrations, aggregate-size classes, and enzyme activities in an agricultural Luvisol). The BC and BP with the addition of OS increased the portion of microaggregates (<0.25 mm) relative to the control soil without any additions, while PAM alone increased the portion of large macroaggregates (1-2 mm). Concentrations of NO3- also increased in soils treated with OS, OS + BC, and OS + BP as result of the increased chitinase and leucine aminopeptidase activities. The BC and BP when treated with the additional OS had significant short-term impacts on N mineralization without affecting C mineralization in soil. Consequently, the combination of BC or BP with OS was seen to accelerate N turnover without affecting C turnover (and related C losses) from soil. As such, the addition of these additives contributed considerably to the improvement of soil fertility and C sequestration.
Collapse
|
|
7 |
31 |
12
|
Prentice K, Pertry I, Christiaens O, Bauters L, Bailey A, Niblett C, Ghislain M, Gheysen G, Smagghe G. Transcriptome analysis and systemic RNAi response in the African sweetpotato weevil (Cylas puncticollis, Coleoptera, Brentidae). PLoS One 2015; 10:e0115336. [PMID: 25590333 PMCID: PMC4295849 DOI: 10.1371/journal.pone.0115336] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/21/2014] [Indexed: 01/04/2023] Open
Abstract
The African sweetpotato weevil (SPW) Cylas puncticollis Boheman is one of the most important constraints of sweetpotato production in Sub-Saharan Africa and yet is largely an uncharacterized insect pest. Here, we report on the transcriptome analysis of SPW generated using an Illumina platform. More than 213 million sequencing reads were obtained and assembled into 89,599 contigs. This assembly was followed by a gene ontology annotation. Subsequently, a transcriptome search showed that the necessary RNAi components relevant to the three major RNAi pathways, were found to be expressed in SPW. To address the functionality of the RNAi mechanism in this species, dsRNA was injected into second instar larvae targeting laccase2, a gene which encodes an enzyme involved in the sclerotization of insect exoskeleton. The body of treated insects showed inhibition of sclerotization, leading eventually to death. Quantitative Real Time PCR (qPCR) confirmed this phenotype to be the result of gene silencing. Together, our results provide valuable sequence data on this important insect pest and demonstrate that a functional RNAi pathway with a strong and systemic effect is present in SPW and can further be explored as a new strategy for controlling this important pest.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
31 |
13
|
Shen Y, Yang S, Liu J, Xu H, Shi Z, Lin Z, Ying X, Guo P, Lin T, Yan S, Huang Q, Peng L. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12177-12188. [PMID: 25033438 DOI: 10.1021/am501448t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Engineering scaffolds combinging natural biomineral and artificially synthesized material hold promising potential for bone tissue regeneration. In this study, novel bioactive calcium sulfate/oyster shell (CS/OS) composites were prepared. Comparing to CS scaffold, the CS/OS composites with a controllable degradation rate displayed enhanced mineral nodule formation, higher alkaline phosphate (ALP) activity and increased proliferation rate while treated osteocytes. In CS/OS composites group, elevated mRNA levels of key osteogenic genes including bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), osterix (Osx), and osteocalcin (OCN) were observed. Furthermore, The up-regulation of BMP-2 and type I collagen (COL-I) was observed for CS/OS composites relative to a CS group. Scaffolds were implanted into critical-sized femur cavity defects in rabbits to investigate the osteogenic capacity of the composites in vivo. The CS/OS scaffolds with proper suitable times and mechanical strength strongly promoted osteogenic tissue regeneration relative to the regeneration capacity of CS scaffolds, as indicated by the results of histological staining. These results suggest that the OS-modified CS engineering scaffolds with improved mechanical properties and bioactivity would facilitate the development of a new strategy for clinic bone defect regeneration.
Collapse
|
|
11 |
29 |
14
|
Feng D, Li Q, Yu H. RNA Interference by Ingested dsRNA-Expressing Bacteria to Study Shell Biosynthesis and Pigmentation in Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:526-536. [PMID: 31093810 DOI: 10.1007/s10126-019-09900-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
RNA interference (RNAi) is an important molecular tool for analysis of gene function in vivo. Although the Pacific oyster Crassostrea gigas is an economically important species with fully sequenced genome, very few mechanistic studies have been carried out due to the lack of molecular techniques to alter gene expression without inducing stress. In this present study, we used unicellular alga Platymonas subcordiformis and Nitzschia closterium f. minutissima as a vector to feed oysters with Escherichia coli strain HT115 engineered to express double-stranded RNAs (dsRNAs) targeting specific genes involved in shell pigmentation. A C. gigas strain with black shell was used to target tyrosinase or peroxidase gene expression by RNAi using the above-mentioned approach. The results showed that feeding oyster with dsRNA of tyrosinase could knock down the expression of corresponding tyrosinase and hinder the developed shell growth. Feeding oyster with dsRNA of peroxidase could knock down the expression of the corresponding peroxidase and result in reduced black pigmentation in the newly developed shell. This non-invasive RNAi study demonstrated that tyrosinase played a vital role in the assembly and maturation of shell matrices and peroxidase was essential for black pigmentation in the shell. Moreover, the RNA interference by ingested dsRNA-expressing bacteria is a relatively simple and effective method for knockdown of a gene expression in adult oysters, thus further advances the use of C. gigas as model organism in functional genomic studies.
Collapse
|
|
6 |
28 |
15
|
Li L, Ortiz C. Biological design for simultaneous optical transparency and mechanical robustness in the shell of Placuna placenta. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2344-50. [PMID: 23450806 DOI: 10.1002/adma.201204589] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/01/2013] [Indexed: 05/08/2023]
|
|
12 |
27 |
16
|
Ho CC, Wang PH. Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:3362-80. [PMID: 25809517 PMCID: PMC4377971 DOI: 10.3390/ijerph120303362] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
25 |
17
|
Chase ID, Lindquist WB. The Fragility of Individual-Based Explanations of Social Hierarchies: A Test Using Animal Pecking Orders. PLoS One 2016; 11:e0158900. [PMID: 27410230 PMCID: PMC4943712 DOI: 10.1371/journal.pone.0158900] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/23/2016] [Indexed: 11/18/2022] Open
Abstract
The standard approach in accounting for hierarchical differentiation in biology and the social sciences considers a hierarchy as a static distribution of individuals possessing differing amounts of some valued commodity, assumes that the hierarchy is generated by micro-level processes involving individuals, and attempts to reverse engineer the processes that produced the hierarchy. However, sufficient experimental and analytical results are available to evaluate this standard approach in the case of animal dominance hierarchies (pecking orders). Our evaluation using evidence from hierarchy formation in small groups of both hens and cichlid fish reveals significant deficiencies in the three tenets of the standard approach in accounting for the organization of dominance hierarchies. In consequence, we suggest that a new approach is needed to explain the organization of pecking orders and, very possibly, by implication, for other kinds of social hierarchies. We develop an example of such an approach that considers dominance hierarchies to be dynamic networks, uses dynamic sequences of interaction (dynamic network motifs) to explain the organization of dominance hierarchies, and derives these dynamic sequences directly from observation of hierarchy formation. We test this dynamical explanation using computer simulation and find a good fit with actual dynamics of hierarchy formation in small groups of hens. We hypothesize that the same dynamic sequences are used in small groups of many other animal species forming pecking orders, and we discuss the data required to evaluate our hypothesis. Finally, we briefly consider how our dynamic approach may be generalized to other kinds of social hierarchies using the example of the distribution of empty gastropod (snail) shells occupied in populations of hermit crabs.
Collapse
|
Journal Article |
9 |
25 |
18
|
Sun H, Smith MR, Zeng H, Zhao F, Li G, Zhu M. Hyoliths with pedicles illuminate the origin of the brachiopod body plan. Proc Biol Sci 2018; 285:20181780. [PMID: 30257914 PMCID: PMC6170810 DOI: 10.1098/rspb.2018.1780] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 11/12/2022] Open
Abstract
Hyoliths are a taxonomically problematic group of Palaeozoic lophotrochozoans that are among the first shelly fossils to appear in the Cambrian period. On the basis of their distinctive exoskeleton, hyoliths have historically been classified as a separate phylum with possible affinities to the molluscs, sipunculans or lophophorates-but their precise phylogenetic position remains uncertain. Here, we describe a new orthothecide hyolith from the Chengjiang Lagerstätte (Cambrian Series 2 Stage 3), Pedunculotheca diania Sun, Zhao et Zhu gen. et sp. nov., which exhibits a non-mineralized attachment structure that strikingly resembles the brachiopod pedicle-the first report of a peduncular organ in hyoliths. This organ establishes a sessile, suspension feeding ecology for these orthothecides and-together with other characteristics (e.g. bilaterally symmetrical bivalve shell enclosing a filtration chamber and the differentiation of cardinal areas)-identifies hyoliths as stem-group brachiopods. Our phylogenetic analysis indicates that both hyoliths and crown brachiopods derived from a tommotiid grade, and that the pedicle has a single origin within the brachiopod total group.
Collapse
|
research-article |
7 |
23 |
19
|
Martini R, Barthelat F. Stretch-and-release fabrication, testing and optimization of a flexible ceramic armor inspired from fish scales. BIOINSPIRATION & BIOMIMETICS 2016; 11:066001. [PMID: 27736808 DOI: 10.1088/1748-3190/11/6/066001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Protective systems that are simultaneously hard to puncture and compliant in flexion are desirable, but difficult to achieve because hard materials are usually stiff. However, we can overcome this conflicting design requirement by combining plates of a hard material with a softer substrate, and a strategy which is widely found in natural armors such as fish scales or osteoderms. Man-made segmented armors have a long history, but their systematic implementation in a modern and a protective system is still hampered by a limited understanding of the mechanics and the design of optimization guidelines, and by challenges in cost-efficient manufacturing. This study addresses these limitations with a flexible bioinspired armor based on overlapping ceramic scales. The fabrication combines laser engraving and a stretch-and-release method which allows for fine tuning of the size and overlap of the scales, and which is suitable for large scale fabrication. Compared to a continuous layer of uniform ceramic, our fish-scale like armor is not only more flexible, but it is also more resistant to puncture and more damage tolerant. The proposed armor is also about ten times more puncture resistant than soft elastomers, making it a very attractive alternative to traditional protective equipment.
Collapse
|
|
9 |
22 |
20
|
Khan MD, Shakya S, Thi Vu HH, Habte L, Ahn JW. Low concentrated phosphorus sorption in aqueous medium on aragonite synthesized by carbonation of seashells: Optimization, kinetics, and mechanism study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111652. [PMID: 33229112 DOI: 10.1016/j.jenvman.2020.111652] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Phosphorus (P) concentration beyond threshold limit can trigger eutrophication in stagnant water bodies nevertheless it is an indispensable macronutrient for aquatic life. Even in low P concentration (≤1 mg L-1), P can be detrimental for ecosystem's health, but this aspect has not been thoroughly investigated. The elimination of low P content is rather expensive or complex. Therefore, a unique and sustainable approach has been proposed in which valorized bivalve seashells can be used for the removal of low P content. Initially, acicular shaped aragonite particles (~21 μm) with an aspect ratio of around 21 have been synthesized through the wet carbonation process and used to treat aqueous solutions containing P in low concentration (P ≤ 1 mg L-1). Response surface methodology based Box-Behnken design has been employed for optimization study which revealed that with aragonite dosage (140 mg), equilibrium pH (~10.15), and temperature (45 °C), a phosphorus removal efficiency of ~97% can be obtained in 10 h. The kinetics and isotherm studies have also been carried out (within the range P ≤ 1 mg L-1) to investigate a probable removal mechanism. Also, aragonite demonstrates higher selectivity (>70%) towards phosphate with coexisting anions such as nitrate, chloride, sulfate, and carbonate. Through experimental data, elemental mapping, and molecular dynamic simulation, it has been observed that the removal mechanism involved a combination of electrostatic adsorption of Ca2+ ions on aragonite surface and chemical interaction between the calcium and phosphate ions. The present work demonstrates a sustainable and propitious potential of seashell derived aragonite for the removal of low P content in aqueous solution along with its unconventional mechanistic approach.
Collapse
|
|
4 |
22 |
21
|
Tang Y, Hu C, Liu Y. Effect of bioactive peptide of Carapax Trionycis on TGF-β1-induced intracellular events in hepatic stellate cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:69-73. [PMID: 23583903 DOI: 10.1016/j.jep.2013.03.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicines for hepatic fibrosis therapy, Carapax Trionycis is used usually as an indispensable component and has a long history of medical use in China. Previous studies have demonstrated that extracts of Carapax Trionycis were able to protect liver against fibrosis in CCl4 animal models. AIM OF THE STUDY The purpose of this study is to verify the inhibitory effect and the underlying mechanisms of Carapax Trionycis extract peptide (CTEP) on activated hepatic stellate cells which play a central role in liver fibrogenesis. MATERIALS AND METHODS Hepatic stellate cells induced by TGF-β1 were applied to evaluate the anti-fibrotic effect of CTEP in vitro. MTS assay, enzyme-linked immunosorbent assay and western blotting were then used to further investigate the molecular mechanisms. RESULTS The results show that the contents of collagen I, collagen III and TIMP-1 were significantly inhibited and the level of collagen I, collagen III, p-Smad 3, TIMP-1 and α-SMA proteins decreased significantly in a concentration-dependence manner after treatment with CTEP. Interestingly, the level of Smad 3 protein was not different significantly. CONCLUSIONS Our data indicate that CTEP efficiently inhibits cultured HSC-T6 cell activation and proliferation via the TGF-β1/Smad pathway as well as by the elimination of the extracellular matrix.
Collapse
|
|
12 |
21 |
22
|
Vasquez HE, Hashimoto K, Yoshida A, Hara K, Imai CC, Kitamura H, Satuito CG. A glycoprotein in shells of conspecifics induces larval settlement of the Pacific oyster Crassostrea gigas. PLoS One 2013; 8:e82358. [PMID: 24349261 PMCID: PMC3861396 DOI: 10.1371/journal.pone.0082358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 10/22/2013] [Indexed: 01/09/2023] Open
Abstract
Settlement of larvae of Crassostrea gigas on shell chips (SC) prepared from shells of 11 different species of mollusks was investigated. Furthermore, the settlement inducing compound in the shell of C. gigas was extracted and subjected to various treatments to characterize the chemical cue. C. gigas larvae settled on SC of all species tested except on Patinopecten yessoensis and Atrina pinnata. In SC of species that induced C. gigas larvae to settle, settlement was proportionate to the amount of SC supplied to the larvae. When compared to C. gigas SC, all species except Crassostrea nippona showed lower settlement inducing activities, suggesting that the cue may be more abundant or in a more available form to the larvae in shells of conspecific and C. nippona than in other species. The settlement inducing activity of C. gigas SC remained intact after antibiotic treatment. Extraction of C. gigas SC with diethyl ether (Et2O-ex), ethanol (EtOH-ex), and water (Aq-ex) did not induce larval settlement of C. gigas larvae. However, extraction of C. gigas SC with 2N of hydrochloric acid (HCl-ex) induced larval settlement that was at the same level as the SC. The settlement inducing compound in the HCl-ex was stable at 100°C but was destroyed or degraded after pepsin, trypsin, PNGase F and trifluoromethanesulfonic acid treatments. This chemical cue eluted between the molecular mass range of 45 and 150 kDa after gel filtration and revealed a major band at 55 kDa on the SDS-PAGE gel after staining with Stains-all. Thus, a 55 kDa glycoprotein component in the organic matrix of C. gigas shells is hypothesized to be the chemical basis of larval settlement on conspecifics.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
21 |
23
|
Wang W, Lin F, Yan B, Cheng Z, Chen G, Kuang M, Yang C, Hou L. The role of seashell wastes in TiO 2/Seashell composites: Photocatalytic degradation of methylene blue dye under sunlight. ENVIRONMENTAL RESEARCH 2020; 188:109831. [PMID: 32798949 DOI: 10.1016/j.envres.2020.109831] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
This paper proposes a sustainable and facile approach for the synthesis of photocatalysts in which shell waste is used as support material. The synthesized photocatalysts exhibited a significant performance in the mineralization of organic substances under solar irradiation or artificial lighting. Calcined abalone shell with a TiO2 loading of 23.4% led to a significant improvement in optical absorption: the degradation efficiencies of methylene blue (MB) after 140 min under UV light, vis light, UV-vis light, and natural sunlight were 93%, 96%, 100%, and 100%, respectively. Notably, the byproducts obtained after the degradation by commercial P25 TiO2 disappeared with the utilization of shell waste as support material. The Na, Sr, S present in the calcined abalone shell were doped into the substitutional sites of TiO2 and were indispensable to achieve the desired band-gap narrowing and photocatalytic performance; moreover, the Ti and Zn oxides in the calcined abalone shell acted as semiconductors and improved the charge separation efficiency of TiO2. Above all, this paper describes a green synthesis based on the use of waste seashell. This material acts as an excellent photocatalyst support for environmental pollution treatments, leading to the 'control of waste by waste' and opening up new possibilities for shell waste reutilization and sustainable chemistry.
Collapse
|
|
5 |
21 |
24
|
Langley MC, O‘Connor S. An Enduring Shell Artefact Tradition from Timor-Leste: Oliva Bead Production from the Pleistocene to Late Holocene at Jerimalai, Lene Hara, and Matja Kuru 1 and 2. PLoS One 2016; 11:e0161071. [PMID: 27537696 PMCID: PMC4990244 DOI: 10.1371/journal.pone.0161071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/29/2016] [Indexed: 11/18/2022] Open
Abstract
In this paper, we describe 485 Oliva spp. shell beads recovered from four archaeological cave sites Jerimalai, Lene Hara, Matja Kuru 1, and Matja Kuru 2, located in Timor-Leste, Island Southeast Asia. While Pleistocene-aged examples of modified marine shells used for personal ornamentation are common in African and Eurasian assemblages, they are exceedingly rare in Southeast Asia, leading some researchers to suggest that these Modern Human societies were less complex than those found further west. In Timor-Leste, the lowest Oliva bead to be recovered was directly dated to ca. 37,000 cal. BP, making it the oldest piece of personal ornamentation in Southeast Asia. Morphometric, taphonomic, use wear, and residue analyses of these beads alongside modern reference specimens, and experimentally made examples indicate that the Oliva shells were modified to be strung consecutively (as in a necklace), and while their mode of production changed remarkably little over the thousands of years they were utilised, an increase in their deposition around 6,000 cal. BP suggests that there was a change in their use coinciding with sea-level stabilisation. These tiny beads demonstrate that early Island Southeast Asian societies produced the same kinds of symbolic material culture we have come to expect from the more intensively studied African/Eurasian region, and that limited sampling and poor recovery methods have biased our perspectives of this region.
Collapse
|
Historical Article |
9 |
21 |
25
|
Watson SA, Morley SA, Peck LS. Latitudinal trends in shell production cost from the tropics to the poles. SCIENCE ADVANCES 2017; 3:e1701362. [PMID: 28948224 PMCID: PMC5606708 DOI: 10.1126/sciadv.1701362] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/17/2017] [Indexed: 05/05/2023]
Abstract
The proportion of body mass devoted to skeleton in marine invertebrates decreases along latitudinal gradients from large proportions in the tropics to small proportions in polar regions. A historical hypothesis-that latitudinal differences in shell production costs explain these trends-remains untested. Using field-collected specimens spanning a 79°N to 68°S latitudinal gradient (16,300 km), we conducted a taxonomically controlled evaluation of energetic costs of shell production as a proportion of the total energy budget in mollusks. Shell production cost was fairly low across latitudes at <10% of the energy budget and predominately <5% in gastropods and <4% in bivalves. Throughout life, shell cost tended to be lower in tropical species and increased slightly toward the poles. However, shell cost also varied with life stage, with the greatest costs found in young tropical gastropods. Low shell production costs on the energy budget suggest that shell cost may play only a small role in influencing proportional skeleton size gradients across latitudes relative to other ecological factors, such as predation in present-day oceans. However, any increase in the cost of calcium carbonate (CaCO3) deposition, including from ocean acidification, may lead to a projected ~50 to 70% increase in the proportion of the total energy budget required for shell production for a doubling of the CaCO3 deposition cost. Changes in energy budget allocation to shell cost would likely alter ecological trade-offs between calcification and other drivers, such as predation, in marine ecosystems.
Collapse
|
research-article |
8 |
21 |