1
|
Bernheimer AW, Rudy B. Interactions between membranes and cytolytic peptides. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 864:123-41. [PMID: 2424507 DOI: 10.1016/0304-4157(86)90018-3] [Citation(s) in RCA: 232] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The physico-chemical and biological properties of cytolytic peptides derived from diverse living entities have been discussed. The principal sources of these agents are bacteria, higher fungi, cnidarians (coelenterates) and the venoms of snakes, insects and other arthropods. Attention has been directed to instances in which cytolytic peptides obtained from phylogenetically remote as well as from related sources show similarities in nature and/or mode of action (congeneric lysins). The manner in which cytolytic peptides interact with plasma membranes of eukaryotic cells, particularly the membranes of erythrocytes, has been discussed with emphasis on melittin, thiolactivated lysins and staphylococcal alpha-toxin. These and other lytic peptides are characterized in Table III. They can be broadly categorized into: (a) those which alter permeability to allow passage of ions, this process eventuating in colloid osmotic lysis, signs of which are a pre-lytic induction or latent period, pre-lytic leakage of potassium ions, cell swelling and inhibition of lysis by sucrose. Examples of lysins in which this mechanism is involved are staphylococcal alpha-toxin, streptolysin S and aerolysin; (b) phospholipases causing enzymic degradation of bilayer phospholipids as exemplified by phospholipases C of Cl. perfringens and certain other bacteria; (c) channel-forming agents such as helianthin, gramicidin and (probably) staphylococcal delta-toxin in which toxin molecules are thought to embed themselves in the membrane to form oligomeric transmembrane channels.
Collapse
|
Review |
39 |
232 |
2
|
Orivel J, Redeker V, Le Caer JP, Krier F, Revol-Junelles AM, Longeon A, Chaffotte A, Dejean A, Rossier J. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J Biol Chem 2001; 276:17823-9. [PMID: 11279030 DOI: 10.1074/jbc.m100216200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antimicrobial, insecticidal, and hemolytic properties of peptides isolated from the venom of the predatory ant Pachycondyla goeldii, a member of the subfamily Ponerinae, were investigated. Fifteen novel peptides, named ponericins, exhibiting antibacterial and insecticidal properties were purified, and their amino acid sequences were characterized. According to their primary structure similarities, they can be classified into three families: ponericin G, W, and L. Ponericins share high sequence similarities with known peptides: ponericins G with cecropin-like peptides, ponericins W with gaegurins and melittin, and ponericins L with dermaseptins. Ten peptides were synthesized for further analysis. Their antimicrobial activities against Gram-positive and Gram-negative bacteria strains were analyzed together with their insecticidal activities against cricket larvae and their hemolytic activities. Interestingly, within each of the three families, several peptides present differences in their biological activities. The comparison of the structural features of ponericins with those of well-studied peptides suggests that the ponericins may adopt an amphipathic alpha-helical structure in polar environments, such as cell membranes. In the venom, the estimated peptide concentrations appear to be compatible with an antibacterial activity in vivo. This suggests that in the ant colony, the peptides exhibit a defensive role against microbial pathogens arising from prey introduction and/or ingestion.
Collapse
|
|
24 |
151 |
3
|
BLUM MS, WALKER JR, CALLAHAN PS, NOVAK AF. Chemical, Insecticidal, and Antibiotic Properties of Fire Ant Venom. Science 1958; 128:306-7. [PMID: 13568785 DOI: 10.1126/science.128.3319.306-a] [Citation(s) in RCA: 98] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
67 |
98 |
4
|
Abstract
A crystalline hemolytic principle, shown to be a constituent of fire ant venom and having the properties of an amine, was isolated from crude extracts of whole ants. The chromatographic procedure of isolation is described, and a preliminary report is given about some properties of the substance.
Collapse
|
Journal Article |
25 |
53 |
5
|
Donovan GR, Baldo BA, Sutherland S. Molecular cloning and characterization of a major allergen (Myr p I) from the venom of the Australian jumper ant, Myrmecia pilosula. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1171:272-80. [PMID: 7678752 DOI: 10.1016/0167-4781(93)90065-l] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Five IgE-binding components were identified in the venom of the Australian jumper ant, Myrmecia pilosula using SDS polyacrylamide gel electrophoresis and Western blotting. A cDNA clone which encodes the entire amino acid sequence of one of the major IgE-binding venom allergens has been nucleotide sequenced. The IgE-binding determinants of this allergen are located in its C-terminal domain. Database searches, however, did not reveal any homology with any other known nucleotide or protein sequence. The sequenced allergenic polypeptide has, according to the convention recommended by the International Union of Immunological Societies (IUIS), been named Myr p I.
Collapse
|
|
32 |
44 |
6
|
Alvarez-Blanco P, Cerdá X, Hefetz A, Boulay R, Bertó-Moran A, Díaz-Paniagua C, Lenoir A, Billen J, Liedtke HC, Chauhan KR, Bhagavathy G, Angulo E. Effects of the Argentine ant venom on terrestrial amphibians. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:216-226. [PMID: 32812277 DOI: 10.1111/cobi.13604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Invasive species have major impacts on biodiversity and are one of the primary causes of amphibian decline and extinction. Unlike other top ant invaders that negatively affect larger fauna via chemical defensive compounds, the Argentine ant (Linepithema humile) does not have a functional sting. Nonetheless, it deploys defensive compounds against competitors and adversaries. We estimated levels of ant aggression toward 3 native terrestrial amphibians by challenging juveniles in field ant trails and in lab ant foraging arenas. We measured the composition and quantities of toxin in L. humile by analyzing pygidial glands and whole-body contents. We examined the mechanisms of toxicity in juvenile amphibians by quantifying the toxin in amphibian tissues, searching for histological damages, and calculating toxic doses for each amphibian species. To determine the potential scope of the threat to amphibians, we used global databases to estimate the number, ranges, and conservation status of terrestrial amphibian species with ranges that overlap those of L. humile. Juvenile amphibians co-occurring spatially and temporally with L. humile die when they encounter L. humile on an ant trail. In the lab, when a juvenile amphibian came in contact with L. humile the ants reacted quickly to spray pygidial-gland venom onto the juveniles. Iridomyrmecin was the toxic compound in the spray. Following absorption, it accumulated in brain, kidney, and liver tissue. Toxic dose for amphibian was species dependent. Worldwide, an estimated 817 terrestrial amphibian species overlap in range with L. humile, and 6.2% of them are classified as threatened. Our findings highlight the high potential of L. humile venom to negatively affect amphibian juveniles and provide a basis for exploring the largely overlooked impacts this ant has in its wide invasive range.
Collapse
|
|
4 |
6 |
7
|
|
|
61 |
4 |
8
|
WILLIAMS MW, WILLIAMS CS. Toxicity of Ant Venom, Further Studies of the Venom from Pogonomyrmex barbatus. Exp Biol Med (Maywood) 1965; 119:344-6. [PMID: 14328884 DOI: 10.3181/00379727-119-30175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
60 |
2 |
9
|
|
|
62 |
2 |
10
|
Rodríguez-Acosta A, Sánchez EE, Navarrete LF. [Intense allergic reaction in a patient stung by the black ant (Odontomachus bauri)]. REVISTA CUBANA DE MEDICINA TROPICAL 2010; 62:77-80. [PMID: 23431642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
INTRODUCTION ant stings in nations located in the tropical and subtropical regions were generally benign and not frequent; however, at present a higher number of cases develop serious allergic reactions that may evolve into anaphylactic shock or severe urticaria. METHODS review of the case of a young man suffering moderate allergic reaction to ant stings and comments on the biomedical importance of this event. This is the second accident described in literature and associated with Odontomachus bauri ant, which stresses its epidemiological weight in the future. The clinical signs and symptoms of an allergic reaction together with some biological aspects of the ant were described. The patient was treated with hydrocortisone sodium succynate (100 mg/stat) and systemic antihistaminic drug Loratadina. CONCLUSIONS allergic reactions as a result of hymenoptera stings is becoming a growing problem in many countries; therefore it is essential that the medical authorities be aware of the dermatological and systemic manifestations affecting some patients stung by ants.
Collapse
|
Case Reports |
15 |
|
11
|
Coop CA. Editorial on extended intervals for imported fire ant maintenance immunotherapy: The FIRES study. Ann Allergy Asthma Immunol 2023; 131:407. [PMID: 37788878 DOI: 10.1016/j.anai.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 10/05/2023]
|
Editorial |
2 |
|
12
|
Kumari J, Sah RK, Mohaideen. S NM, Ahmad S, Pati S, Singh S. Studying the Rationale of Fire Ant Sting Therapy Usage by the Tribal Natives of Bastar Revealed Ant Venom-Derived Peptides with Promising Anti-Malarial Activity. Toxins (Basel) 2022; 14:toxins14110789. [PMID: 36422964 PMCID: PMC9697016 DOI: 10.3390/toxins14110789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Prevailing drug resistance in malaria imposes the major roadblock for the existing interventions necessitating the timely need to search for alternative therapies. Ants in Solenopsis spp, termed 'Fire ants', are well known for their aggressive behavior, which leads to the release of toxic venom. Notably, the tribal natives of the malaria-laden densely forested Bastar region, Chhattisgarh, India, use fire ant sting-based therapy to cure malaria-like high fever. Inspired by this, we have collected the fire ants from the forest of Bastar and extracted peptide and alkaloid fractions from ant venom using HPLC and analyzed them by LC/MS-based applications. Evaluation of the anti-malarial efficacy of these peptide fractions demonstrated a significant reduction in the growth of Plasmodium falciparum (Pf 3D7) in vitro, whereas the alkaloid fraction showed a negligible effect. in vitro hemolytic activity confirmed the venom peptide fraction to be non-hemolytic. Additionally, the venom peptide fraction is purely non-toxic to HepG2 cells. Anti-malarial efficiency of the same in Plasmodium berghei ANKA infected mice models showed a drastic reduction in parasitemia representing promising anti-malarial activity. Overall, our study has unraveled the scientific rationale underlying fire ant sting therapy used as a tribal naturotherapy for curing malaria-like fever, thus, introducing a way forward to develop nature-inspired anti-malarial chemotherapeutics.
Collapse
|
research-article |
3 |
|
13
|
Koenig PA, Moreau CS. Acorn ant exhibits age-dependent induced defence in response to parasitic raids. Biol Lett 2024; 20:20240335. [PMID: 39406339 PMCID: PMC11523098 DOI: 10.1098/rsbl.2024.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 11/01/2024] Open
Abstract
When risk is unpredictable, organisms may evolve induced defenses, which are activated after an indication of increased risk. In colonies with behavioural specialization, investment in defence may not be uniformly beneficial among group members. Instead, it should depend on the individual's likelihood of participating in defence. The ant Temnothorax longispinosus uses venom to defend against raids by the social parasite Temnothorax americanus. We tested whether T. longispinosus upregulate investment in venom after experiencing a raid, investigating the relationship between venom volume and worker behavioural caste. Overall, raided colonies had more venom per capita than unraided colonies. When divided into behavioural castes, foragers had more venom after experiencing a raid, while nurses did not. These results demonstrate that T. longispinosus have an induced chemical defence against parasitic raids. However, instead of this defence being deployed uniformly among all workers, the induction of the defence depends on the behavioural caste, and therefore age, of the worker, implying that plasticity in venom production increases with age. Since older social insect workers tend to perform riskier tasks, inducibility may align with an increase in expected risk of death, especially if foragers are more likely to defend the colony against parasites than younger workers.
Collapse
|
research-article |
1 |
|
14
|
Borjon LJ, de Assis Ferreira LC, Trinidad JC, Šašić S, Hohmann AG, Tracey WD. Multiple mechanisms of action for an extremely painful venom. Curr Biol 2025; 35:444-453.e4. [PMID: 39765227 DOI: 10.1016/j.cub.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 01/15/2025]
Abstract
Evolutionary arms races can lead to extremely specific and effective defense mechanisms, including venoms that deter predators by targeting nociceptive (pain-sensing) pathways. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. It has been described as "Explosive and long lasting, you sound insane as you scream. Hot oil from the deep fryer spilling over your entire hand."1 The effectiveness of the velvet ant sting against potential predators has been shown across vertebrate orders, including mammals, amphibians, reptiles, and birds.2,3,4 This leads to the hypothesis that velvet ant venom targets a conserved nociception mechanism, which we sought to uncover using Drosophila melanogaster as a model system. Drosophila larvae have peripheral sensory neurons that sense potentially damaging (noxious) stimuli such as high temperature, harsh mechanical touch, and noxious chemicals.5,6,7,8 They share features with vertebrate nociceptors, including conserved sensory receptor channels.9,10 We found that velvet ant venom strongly activated Drosophila nociceptors through heteromeric Pickpocket/Balboa (Ppk/Bba) ion channels, through a single venom peptide, Do6a. Drosophila Ppk/Bba is homologous to mammalian acid-sensing ion channels (ASICs).11 However, Do6a did not produce behavioral signs of nociception in mice, which was instead triggered by other venom peptides that are non-specific and less potent on Drosophila nociceptors. This suggests that Do6a has an insect-specific function. In fact, we further demonstrated that the velvet ant's sting produced aversive behavior in a predatory praying mantis. Together, our results indicate that velvet ant venom acts through different molecular mechanisms in vertebrates and invertebrates.
Collapse
|
|
1 |
|
15
|
Goddard J, de Shazo RD. Envenomation From Flood-Related Fire Ant Rafting: A Cautionary Note. Am J Med 2023; 136:937-940. [PMID: 37355195 DOI: 10.1016/j.amjmed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Imported fire ants aggressively sting humans, leading to a variety of local and systemic effects. Fire ants display a behavioral adaptation to survive flooding, called "rafting," bringing humans into even more contact with fire ants. METHODS To assess frequency of encounters with fire ant rafts, duck hunters on the website "Duck Hunter's Forum" were asked about their experiences with the ants while wading or boating in flooded areas. All members of the group received a brief explanation and asked to respond directly if they had had such an encounter. They were then asked to fill out a short 6-question survey. RESULTS There were 2021 views of the thread about fire ant raft encounters, with 35 (1.7%) responses. Twenty-four (68.6%) said they had experienced encounters with fire ant rafts. Six responders described purposely or inadvertently physically touching the rafts with their body parts, boat, or a paddle, causing the ants to enter their boat or to climb directly onto the hunter(s). Five respondents were stung (number of stings from "a few" to 50), describing reactions to stings as "small pustules," "whelps," and "pimple-like, puss-filled whelps." CONCLUSIONS These results confirm that fire ant rafts formed during flooding present a potential hazard to persons walking, wading, or boating in those areas. We suggest that these rafts are an under-appreciated health hazard. It is reasonable to assume that people in flooded areas occasionally contact these floating rafts and are stung multiple times. We provide preliminary prevention/protection recommendations for health professionals, to be shared with their patients and the general public.
Collapse
|
|
2 |
|
16
|
Alzeer RM, Al-Hadyan KS, Al-Harbi NM, Bin Judia SS, Almeer RS, Alsbeih GA. Cytotoxicity and Radiosensitizing Potentials of Pilosulin-3, a Recombinant Ant Venom, in Breast Cancer Cells. Toxins (Basel) 2023; 15:701. [PMID: 38133205 PMCID: PMC10747674 DOI: 10.3390/toxins15120701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Venom peptides are promising agents in the development of unconventional anticancer therapeutic agents. This study explored the potential of Pilosulin-3, a recombinant peptide from the venom of the Australian jack jumper ant "Myrmecia pilosula", as a cytotoxic and radiosensitizing agent in MCF-7 and MDA-MB-231 breast cancer (BC) cell lines. Pilosulin-3's cytotoxicity was evaluated across a wide range of concentrations using a proliferation assay. Cell cycle progression and apoptosis were examined at the inhibitory concentration 25% (IC25) and IC50 of Pilosulin-3, both with and without a 4Gy X-ray irradiation dose. Radiosensitivity was assessed at IC25 using the clonogenic survival assay. The study revealed that Pilosulin-3 exerted a concentration-dependent cytotoxic effect, with IC25 and IC50 values of 0.01 and 0.5 µM, respectively. In silico screening indicated high selectivity of Pilosulin-3 peptide, which was predicted to be the most likely anticancer agent (PROB = 0.997) with low hemolytic activity (PROP = 0.176). Although Pilosulin-3 exhibited a significant (p < 0.05) G2/M cell cycle arrest in combination with radiation, there was no discernible effect on apoptosis induction or cell survival following irradiation. In conclusion, Pilosulin-3 proved to be cytotoxic to BC cells and induced a cytostatic effect (G2/M arrest) when combined with radiation. However, it did not enhance the efficacy of cell killing by irradiation. While it holds potential as a cytotoxic agent in breast cancer treatment, its application as a radiosensitizer does not find support in these results.
Collapse
|
research-article |
2 |
|
17
|
Menardo JL, Bousquet J, Michel FB. [Hymenoptera and their venoms]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 1982; 166:523-30. [PMID: 6751495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
English Abstract |
43 |
|
18
|
Touchard A, Robinson SD, Lalagüe H, Ascoët S, Billet A, Dejean A, Téné NJ, Petitclerc F, Troispoux V, Treilhou M, Bonnafé E, Vetter I, Vizueta J, Moreau CS, Orivel J, Tysklind N. Adaptive trade-offs between vertebrate defence and insect predation drive Amazonian ant venom evolution. Proc Biol Sci 2024; 291:20242184. [PMID: 39561794 PMCID: PMC11576106 DOI: 10.1098/rspb.2024.2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024] Open
Abstract
Stinging ants have diversified into various ecological niches, and selective pressures may have contributed to shape the composition of their venom. To explore the drivers underlying venom variation in ants, we sampled 15 South American rainforest species and recorded a range of traits, including ecology, morphology and venom bioactivities. Principal component analysis of both morphological and venom bioactivity traits reveals that stinging ants display two functional strategies where species have evolved towards either an exclusively offensive venom or a multi-functional venom. Additionally, phylogenetic comparative analysis indicates that venom function (predatory, defensive or both) and mandible morphology correlate with venom bioactivity and volume. Further analysis of the venom biochemistry of the 15 species revealed switches between cytotoxic and neurotoxic venom compositions among species. Our study supports an evolutionary trade-off between the ability of venom to deter vertebrate predators and to paralyse insect prey which are correlated with different venom compositions and life-history strategies among Formicidae.
Collapse
|
research-article |
1 |
|
19
|
James FK. Stings and bites revisited. Tex Med 1990; 86:121. [PMID: 2218946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
Comment |
35 |
|
20
|
ACREE F, HAVILAND EE, HALLER HL. The nature of the venom of Formica exsectoides. JOURNAL OF ECONOMIC ENTOMOLOGY 1946; 39:661. [PMID: 20278203 DOI: 10.1093/jee/39.5.661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
|
79 |
|
21
|
SINSKI JT, ADROUNY GA, DERBES VJ, JUNG RC. Further Characterization of Hemolytic Component of Fire Ant Venom, Mycological Aspects. Exp Biol Med (Maywood) 1959; 102:659-60. [PMID: 14447157 DOI: 10.3181/00379727-102-25351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
66 |
|