1
|
Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL, Monroe D, Sullenger BA. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 2002; 419:90-4. [PMID: 12214238 DOI: 10.1038/nature00963] [Citation(s) in RCA: 393] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many therapeutic agents are associated with adverse effects in patients. Anticoagulants can engender acute complications such as significant bleeding that increases patient morbidity and mortality. Antidote control provides the safest means to regulate drug action. For this reason, despite its known limitations and toxicities, heparin use remains high because it is the only anticoagulant that can be controlled by an antidote, the polypeptide protamine. To date, no generalizable strategy for developing drug-antidote pairs has been described. We investigated whether drug-antidote pairs could be rationally designed by taking advantage of properties inherent to nucleic acids to make antidote-controlled anticoagulant agents. Here we show that protein-binding oligonucleotides (aptamers) against coagulation factor IXa are potent anticoagulants. We also show that oligonucleotides complementary to these aptamers can act as antidotes capable of efficiently reversing the activity of these new anticoagulants in plasma from healthy volunteers and from patients who cannot tolerate heparin. This generalizable strategy for rationally designing a drug-antidote pair thus opens up the way for developing safer regulatable therapeutics.
Collapse
|
|
23 |
393 |
2
|
Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. JOURNAL OF TOXICOLOGY. CLINICAL TOXICOLOGY 2002; 40:803-16. [PMID: 12475193 DOI: 10.1081/clt-120015840] [Citation(s) in RCA: 286] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The cholinesterase-inhibiting organophosphorus compounds referred to as nerve agents (soman, sarin, tabun, GF agent, and VX) are particularly toxic and are considered to be among the most dangerous chemical warfare agents. Included in antidotal medical countermeasures are oximes to reactivate the inhibited cholinesterase. Much experimental work has been done to better understand the properties of the oxime antidotal candidates including the currently available pralidoxime and obidoxime, the H oximes HI-6 and Hlö-7, and methoxime. There is no single, broad-spectrum oxime suitablefor the antidotal treatment of poisoning with all organophosphorus agents. If more than one oxime is available, the choice depends primarily on the identity of the responsible organophosphorus compound. The H oximes appear to be very promising antidotes against nerve agents because they are able to protect experimental animals from toxic effects and improve survival of animals poisoned with supralethal doses. They appear more effective against nerve agent poisoning than the currently used oximes pralidoxime and obidoxime, especially in the case of soman poisoning. On the other hand, pralidoxime and especially obidoxime seem sufficiently effective to treat poisonings with organophosphorus insecticides that have relatively less toxicity than nerve agents.
Collapse
|
Review |
23 |
286 |
3
|
Levard C, Hotze EM, Colman BP, Truong L, Yang XY, Bone A, Brown GE, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV. Sulfidation of silver nanoparticles: natural antidote to their toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13440-8. [PMID: 24180218 PMCID: PMC4019074 DOI: 10.1021/es403527n] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanomaterials are highly dynamic in biological and environmental media. A critical need for advancing environmental health and safety research for nanomaterials is to identify physical and chemical transformations that affect the nanomaterial properties and their toxicity. Silver nanoparticles, one of the most toxic and well-studied nanomaterials, readily react with sulfide to form Ag(0)/Ag2S core-shell particles. Here, we show that sulfidation decreased silver nanoparticle toxicity to four diverse types of aquatic and terrestrial eukaryotic organisms (Danio rerio (zebrafish), Fundulus heteroclitus (killifish), Caenorhabditis elegans (nematode worm), and the aquatic plant Lemna minuta (least duckweed)). Toxicity reduction, which was dramatic in killifish and duckweed even for low extents of sulfidation (about 2 mol % S), is primarily associated with a decrease in Ag(+) concentration after sulfidation due to the lower solubility of Ag2S relative to elemental Ag (Ag(0)). These results suggest that even partial sulfidation of AgNP will decrease the toxicity of AgNPs relative to their pristine counterparts. We also show that, for a given organism, the presence of chloride in the exposure media strongly affects the toxicity results by affecting Ag speciation. These results highlight the need to consider environmental transformations of NPs in assessing their toxicity to accurately portray their potential environmental risks.
Collapse
|
research-article |
12 |
255 |
4
|
Kamada K, Hanaoka F, Burley SK. Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol Cell 2003; 11:875-84. [PMID: 12718874 DOI: 10.1016/s1097-2765(03)00097-2] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A structure of the Escherichia coli chromosomal MazE/MazF addiction module has been determined at 1.7 A resolution. Addiction modules consist of stable toxin and unstable antidote proteins that govern bacterial cell death. MazE (antidote) and MazF (toxin) form a linear heterohexamer composed of alternating toxin and antidote homodimers (MazF(2)-MazE(2)-MazF(2)). The MazE homodimer contains a beta barrel from which two extended C termini project, making interactions with flanking MazF homodimers that resemble the plasmid-encoded toxins CcdB and Kid. The MazE/MazF heterohexamer structure documents that the mechanism of antidote-toxin recognition is common to both chromosomal and plasmid-borne addiction modules, and provides general molecular insights into toxin function, antidote degradation in the absence of toxin, and promoter DNA binding by antidote/toxin complexes.
Collapse
|
|
22 |
252 |
5
|
Kim SH, Henry EC, Kim DK, Kim YH, Shin KJ, Han MS, Lee TG, Kang JK, Gasiewicz TA, Ryu SH, Suh PG. Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Mol Pharmacol 2006; 69:1871-8. [PMID: 16540597 DOI: 10.1124/mol.105.021832] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental pollutant with many toxic effects, including endocrine disruption, reproductive dysfunction, immunotoxicity, liver damage, and cancer. These are mediated by TCDD binding to and activating the aryl hydrocarbon receptor (AhR), a basic helix-loop-helix transcription factor. In this regard, targeting the AhR using novel small molecule inhibitors is an attractive strategy for the development of potential preventive agents. In this study, by screening a chemical library composed of approximately 10,000 compounds, we identified a novel compound, 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191), that potently inhibits TCDD-induced AhR-dependent transcription. In addition, CH-223191 blocked the binding of TCDD to AhR and inhibited TCDD-mediated nuclear translocation and DNA binding of AhR. These inhibitory effects of CH-223191 prevented the expression of cytochrome P450 enzymes, target genes of the AhR. Unlike many known antagonists of AhR, CH-223191 did not have detectable AhR agonist-like activity or estrogenic potency, suggesting that CH-223191 is a specific antagonist of AhR. It is noteworthy that CH-223191 potently prevented TCDD-elicited cytochrome P450 induction, liver toxicity, and wasting syndrome in mice. Taken together, these results demonstrate that this novel compound, CH-223191, may be a useful agent for the study of AhR-mediated signal transduction and the prevention of TCDD-associated pathology.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
225 |
6
|
Abstract
OBJECTIVE To review the current research and importance of glutathione (GSH) therapy in health and disease and to provide a basic overview of the widespread use and interest in this compound. DATA IDENTIFICATION Articles were obtained via a MEDLINE search of the term glutathione in conjunction with specific disease states mentioned, and via extensive review of references found in articles identified by computer search. STUDY SELECTION Emphasis was placed on the most recent research, human research, and in discussing multiple disease states. DATA EXTRACTION The literature was reviewed for methodology, quality, and practical aspects of interest to clinical pharmacists. DATA SYNTHESIS GSH is a tripeptide of extreme importance as a catalyst, reductant, and reactant. It continues to be investigated in diverse areas such as acute respiratory distress syndrome, toxicology, AIDS, aging, oncology, and liver disease. Despite the widespread clinical interest in GSH, we were not able to identify an in-depth review of this compound in the pharmacy literature. CONCLUSIONS The list of potential indications for modulation of GSH is extensive and broad. This review introduces clinicians to what GSH is, its basic chemistry, and some areas of active research.
Collapse
|
Review |
30 |
141 |
7
|
Bajgar J, Fusek J, Kuca K, Bartosova L, Jun D. Treatment of Organophosphate Intoxication Using Cholinesterase Reactivators:Facts and Fiction. Mini Rev Med Chem 2007; 7:461-6. [PMID: 17504181 DOI: 10.2174/138955707780619581] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Basic part of the current standard treatment of organophosphate (OP) agent poisoning is administration of cholinesterase reactivators. It includes different types of oximes with a similar basic structure differing by the number of pyridinium rings and by the position of the oxime group in the pyridinium ring. Oximes hydrolytically cleave the organophosphates from acetylcholinesterase (AChE), restoring enzymatic function. This reactivation of AChE is dependent on the type of the agent and, on the reactivator used. From the common oximes, mono- and bisquaternary pyridinium oximes are more or less frequently used in clinical practice such as pralidoxime, obidoxime, trimedoxime, and HI-6. Though there are data on a good therapeutic effects of reactivators, some attempts to undermine the role of reactivators as effective antidotes against OP poisoning have been made. Some arguments on the necessity of their administration following OP poisoning are discussed with the aim to resolve the question on their effective use, possible repeated administration in the treatment of OP poisoning, their peripheral and central effects including questions on their penetration through the blood brain barrier as well as a possibility to achieve their effective concentration for AChE reactivation in the brain. Reactivation of cholinesterases in the peripheral and central nervous system is described and it is underlined its importance for the survival or death of the organism poisoned with OP. An universality of oximes able to reactivate AChE inhibited by all OP is questioned and trends (molecular modelling using neural network, structure-activity relationship, combination of reactivation and anticholinergic properties in one molecule) for future research are characterized.
Collapse
|
|
18 |
107 |
8
|
Wang CJ, Li Z, Jiang WT, Jean JS, Liu CC. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. JOURNAL OF HAZARDOUS MATERIALS 2010; 183:309-14. [PMID: 20675045 DOI: 10.1016/j.jhazmat.2010.07.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 05/24/2023]
Abstract
Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca(2+) as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK(a2) (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d(001)) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.
Collapse
|
|
15 |
105 |
9
|
Zhirong L, Azhar Uddin M, Zhanxue S. FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:1013-6. [PMID: 21664862 DOI: 10.1016/j.saa.2011.04.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/29/2011] [Accepted: 04/10/2011] [Indexed: 05/24/2023]
Abstract
Na-bentonite has been studied extensively because of its strong adsorption capacity and complexation ability. In this work, surface area, total pore volume, mean pore diameter, TG, DTA, FT-IR and XRD were carried out in order to reveal the characteristics of natural Na-bentonite. XRD and FT-IR of natural Na-bentonite (China) and Cu-loaded Na-bentonite as a function of Na-bentonite dosage and temperature using batch technique were characterized in detail, respectively.
Collapse
|
|
14 |
96 |
10
|
Radić Z, Sit RK, Kovarik Z, Berend S, Garcia E, Zhang L, Amitai G, Green C, Radić B, Fokin VV, Sharpless KB, Taylor P. Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases. J Biol Chem 2012; 287:11798-809. [PMID: 22343626 PMCID: PMC3320928 DOI: 10.1074/jbc.m111.333732] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/03/2012] [Indexed: 11/06/2022] Open
Abstract
We present a systematic structural optimization of uncharged but ionizable N-substituted 2-hydroxyiminoacetamido alkylamine reactivators of phosphylated human acetylcholinesterase (hAChE) intended to catalyze the hydrolysis of organophosphate (OP)-inhibited hAChE in the CNS. Starting with the initial lead oxime RS41A identified in our earlier study and extending to the azepine analog RS194B, reactivation rates for OP-hAChE conjugates formed by sarin, cyclosarin, VX, paraoxon, and tabun are enhanced severalfold in vitro. To analyze the mechanism of intrinsic reactivation of the OP-AChE conjugate and penetration of the blood-brain barrier, the pH dependence of the oxime and amine ionizing groups of the compounds and their nucleophilic potential were examined by UV-visible spectroscopy, (1)H NMR, and oximolysis rates for acetylthiocholine and phosphoester hydrolysis. Oximolysis rates were compared in solution and on AChE conjugates and analyzed in terms of the ionization states for reactivation of the OP-conjugated AChE. In addition, toxicity and pharmacokinetic studies in mice show significantly improved CNS penetration and retention for RS194B when compared with RS41A. The enhanced intrinsic reactivity against the OP-AChE target combined with favorable pharmacokinetic properties resulted in great improvement of antidotal properties of RS194B compared with RS41A and the standard peripherally active oxime, 2-pyridinealdoxime methiodide. Improvement was particularly noticeable when pretreatment of mice with RS194B before OP exposure was combined with RS194B reactivation therapy after the OP insult.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
94 |
11
|
Yao G, Zhang S, Mahrhold S, Lam KH, Stern D, Bagramyan K, Perry K, Kalkum M, Rummel A, Dong M, Jin R. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A. Nat Struct Mol Biol 2016; 23:656-62. [PMID: 27294781 PMCID: PMC5033645 DOI: 10.1038/nsmb.3245] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/13/2016] [Indexed: 02/01/2023]
Abstract
Botulinum neurotoxin serotype A1 (BoNT/A1), a licensed drug widely used for medical and cosmetic applications, exerts its action by invading motoneurons. Here we report a 2.0-Å-resolution crystal structure of the BoNT/A1 receptor-binding domain in complex with its neuronal receptor, glycosylated human SV2C. We found that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan-which is conserved in all SV2 isoforms across vertebrates-is essential for BoNT/A1 binding to neurons and for its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an antibotulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications, thereby achieving highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors.
Collapse
|
research-article |
9 |
86 |
12
|
Chen Y, Zhang Y, Zhuang J, Lee JH, Wang L, Fang RH, Gao W, Zhang L. Cell-Membrane-Cloaked Oil Nanosponges Enable Dual-Modal Detoxification. ACS NANO 2019; 13:7209-7215. [PMID: 31117372 DOI: 10.1021/acsnano.9b02773] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The lack of pharmaceutical antidotes for deadly toxicants has motivated tremendous research interests in seeking synthetic nanoscavengers to absorb and neutralize harmful biological or chemical agents. Herein, we report a cell-membrane-cloaked oil nanosponge formulation capable of dual-modal detoxification. The biomimetic oil nanosponge consists of an olive oil nanodroplet wrapped by a red blood cell membrane. In such a construct, the oil core can nonspecifically soak up toxicants through physical partition and the cell membrane shell can specifically absorb and neutralize toxicants through biological binding. The dual-modal detoxification capability of the oil nanosponges was validated using three distinct organophosphates (OPs), including paraoxon, diisopropyl fluorophosphate, and dichlorvos. By inhibiting acetylcholinesterase, OPs cause the accumulation of acetylcholine, which leads to neuromuscular disorders and even death. In mouse models of OP poisoning, the oil nanosponges reduced clinical signs of OP intoxication, lowered OP concentration in tissues, and greatly enhanced mouse survival in both the therapeutic regimen and the prophylactic regimen. Overall, oil nanosponges combine the merits of both cell membrane and oil nanodroplets for safe and effective detoxification, which also serve as a prototype of multimodal detoxification platforms.
Collapse
|
|
6 |
73 |
13
|
Ekström FJ, Astot C, Pang YP. Novel nerve-agent antidote design based on crystallographic and mass spectrometric analyses of tabun-conjugated acetylcholinesterase in complex with antidotes. Clin Pharmacol Ther 2007; 82:282-93. [PMID: 17443135 DOI: 10.1038/sj.clpt.6100151] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organophosphorus compound-based nerve agents inhibit the essential enzyme acetylcholinesterase (AChE) causing acute toxicity and death. Clinical treatment of nerve-agent poisoning is to use oxime-based antidotes to reactivate the inhibited AChE. However, the nerve agent tabun is resistant to oximes. To design improved oximes, crystal structures of a tabun-conjugated AChE in complex with different oximes are needed to guide the structural modifications of known antidotes. However, this type of structure is extremely challenging to obtain because both deamidation of the tabun conjugate and reactivation of AChE occur during crystallographic experiments. Here we report, for the first time, the crystal structures of Ortho-7 and HLö-7 in complex with AChE that is conjugated to an intact tabun. These structures were determined by our new strategy of combining crystallographic and mass spectrometric analyses of AChE crystals. The results explain the relative reactivation potencies of the two oximes and offer insights into improving known medical antidotes.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
68 |
14
|
Heckel A, Buff MCR, Raddatz MSL, Müller J, Pötzsch B, Mayer G. An anticoagulant with light-triggered antidote activity. Angew Chem Int Ed Engl 2007; 45:6748-50. [PMID: 16983715 DOI: 10.1002/anie.200602346] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
Research Support, Non-U.S. Gov't |
18 |
65 |
15
|
Nimjee SM, Keys JR, Pitoc GA, Quick G, Rusconi CP, Sullenger BA. A novel antidote-controlled anticoagulant reduces thrombin generation and inflammation and improves cardiac function in cardiopulmonary bypass surgery. Mol Ther 2006; 14:408-15. [PMID: 16765093 DOI: 10.1016/j.ymthe.2006.04.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/24/2006] [Accepted: 04/16/2006] [Indexed: 10/24/2022] Open
Abstract
Heparin and protamine are the standard anticoagulant-antidote regimen used in almost every cardiopulmonary bypass (CPB) procedure even though both are associated with an array of complications and toxicities. Here we demonstrate that an anticoagulant aptamer-antidote pair targeting factor IXa can replace heparin and protamine in a porcine CPB model and also limit the adverse effects on thrombin generation, inflammation, and cardiac physiology associated with heparin and protamine use. These results demonstrate that targeting clotting factors upstream of thrombin in the coagulation cascade can potentially reduce the perioperative pathologies associated with CPB and suggest that the aptamer-antidote pair to FIXa may improve the outcome of patients undergoing CPB. In particular, this novel anticoagulant-antidote pair may prove to be useful in patients diagnosed with heparin-induced thrombocytopenia or those who have been sensitized to protamine, particularly patients who have insulin-dependent diabetes.
Collapse
|
Journal Article |
19 |
64 |
16
|
Bompiani K, Monroe D, Church F, Sullenger B. A high affinity, antidote-controllable prothrombin and thrombin-binding RNA aptamer inhibits thrombin generation and thrombin activity. J Thromb Haemost 2012; 10:870-80. [PMID: 22385910 PMCID: PMC3636572 DOI: 10.1111/j.1538-7836.2012.04679.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The conversion of prothrombin to thrombin is one of two non-duplicated enzymatic reactions during coagulation. Thrombin has long been considered an optimal anticoagulant target because it plays a crucial role in fibrin clot formation by catalyzing the cleavage of fibrinogen, upstream coagulation cofactors and platelet receptors. Although a number of anti-thrombin therapeutics exist, it is challenging to use them clinically due to their propensity to induce bleeding. Previously, we isolated a modified RNA aptamer (R9D-14) that binds prothrombin with high affinity and is a potent anticoagulant in vitro. OBJECTIVES We sought to explore the structure of R9D-14 and elucidate its anticoagulant mechanism(s). In addition to designing an optimized aptamer (RNA(R9D-14T)), we also explored whether complementary antidote oligonucleotides can rapidly modulate the optimized aptamer's anticoagulant activity. METHODS AND RESULTS RNA(R9D-14T) binds prothrombin and thrombin pro/exosite I with high affinity and inhibits both thrombin generation and thrombin exosite I-mediated activity (i.e. fibrin clot formation, feedback activity and platelet activation). RNA(R9D-14T) significantly prolongs the aPTT, PT and TCT clotting assays, and is a more potent inhibitor than the thrombin exosite I DNA aptamer ARC-183. Moreover, a complementary oligonucleotide antidote can rapidly (< 2 min) and durably (>2 h) reverse RNA(R9D-14T) anticoagulation in vitro. CONCLUSIONS Powerful anticoagulation, in conjunction with antidote reversibility, suggests that RNA(R9D-14T) may be ideal for clinical anticoagulation in settings that require rapid and robust anticoagulation, such as cardiopulmonary bypass, deep vein thrombosis, stroke or percutaneous coronary intervention.
Collapse
|
Comparative Study |
13 |
53 |
17
|
McGovern T, Day BJ, White CW, Powell WS, Martin JG. AEOL10150: a novel therapeutic for rescue treatment after toxic gas lung injury. Free Radic Biol Med 2011; 50:602-8. [PMID: 21156205 PMCID: PMC4026011 DOI: 10.1016/j.freeradbiomed.2010.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/22/2010] [Accepted: 12/01/2010] [Indexed: 12/15/2022]
Abstract
New therapeutics designed as rescue treatments after toxic gas injury such as from chlorine (Cl(2)) are an emerging area of interest. We tested the effects of the metalloporphyrin catalytic antioxidant AEOL10150, a compound that scavenges peroxynitrite, inhibits lipid peroxidation, and has SOD and catalase-like activities, on Cl(2)-induced airway injury. Balb/C mice received 100ppm Cl(2) gas for 5 min. Four groups were studied: Cl(2) only, Cl(2) followed by AEOL10150 1 and 9 h after exposure, AEOL10150 only, and control. Twenty-four hours after Cl(2) gas exposure airway responsiveness to aerosolized methacholine (6.25-50mg/ml) was measured using a small-animal ventilator. Bronchoalveolar lavage (BAL) was performed to assess airway inflammation and protein. Whole lung tissue was assayed for 4-hydroxynonenal. In separate groups, lungs were collected at 72 h after Cl(2) injury to evaluate epithelial cell proliferation. Mice exposed to Cl(2) showed a significantly higher airway resistance compared to control, Cl(2)/AEOL10150, or AEOL10150-only treated animals in response to methacholine challenge. Eosinophils, neutrophils, and macrophages were elevated in BAL of Cl(2)-exposed mice. AEOL10150 attenuated the increases in neutrophils and macrophages. AEOL10150 prevented Cl(2)-induced increase in BAL fluid protein. Chlorine induced an increase in the number of proliferating airway epithelial cells, an effect AEOL10150 attenuated. 4-Hydroxynonenal levels in the lung were increased after Cl(2) and this effect was prevented with AEOL10150. AEOL10150 is an effective rescue treatment for Cl(2)-induced airway hyperresponsiveness, airway inflammation, injury-induced airway epithelial cell regeneration, and oxidative stress.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
50 |
18
|
Brenner M, Mahon SB, Lee J, Kim J, Mukai D, Goodman S, Kreuter KA, Ahdout R, Mohammad O, Sharma VS, Blackledge W, Boss GR. Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:017001. [PMID: 20210475 PMCID: PMC2816993 DOI: 10.1117/1.3290816] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 09/26/2009] [Accepted: 11/11/2009] [Indexed: 05/16/2023]
Abstract
Our purpose is to compare cobinamide to hydroxocobalamin in reversing cyanide (CN)-induced physiologic effects in an animal model using diffuse optical spectroscopy (DOS). Cyanide poisoning is a major threat worldwide. Cobinamide is a novel molecule that can bind two molecules of cyanide, has a much higher binding affinity than hydroxocobalamin, and is more water soluble. We investigated the ability of equimolar doses of cobinamide and hydroxocobalamin to reverse the effects of cyanide exposure in an animal model monitored continuously by DOS. Cyanide toxicity was induced in 16 New Zealand white rabbits by intravenous infusion. Animals were divided into three groups: controls (n=5) received saline following cyanide, hydroxocobalamin (N=6) following cyanide, and cobinamide (N=5) following cyanide. Cobinamide caused significantly faster and more complete recovery of oxy- and deoxyhemoglobin concentrations in cyanide-exposed animals than hydroxocobalamin- or saline-treated animals, with a recovery time constant of 13.8+/-7.1 min compared to 75.4+/-25.1 and 76.4+/-42.7 min, for hydroxocobalamin- and saline-treated animals, respectively (p<0.0001). This study indicates that cobinamide more rapidly and completely reverses the physiologic effects of cyanide than equimolar doses of cobalamin at the dose used in this study, and CN effects and response can be followed noninvasively using DOS.
Collapse
|
Comparative Study |
15 |
48 |
19
|
Batina MDF, Cintra AC, Veronese EL, Lavrador MA, Giglio JR, Pereira PS, Dias DA, França SC, Sampaio SV. Inhibition of the lethal and myotoxic activities of Crotalus durissus terrificus venom by Tabernaemontana catharinensis: identification of one of the active components. PLANTA MEDICA 2000; 66:424-428. [PMID: 10909261 DOI: 10.1055/s-2000-8577] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In Brazilian folk medicine, victims of bites by poisonous animals are usually treated with plant extracts derived from the diverse national flora. The chemical and pharmacological properties of most extracts were yet not investigated. In the rural community of Assis-SP, the root bark of Tabernaemontana catharinensis ("leiteiro", "cow milk") is applied to the site of the snake bite and believed to neutralize the effect of the venom. We report here the ability of the lyophilized aqueous extract (AE) and of a pure compound obtained from the ethanolic extract of T. catharinensis to inhibit the lethal and myotoxic activities of C. d. terrificus (South American rattlesnake) venom. Doses of 10 mg AE/100 g, injected (i.m., rat) 20 s after injecting (i.m.) the venom and that of 2.5 mg AE/100 g, incubated for 1 h at 25 degrees C with the venom before injection (i.m.) were able to neutralize the lethal activity of 2LD50. These data indicate that T. catharinensis could be used as a source of a model molecule able to neutralize the lethality and myotoxicity induced by C. d. terrificus venom. Its ethanolic extract was then fractionated on a silica gel 60 chromatography column affording fractions A to F. Fraction A consisted basically of non-polar compounds, terpenes and sterols. Fraction D showed a pronounced antiophidian activity which was later correlated with the presence of the quaternary alkaloid 12-methoxy-4-methylvoachalotine in this fraction. This alkaloid was isolated and inhibited 100% lethality when injected 20 s after 2 LD50 at 1.7 mg/100 g.
Collapse
|
|
25 |
47 |
20
|
Dadparvar M, Wagner S, Wien S, Kufleitner J, Worek F, von Briesen H, Kreuter J. HI 6 human serum albumin nanoparticles--development and transport over an in vitro blood-brain barrier model. Toxicol Lett 2011; 206:60-6. [PMID: 21726608 DOI: 10.1016/j.toxlet.2011.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 11/19/2022]
Abstract
The standard treatment of intoxication with organophosphorus (OP) compounds includes the administration of oximes acting as acetylcholinesterase (AChE) reactivating antidotes. However, the blood-brain barrier (BBB) restricts the rapid transport of these drugs from the blood into the brain in therapeutically relevant concentrations. Since human serum albumin (HSA) nanoparticles enable the delivery of a variety of drugs across the BBB into the brain, HI 6 dimethanesulfonate and HI 6 dichloride monohydrate were bound to these nanoparticles in the present study. The resulting sorption isotherms showed a better fit to Freundlich's empirical adsorption isotherm than to Langmuir's adsorption isotherm. At the pH of 8.3 maximum drug binding capacities of 344.8 μg and 322.6 μg per mg of nanoparticles were calculated for HI 6 dimethanesulfonate and HI 6 dichloride monohydrate, respectively. These calculated values are higher than the adsorption capacity of 93.5 μg/mg for obidoxime onto HSA nanoparticles determined in a previous study. In vitro testing of the nanoparticulate oxime formulations in primary porcine brain capillary endothelial cells (pBCEC) demonstrated an up to two times higher reactivation of OP-inhibited AChE than the free oximes. These findings show that nanoparticles made of HSA may enable a sufficient antidote OP-poisoning therapy with HI 6 derivatives even within the central nervous system (CNS).
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
46 |
21
|
Abstract
An examination of the studies on therapeutic chelating agents that have been carried out during the last decade reveals that extensive efforts have been made to develop compounds superior to those previously available for the treatment of acute and chronic intoxication by many metals. These metals include primarily iron, plutonium, cadmium, lead, and arsenic, but also many other elements for which acute and chronic intoxication is less common. These studies have revealed the importance of several additional factors of importance in the design of such compounds and have led to many new compounds of considerable clinical promise. An additional development has been the introduction of previously developed chelating agents for use with certain metals on a broader scale.
Collapse
|
Review |
34 |
43 |
22
|
Musilek K, Holas O, Jun D, Dohnal V, Gunn-Moore F, Opletalova V, Dolezal M, Kuca K. Monooxime reactivators of acetylcholinesterase with (E)-but-2-ene linker: preparation and reactivation of tabun- and paraoxon-inhibited acetylcholinesterase. Bioorg Med Chem 2007; 15:6733-41. [PMID: 17764957 DOI: 10.1016/j.bmc.2007.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 07/27/2007] [Accepted: 08/03/2007] [Indexed: 11/19/2022]
Abstract
Acetylcholinesterase reactivators are crucial antidotes for the treatment of organophosphate intoxication. Fifteen new monooxime reactivators of acetylcholinesterase with a (E)-but-2-ene linker were developed in an effort to extend the properties of K-oxime (E)-1-(4-carbamoylpyridinium)-4-(4-hydroxyiminomethylpyridinium)-but-2-ene dibromide (K203). The known reactivators (pralidoxime, HI-6, obidoxime, K075, K203) and the new compounds were tested in vitro on a model of tabun- and paraoxon-inhibited AChE. Monooxime reactivators were not able to exceed the best known compounds for tabun poisoning, but some of them did show reactivation comparable with known compounds for paraoxon poisoning. However, extensive differences were found by a SAR study for various substitutions on the non-oxime part of the reactivator molecule.
Collapse
|
|
18 |
41 |
23
|
Zhang X, Cheng Q, Li L, Shangguan L, Li C, Li S, Huang F, Zhang J, Wang R. Supramolecular therapeutics to treat the side effects induced by a depolarizing neuromuscular blocking agent. Theranostics 2019; 9:3107-3121. [PMID: 31244944 PMCID: PMC6567959 DOI: 10.7150/thno.34947] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Succinylcholine (Sch) is the only depolarizing neuromuscular blocking agent widely used for rapid sequence induction in emergency rooms. Unfortunately, a variety of (sometimes lethal) adverse effects, such as hyperkalemia and cardiac arrest, are associated with its use, and currently there are no specific antidotes to reverse Sch or to treat these side-effects. Methods: The binding behaviors of Sch and several synthetic receptors, including cucurbit[7]uril, sulfo-calix[4]arene and water-soluble carboxylatopillar[6]arene (WP[6]), were first investigated. With a mouse model, a leathal dose of Sch was selected for evaluation of the antidotal effects of these synthetic receptors on Sch induced mortality. The antidotal effects of a selected synthetic receptor, WP[6], on Sch induced cardiac arrhythmias, hyperkalemia, rhabdomyolysis and paralysis were subsequently evaluated with rat and mouse models. The reversal mechanism was also investigated at a cellular level. Results: All of these macrocyclic molecules exhibited relatively high binding affinities with Sch in vitro. In a Sch-overdosed mouse model, immediate injection of these synthetic receptors right after Sch administration increased the overall survival rate, with WP[6] standing out with the most effective antidotal effects. In addition, administration of WP[6] also reversed the paralysis induced by Sch in a mouse model. Moreover, infusion of WP[6] to Sch-overdosed rats reduced the incidence of cardiac arrhythmia, inhibited the otherwise abnormally high serum potassium levels, and relieved the muscular damage. At the cellular level, WP[6] reversed the Sch induced depolarization and reduced the efflux of intracellular potassium. Conclusion: Synthetic receptors, particularly WP[6], exhibited high binding affinities towards Sch, and presented a significant potential as supramolecular therapeutics to treat the various side effects of Sch by specifically sequestering Sch in vivo.
Collapse
|
research-article |
6 |
40 |
24
|
Allgardsson A, Berg L, Akfur C, Hörnberg A, Worek F, Linusson A, Ekström FJ. Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6. Proc Natl Acad Sci U S A 2016; 113:5514-9. [PMID: 27140636 PMCID: PMC4878515 DOI: 10.1073/pnas.1523362113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme-sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics.
Collapse
|
research-article |
9 |
40 |
25
|
Lin J, Jiang W, Liu DC. Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.). BIORESOURCE TECHNOLOGY 2003; 86:151-155. [PMID: 12653280 DOI: 10.1016/s0960-8524(02)00152-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of different concentrations of copper sulfate on the growth of and the accumulation of Cu2+ by root, hypocotyl, cotyledon and leaf growth of sunflower (Helianthus annuus L.) were examined in this study. The concentrations of copper sulfate (CuSO4 x 5H2O) used were in the range from 10(-5) to 10(-3) M. Seedlings exposed to 10(-5) M Cu2+ solution exhibited a 33% increase in growth (P < 0.005) when compared with the root length of the control. The seedlings treated with 10(-3) M Cu2+ were significantly inhibited in shoot growth (P < 0.005). The Cu2+ content in roots, hypocotyls, cotyledons and leaves increased with increasing solution Cu2+ concentration. The roots of plants exposed to 10(-3) M Cu2+ accumulated a large amount of Cu (1070 microgram/g DW), and the Cu2+ level was approximately 25 fold higher than that of control. The Cu2+ contents in sunflower roots treated with 10(-4) and 10(-5) M Cu2+ were about 3.3 and 2.6 fold higher than the control, respectively. Also, the Cu2- level of the roots exposed to 10(-3) M Cu2+ was approximately 7.7 and 9.8 fold respectively, in comparison with the roots of plants grown in 10(-4) and 10(-5) M Cu2+. At 10(-3) M Cu2+, the Cu accumulated mainly in the roots (about 73%), and small amounts of Cu2+ (27%) were translocated to the hypocotyls, cotyledons and leaves. The Cu2+ concentration in the roots was less than that of the above parts of seedlings in treated groups with 10(-5) - 10(-4) M Cu2+. H. annuus has potential ability to accumulate Cu without being overly sensitive to Cu toxicity.
Collapse
|
|
22 |
39 |