1
|
Mancini SJC, Mantei N, Dumortier A, Suter U, MacDonald HR, Radtke F. Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 2004; 105:2340-2. [PMID: 15550486 DOI: 10.1182/blood-2004-08-3207] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Jagged1-mediated Notch signaling has been suggested to be critically involved in hematopoietic stem cell (HSC) self-renewal. Unexpectedly, we report here that inducible Cre-loxP-mediated inactivation of the Jagged1 gene in bone marrow progenitors and/or bone marrow (BM) stromal cells does not impair HSC self-renewal or differentiation in all blood lineages. Mice with simultaneous inactivation of Jagged1 and Notch1 in the BM compartment survived normally following a 5FU-based in vivo challenge. In addition, Notch1-deficient HSCs were able to reconstitute mice with inactivated Jagged1 in the BM stroma even under competitive conditions. In contrast to earlier reports, these data exclude an essential role for Jagged1-mediated Notch signaling during hematopoiesis.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
208 |
2
|
Fick J, Barker FG, Dazin P, Westphale EM, Beyer EC, Israel MA. The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc Natl Acad Sci U S A 1995; 92:11071-5. [PMID: 7479939 PMCID: PMC40573 DOI: 10.1073/pnas.92.24.11071] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) viral-directed enzyme prodrug gene therapy causes potent, tumor-selective cytotoxicity in animal models in which HSV-tk gene transduction is limited to a minority of tumor cells. The passage of toxic molecules from HSV-tk+ cells to neighboring HSV-tk- cells during GCV therapy is one mechanism that may account for this "bystander" cytotoxicity. To investigate whether gap junction-mediated intercellular coupling could mediate this bystander effect, we used a flow cytometry assay to quantitate the extent of heterocellular coupling between HSV-tk+ murine fibroblasts and both rodent and human tumor cell lines. Bystander tumor cytotoxicity during GCV treatment in a coculture assay was highly correlated (P < 0.001) with the extent of gap junction-mediated coupling. These findings show that gap junction-mediated intercellular coupling contributes to the in vitro bystander effect during HSV-tk/GCV therapy and that retroviral transduction of tumor cells is not required for bystander cytotoxicity.
Collapse
|
research-article |
30 |
140 |
3
|
|
|
57 |
138 |
4
|
Deak T, Bordner KA, McElderry NK, Barnum CJ, Blandino P, Deak MM, Tammariello SP. Stress-induced increases in hypothalamic IL-1: a systematic analysis of multiple stressor paradigms. Brain Res Bull 2005; 64:541-56. [PMID: 15639551 DOI: 10.1016/j.brainresbull.2004.11.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 11/08/2004] [Accepted: 11/10/2004] [Indexed: 11/27/2022]
Abstract
Exposure to stressors such as footshock, tailshock, and immobilization have been shown to induce hypothalamic IL-1 production, while other stressors such as restraint, maternal separation, social isolation, and predator exposure have no effect on hypothalamic IL-1 levels. This disparity of findings has led to considerable controversy regarding the ability of stressors to induce hypothalamic IL-1 expression. Thus, the goal of the following experiments was to examine hypothalamic IL-1 responses in adult male Sprague-Dawley rats following exposure to a diverse set of stressors. Our data indicate that exposure to 2h of restraint in a Plexiglas tube, glucoprivic challenge induced by administration of 2-deoxyglucose (2-DG), or insulin-induced hypoglycemia all fail to alter hypothalamic IL-1 levels despite robust activation of the pituitary-adrenal response. However, when restraint was administered on an orbital shaker or in combination with insulin-induced hypoglycemia, robust increases in hypothalamic IL-1 were observed. No effects of glucoprivic (2-DG) challenge were observed when combined with restraint, indicating some specificity in the hypothalamic IL-1 response to stress. We also provide a preliminary validation of the ELISA detection method for IL-1, showing that (a) Western blot analyses confirmed strong immunopositive banding at the apparent molecular weight of both mature IL-1beta and the IL-1beta prohormone, and (b) footshock led to a two-fold increase in mRNA for IL-1 in the hypothalamus as detected by RT-PCR. These data provide novel insight into the characteristics of a stressor that may be necessary for the observation of stress-induced increases in hypothalamic IL-1.
Collapse
|
|
20 |
119 |
5
|
Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A. Alpha-tocotrienol provides the most potent neuroprotection among vitamin E analogs on cultured striatal neurons. Neuropharmacology 2005; 47:904-15. [PMID: 15527824 DOI: 10.1016/j.neuropharm.2004.06.029] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 06/29/2004] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
Oxidative stress and apoptosis play pivotal roles in the pathogenesis of neurodegenerative diseases. We investigated the effects of vitamin E analogs on oxidative stress and apoptosis using primary neuronal cultures of rat striatum. A tocotrienol-rich fraction of edible oil derived from palm oil (Tocomin 50%), which contains alpha-tocopherol, and alpha-, gamma- and delta-tocotrienols, significantly inhibited hydrogen peroxide (H2O2)-induced neuronal death. Each of the tocotrienols, purified from Tocomin 50% by high-performance liquid chromatography, significantly attenuated H2O2-induced neurotoxicity, whereas alpha-tocopherol did not. alpha-, gamma- and delta-Tocotrienols also provided significant protection against the cytotoxicity of a superoxide donor, paraquat, and nitric oxide donors, S-nitrosocysteine and 3-morpholinosydnonimine. Moreover, tocotrienols blocked oxidative stress-mediated cell death with apoptotic DNA fragmentation caused by an inhibitor of glutathione synthesis, L-buthionine-[S,R]-sulfoximine. In addition, alpha-tocotrienol, but not gamma- or delta-tocotrienol, prevented oxidative stress-independent apoptotic cell death, DNA cleavage and nuclear morphological changes induced by a non-specific protein kinase inhibitor, staurosporine. These findings suggest that alpha-tocotrienol can exert anti-apoptotic neuroprotective action independently of its antioxidant property. Among the vitamin E analogs examined, alpha-tocotrienol exhibited the most potent neuroprotective actions in rat striatal cultures.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
92 |
6
|
Amin A, Hamza AA. Hepatoprotective effects of Hibiscus, Rosmarinus and Salvia on azathioprine-induced toxicity in rats. Life Sci 2005; 77:266-78. [PMID: 15878355 DOI: 10.1016/j.lfs.2004.09.048] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 09/23/2004] [Indexed: 11/18/2022]
Abstract
As an anti-metabolite, Azathioprine inhibits the de novo and salvage pathways of purine synthesis. Intraperitoneal injection of this drug results in not only lymphocyte suppression but also toxicity to bone marrow, gastrointestinal tract, and liver. This Azathioprine-induced hepatotoxicity was found to be associated with oxidative damage. Plants with antioxidative properties have been traditionally used to prevent diseases associated with free radicals. In this report, we used water extracts of three herbal plants that have been commonly used for treating many illnesses (Hibiscus sabdariffa, Rosmarinus officinalis and Salvia officinalis). Here we show their novel hepatoprotective effects against Azathioprine-induced hepatotoxicity in rats. Typically, administration of Azathioprine induces oxidative stress through depleting the activities of antioxidants and elevating the level of malonialdehyde in liver. This escalates levels of alanine aminotransferase, and aspartate aminotranferase in serum. Pretreatment with any of the three herbal plants used in this investigation proved to have a protective effect against Azathioprine-induced hepatotoxicity. Animals pretreated with water extracts from any of the three herbs under investigation not only failed to show necrosis of the liver after azathioprine administration, but also retained livers that, for the most part, were histologically normal. In addition, these herbs blocked the induced elevated levels of alanine aminotransferase and aspartate aminotranferase in serum. The Azathioprine-induced oxidative stress was relieved to varying degrees by the examined herbal extracts. This effect was evident through reducing malonialdehyde levels and releasing the inhibitory effect of Azathioprine on the activities of glutathione, catalase and superoxide dismutase. To our knowledge, this report is the first that shows hepatoprotective effects of Hibiscus, Rosmarinus and Salvia species against Azathioprine-induced acute liver damage.
Collapse
|
Journal Article |
20 |
90 |
7
|
Li Y, Maher P, Schubert D. Phosphatidylcholine-specific phospholipase C regulates glutamate-induced nerve cell death. Proc Natl Acad Sci U S A 1998; 95:7748-53. [PMID: 9636222 PMCID: PMC22746 DOI: 10.1073/pnas.95.13.7748] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylcholine-specific phospholipase C (PC-PLC) is a necessary intermediate in transducing apoptotic signals for tumor necrosis factor and Fas/Apo-1 ligands in nonneuronal cells. The data presented here show that PC-PLC also is required in oxidative glutamate-induced programmed cell death of both immature cortical neurons and a hippocampal nerve cell line, HT22. In oxidative glutamate toxicity, which is distinct from excitotoxicity, glutamate interferes with cystine uptake by blocking the cystine/glutamate antiporter, indirectly causing a depletion of intracellular glutathione. A PC-PLC inhibitor blocks oxidative glutamate toxicity, and exogenous PC-PLC potentiates glutamate toxicity. The inhibition of PC-PLC uncouples the cystine uptake from glutamate inhibition, allowing the maintenance of glutathione synthesis and cell viability. These data suggest that PC-PLC modulates neuronal cell death through a mechanism that is distinct from that involved in nonneuronal apoptosis.
Collapse
|
research-article |
27 |
88 |
8
|
Gilbert ME, Paczkowski C. Propylthiouracil (PTU)-induced hypothyroidism in the developing rat impairs synaptic transmission and plasticity in the dentate gyrus of the adult hippocampus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 145:19-29. [PMID: 14519490 DOI: 10.1016/s0165-3806(03)00191-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reductions in thyroid hormone during critical periods of brain development can have devastating effects on neurological function that are permanent. Neurochemical, molecular and structural alterations in a variety of brain regions have been well documented, but little information is available on the consequences of developmental hypothyroidism on synaptic function. Developing rats were exposed to the thyrotoxicant, propylthiouracil (PTU: 0 or 15 ppm), through the drinking water of pregnant dams beginning on GD18 and extending throughout the lactational period. Male offspring were allowed to mature after termination of PTU exposure at weaning on PND21 and electrophyiological assessments of field potentials in the dentate gyrus were conducted under urethane anesthesia between 2 and 5 months of age. PTU dramatically reduced thyroid hormones on PND21 and produced deficits in body weight that persisted to adulthood. Synaptic transmission was impaired as evidenced by reductions in excitatory postsynaptic potential (EPSP) slope and population spike (PS) amplitudes at a range of stimulus intensities. Long-term potentiation of the EPSP slope was impaired at both modest and strong intensity trains, whereas a paradoxical increase in PS amplitude was observed in PTU-treated animals in response to high intensity trains. These data are the first to describe functional impairments in synaptic transmission and plasticity in situ as a result of PTU treatment and suggest that perturbations in synaptic function may contribute to learning deficits associated with developmental hypothyroidism.
Collapse
|
Comparative Study |
22 |
83 |
9
|
Schein PS, Davis RD, Carter S, Newman J, Schein DR, Rall DP. The evaluation of anticancer drugs in dogs and monkeys for the prediction of qualitative toxicities in man. Clin Pharmacol Ther 1970; 11:3-40. [PMID: 4983384 DOI: 10.1002/cpt19701113] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
|
55 |
78 |
10
|
Klosterman HJ, Lamoureux GL, Parsons JL. Isolation, characterization, and synthesis of linatine. A vitamin B6 antagonist from flaxseed (Linum usitatissimum). Biochemistry 1967; 6:170-7. [PMID: 6071768 DOI: 10.1021/bi00853a028] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
|
58 |
74 |
11
|
Potten CS. Protection of the small intestinal clonogenic stem cells from radiation-induced damage by pretreatment with interleukin 11 also increases murine survival time. Stem Cells 1996; 14:452-9. [PMID: 8843547 DOI: 10.1002/stem.140452] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of administering recombinant human interleukin 11 in conjunction with cytotoxic insults to the gastrointestinal tract has been studied using the crypt microcolony assay for stem cell function and whole-animal survival time studies. The cytotoxic regimens include single doses of gamma rays; single doses of 5-fluorouracil (5-FU) and multiple doses of 5-FU spaced 6 h apart. Interleukin 11 (IL-11) (100 micrograms/kg) delivered over a period of time prior to cytotoxic exposure afforded protection to the clonogenic cells in the crypts as seen with the microcolony assay and prolonged the animal survival time following radiation exposure. Continuing this dose of IL-11 after cytotoxic exposure afforded little additional protection. Three doses of 5-FU 6 h apart generated crypt survival curves similar to those obtained after a single dose of gamma rays. IL-11 given prior to two doses of 5-FU effectively abolished the cytotoxic effect of the second dose of 5-FU; i.e., 2.5-3.0 times more crypts survived if IL-11 was administered when the higher 5-FU doses are considered. IL-11 given before a dose of 12 Gy of gamma rays prolonged the survival time of animals by three to four days. This confirms earlier studies demonstrating that protecting clonogenic cells in the crypt survival assay can result in beneficial effects on whole-animal survival times.
Collapse
|
|
29 |
69 |
12
|
Phillips RG, Meier TJ, Giuli LC, McLaughlin JR, Ho DY, Sapolsky RM. Calbindin D28K gene transfer via herpes simplex virus amplicon vector decreases hippocampal damage in vivo following neurotoxic insults. J Neurochem 1999; 73:1200-5. [PMID: 10461912 DOI: 10.1046/j.1471-4159.1999.0731200.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increases in cytoplasmic Ca2+ concentration ([Ca2+]i) can lead to neuron death. Preventing a rise in [Ca2+]i by removing Ca2+ from the extracellular space or by adding Ca2+ chelators to the cytosol of target cells ameliorates the neurotoxicity associated with [Ca2+]i increases. Another potential route of decreasing the neurotoxic impact of Ca2+ is to overexpress one of the large number of constitutive calcium-binding proteins. Previous studies in this laboratory demonstrated that overexpression of the gene for the calcium-binding protein calbindin D28K, via herpes simplex virus (HSV) amplicon vector, increases the survival of hippocampal neurons in vitro following energetic or excitotoxic insults but not following application of sodium cyanide. We now report that in vivo hippocampal infection with the calbindin D28K HSV vector increases neuronal survival in the dentate gyrus after application of the antimetabolite 3-acetylpyridine and increases transsynaptic neuronal survival in area CA3 following kainic acid neurotoxicity. The protective effects of infection with the calbindin D28K vector in an intact brain may prove to be beneficial during changes in Ca2+ homeostasis caused by neurological trauma associated with aging and certain neurological diseases.
Collapse
|
|
26 |
63 |
13
|
Bridges RJ, Koh JY, Hatalski CG, Cotman CW. Increased excitotoxic vulnerability of cortical cultures with reduced levels of glutathione. Eur J Pharmacol 1991; 192:199-200. [PMID: 1674918 DOI: 10.1016/0014-2999(91)90093-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
|
34 |
59 |
14
|
Lund KC, Peterson LL, Wallace KB. Absence of a universal mechanism of mitochondrial toxicity by nucleoside analogs. Antimicrob Agents Chemother 2007; 51:2531-9. [PMID: 17470651 PMCID: PMC1913246 DOI: 10.1128/aac.00039-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/08/2007] [Accepted: 04/24/2007] [Indexed: 11/20/2022] Open
Abstract
Nucleoside analogs are associated with various mitochondrial toxicities, and it is becoming increasingly difficult to accommodate these differences solely in the context of DNA polymerase gamma inhibition. Therefore, we examined the toxicities of zidovudine (AZT) (10 and 50 microM; 2.7 and 13.4 microg/ml), didanosine (ddI) (10 and 50 microM; 2.4 and 11.8 microg/ml), and zalcitabine (ddC) (1 and 5 microM; 0.21 and 1.1 microg/ml) in HepG2 and H9c2 cells without the presumption of mitochondrial DNA (mtDNA) depletion. Ethidium bromide (EtBr) (0.5 microg/ml; 1.3 microM) was used as a positive control. AZT treatment resulted in metabolic disruption (increased lactate and superoxide) and increased cell mortality with decreased proliferation, while mtDNA remained unchanged or increased (HepG2 cells; 50 microM AZT). ddC caused pronounced mtDNA depletion in HepG2 cells but not in H9c2 cells and increased mortality in HepG2 cells, but no significant metabolic disruption in either cell type. ddI caused a moderate depletion of mtDNA in both cell types but showed no other effects. EtBr exposure resulted in metabolic disruption, increased cell mortality with decreased cell proliferation, and mtDNA depletion in both cell types. We conclude that nucleoside analogs display unique toxicities within and between culture models, and therefore, care should be taken when generalizing about the mechanisms of nucleoside reverse transcriptase inhibitor toxicity. Additionally, mtDNA abundance does not necessarily correlate with metabolic disruption, especially in cell culture; careful discernment is recommended in this regard.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
59 |
15
|
Dukhande VV, Malthankar-Phatak GH, Hugus JJ, Daniels CK, Lai JCK. Manganese-induced neurotoxicity is differentially enhanced by glutathione depletion in astrocytoma and neuroblastoma cells. Neurochem Res 2006; 31:1349-57. [PMID: 17053969 DOI: 10.1007/s11064-006-9179-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 09/20/2006] [Indexed: 11/26/2022]
Abstract
Manganese (Mn) is neurotoxic: the underlying mechanisms have not been fully elucidated. L: -Buthionine-(S,R)-sulfoximine (BSO) is an irreversible inhibitor of gamma-glutamylcysteine synthetase, an important enzyme in glutathione (GSH) synthesis. To test the hypothesis that BSO modulates Mn toxicity, we investigated the effects of treatment of U-87 or SK-N-SH cells with MnCl(2), BSO, or MnCl(2) plus BSO. We monitored cell viability using MTT assay, staining with HO-33342 to assess live and/or apoptotic cells, and staining with propidium iodide (PI) to assess necrotic cells; we also measured cellular glutathione. Our results indicate decreased viability in both cell types when treated with MnCl(2) or BSO: Mn was more toxic to SK-N-SH cells, whereas BSO was more toxic to U-87 cells. Because BSO treatment accentuated Mn toxicity in both cell lines, GSH may act to combat Mn toxicity. Thus, further investigation in oxidative stress mediated by glutathione depletion will unravel new Mn toxicity mechanism(s).
Collapse
|
Research Support, N.I.H., Extramural |
19 |
56 |
16
|
Goodman JC, Trask TW, Chen SH, Woo SL, Grossman RG, Carey KD, Hubbard GB, Carrier DA, Rajagopalan S, Aguilar-Cordova E, Shine HD. Adenoviral-mediated thymidine kinase gene transfer into the primate brain followed by systemic ganciclovir: pathologic, radiologic, and molecular studies. Hum Gene Ther 1996; 7:1241-50. [PMID: 8793548 DOI: 10.1089/hum.1996.7.10-1241] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transduction of experimental gliomas with the herpes simplex virus thymidine kinase gene (HSV-tk) using a replication-defective adenoviral vector (ADV/RSV-tk) confers sensitivity to ganciclovir (GCV) leading to tumor destruction and prolonged host survival in rodents. To determine treatment tolerance prior to clinical trials, we conducted toxicity studies in 6 adult baboons (Papio sp.). The animals received intracerebral injections of either a high dose of ADV/RSV-tk [1.5 x 10(9) plaque-forming units (pfu)] with or without GCV, or a low dose of ADV/RSV-tk (7.5 x 10(7) pfu) with GCV. The low dose corresponded to the anticipated therapeutic dose; the high dose was expected to be toxic. Magnetic resonance imaging (MRI) of the brain was obtained before treatment and at 3 and 6 weeks after treatment. Animals receiving the high-dose vector and GCV either died or became moribund and required euthanasia during the first 8 days of treatment. Necropsies revealed cavities of coagulative necrosis at the injection sites. Animals receiving only the high-dose vector were clinically normal; however, lesions were detected with MRI at the injection sites corresponding to cystic cavities at necropsy. Animals receiving the low-dose vector and GCV were clinically normal, exhibited small MRI abnormalities, and, although no gross lesions were present at necropsy, microscopic foci of necrosis were present. The vector sequence was detected by polymerase chain reaction (PCR) at the injection sites and in non-adjacent central nervous system tissue in all animals. Recombinant DNA sequence was detected outside of the nervous system in some animals, and persisted up to 6 weeks. The viral vector injections stimulated the production of neutralizing antibodies in the animals. No shedding of the vector was found in urine, feces, or serum 7 days after intracerebral injection. This study suggests that further investigations including clinical toxicity trials of this form of brain tumor therapy are warranted.
Collapse
|
|
29 |
49 |
17
|
Chang YC, Tzeng SF, Yu L, Huang AM, Lee HT, Huang CC, Ho CJ. Early-life fluoxetine exposure reduced functional deficits after hypoxic-ischemia brain injury in rat pups. Neurobiol Dis 2006; 24:101-13. [PMID: 16887358 DOI: 10.1016/j.nbd.2006.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 05/24/2006] [Accepted: 06/05/2006] [Indexed: 11/21/2022] Open
Abstract
Neuroplasticity after perinatal programming may allow for neuroprotection against hypoxic-ischemia (HI) at birth. The cAMP response element-binding protein (CREB) is a key mediator of stimulus-induced nuclear responses that underlie survival, memory and plasticity of nervous system. Chronic treatment of fluoxetine, a selective serotonin reuptake inhibitor, can upregulate CREB activation in the hippocampus. We examined whether fluoxetine administration before HI may protect against neonatal HI brain injury through CREB-mediated mechanisms. We found that low-dose fluoxetine pretreatment in a neonatal HI brain injury model significantly reduced functional deficits at adulthood. The neuroprotective mechanisms were associated with increased CREB phosphorylation and increased brain-derived neurotrophic factor and synapsin I mRNA expression in the hippocampus. Neurogenesis also increased because of greater precursor cell survival in the hippocampal dentate gyrus. These findings suggest that functional deficits after HI in the developing brain can be reduced by agents that enhance neural plasticity and neurogenesis through CREB activation.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
48 |
18
|
Zalups RK. Organic anion transport and action of gamma-glutamyl transpeptidase in kidney linked mechanistically to renal tubular uptake of inorganic mercury. Toxicol Appl Pharmacol 1995; 132:289-98. [PMID: 7785056 DOI: 10.1006/taap.1995.1110] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the present study, the roles of renal tubular gamma-glutamyl transpeptidase and renal organic anion transport on the renal uptake and accumulation and intrarenal distribution of injected inorganic mercury were investigated. The renal (and general) disposition of injected inorganic mercury (Hg2+) was evaluated in control rats, rats pretreated with two 10 mg/kg doses of acivicin, rats pretreated with a 10 mmol/kg dose of p-aminohippurate (PAH), and rats pretreated with both acivicin and PAH. The dose(s) of acivicin were used to inhibit the activity of renal gamma-glutamyl transpeptidase to a near maximal level and the dose of PAH (which is a water-soluble organic anion) was used to competitively inhibit the renal organic anion transport system to a near maximal level. Dispositional data were obtained at both 1 and 24 hr after a nontoxic, 0.5 mumol/kg iv dose of mercuric chloride had been administered. Radiolabeled inorganic mercury (203Hg2+) was added to the injection solution containing the mercuric chloride to make it possible to quantitate the accumulation and disposition of mercury using standard isotopic methods. The renal concentration and content of mercury were significantly lower in the rats pretreated with either acivicin or PAH than in the control rats at both times after the injection of inorganic mercury. Pretreatment with acivicin mainly affected the content of mercury in the renal cortex, while pretreatment with PAH affected the content of mercury in both the renal cortex and the outer stripe of the outer medulla. Interestingly, the renal concentration and content of mercury in the rats pretreated with both acivicin and PAH were significantly lower than in any of the other three groups at both times after injection of inorganic mercury. Evaluation of the intrarenal distribution of mercury indicated that the renal cortex was the main zone in which the uptake of mercury was significantly affected by both acivicin and PAH. The findings from this study indicate that the renal tubular uptake of administered inorganic mercury is linked both to the transport of organic anions and to the action of gamma-glutamyltransferase. Thus, at least two mechanisms appear to be involved in the renal tubular uptake of inorganic mercury.
Collapse
|
|
30 |
48 |
19
|
Adler HJ, Komeda M, Raphael Y. Further evidence for supporting cell conversion in the damaged avian basilar papilla. Int J Dev Neurosci 1997; 15:375-85. [PMID: 9263020 DOI: 10.1016/s0736-5748(96)00098-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two lines of evidence suggested that a process other than supporting cell divisions may give rise to new hair cells in the bird inner ear injured by either noise or ototoxic drugs. This process, supporting cell conversion, occurs when non-dividing supporting cells transdifferentiate into hair cells. First, noise-exposed chicks received zero, one or two daily i.p. injections of cytosine arabinoside (a DNA synthesis blocker), as well as two daily intraperitoneal injections of bromodeoxyuridine, for four days. Following sacrifice, the papillae were processed for bromodeoxyuridine immunocytochemistry. All the ears demonstrated dividing cells, but increasing the number of cytosine arabinoside injections decreased the number of labeled cells. Indeed, two cytosine arabinoside injections per day nearly completely blocked supporting cell divisions in the short hair cell region within the sound-induced lesion. This suggested that unpaired, immature cells observed in a similar region with scanning electron microscopy, despite the presence of cytosine arabinoside, may have been products of supporting cell conversion. In the second experiment, birds were treated with gentamicin for three days. Upon sacrifice at 6 days post-treatment, papillae were processed for light and transmission electron microscopy. Several unusual cells were observed with phenotypic features of both hair cells and supporting cells. The peculiar cells may be in a transition from the supporting cell phenotype to that of a hair cell.
Collapse
|
|
28 |
46 |
20
|
Virmani A, Gaetani F, Binienda Z. Effects of Metabolic Modifiers Such as Carnitines, Coenzyme Q10, and PUFAs against Different Forms of Neurotoxic Insults: Metabolic Inhibitors, MPTP, and Methamphetamine. Ann N Y Acad Sci 2005; 1053:183-91. [PMID: 16179522 DOI: 10.1196/annals.1344.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A number of strategies using the nutritional approach are emerging for the protection of the brain from damage caused by metabolic toxins, age, or disease. Neural dysfunction and metabolic imbalances underlie many diseases, and the inclusion of metabolic modifiers may provide an alternative and early intervention approach that may prevent further damage. Various models have been developed to study the impact of metabolism on brain function. These have also proven useful in expanding our understanding of neurodegeneration processes. For example, the metabolic compromise induced by inhibitors such as 3-nitropropionic acid (3-NPA), rotenone, and 1-methyl-4-phenylpyridinium (MPP+) can cause neurodegeneration in animal models and these models are thought to simulate the processes that may lead to diseases such as Huntington's and Parkinson's diseases. These inhibitors of metabolism are thought to selectively kill neurons by inhibiting various mitochondrial enzymes. However, the eventual cell death is attributed to oxidative stress damage of selectively vulnerable cells, especially highly differentiated neurons. Various studies indicate that the neurotoxicity resulting from these types of metabolic compromise is related to mitochondrial dysfunction and may be ameliorated by metabolic modifiers such as L-carnitine (L-C), creatine, and coenzyme Q10, as well as by antioxidants such as lipoic acid, vitamin E, and resveratrol. Mitochondrial function and cellular metabolism are also affected by the dietary intake of essential polyunsaturated fatty acids (PUFAs), which may regulate membrane composition and influence cellular processes, especially the inflammatory pathways. Cellular metabolic function may also be ameliorated by caloric restriction diets. L-C is a naturally occurring quaternary ammonium compound that is a vital cofactor for the mitochondrial entry and oxidation of fatty acids. Any factors affecting L-C levels may also affect ATP levels. This endogenous compound, L-C, together with its acetyl ester, acetyl-L-carnitine (ALC), also participates in the control of the mitochondrial acyl-CoA/CoA ratio, peroxisomal oxidation of fatty acids, and production of ketone bodies. A deficiency of carnitine is known to have major deleterious effects on the CNS. We have examined L-C and its acetylated derivative, ALC, as potential neuroprotective compounds using various known metabolic inhibitors, as well as against drugs of abuse such as methamphetamine.
Collapse
|
|
20 |
44 |
21
|
Yee D, McGuire SE, Brünner N, Kozelsky TW, Allred DC, Chen SH, Woo SL. Adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase in an ascites model of human breast cancer. Hum Gene Ther 1996; 7:1251-7. [PMID: 8793549 DOI: 10.1089/hum.1996.7.10-1251] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this study, the growth of locally disseminated breast cancer was modeled using a human breast cancer cell line, MDA-MB-435A, adapted to grow as an ascites tumor in athymic mice. Ex vivo infection of MDA-MB-435A cells with adenovirus containing the herpes simplex virus thymidine kinase gene (HSV-tk) were injected into the intraperitoneal cavity of athymic mice. Ganciclovir (GCV) treatment resulted in prolonged median survival (117 vs. 34 days, p < 0.001) compared to untreated or control animals. Adenovirus containing HSV-tk also demonstrated therapeutic activity after in vivo transduction resulting in prolongation of median survival after GCV treatment (32 vs. 25 days, p < 0.001). However, compared to ex vivo treatment, the effect was modest. In an attempt to increase survival, the viral dose was increased three-fold. Instead of prolonging survival, the increased dose resulted in more toxic deaths. Necropsy demonstrated that the most significant histologic abnormality was marked, diffuse, cytomegalic changes in the liver. Polymerase chain reaction (PCR) analysis of hepatic DNA demonstrated the presence of the virus in the affected tissue. Similar host toxicity and hepatic abnormalities were seen in non-tumor-bearing mice treated with ADV/RSV-tk plus GCV. In conclusion, adenoviral vectors can successfully transfer genes in vivo to cancer cells growing as ascites tumors. Transduction with HSV-tk followed by GCV treatment can prolong survival in this model system of disseminated disease, however toxicity can be substantial. Further refinement in targeting expression of HSV-tk will be required to enhance the therapeutic benefit.
Collapse
|
|
29 |
43 |
22
|
Horiuchi H, Ota M, Nishimura S, Kaneko H, Kasahara Y, Ohta T, Komoriya K. Allopurinol induces renal toxicity by impairing pyrimidine metabolism in mice. Life Sci 2000; 66:2051-70. [PMID: 10823345 DOI: 10.1016/s0024-3205(00)00532-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We investigated the relationship between the toxic effect of allopurinol and pyrimidine metabolism in mice. Allopurinol-induced increases in plasma transaminase levels in dinitrofluorobenzene (DNFB)-sensitized mice were not affected by uridine. In contrast, plasma creatinine and BUN tended to decrease 18 hr after the last injection of uridine. Both plasma and urinary orotidine (OD) were detected in DNFB-sensitized mice after administration of a single dose of allopurinol. In contrast, TEI-6720, a newly synthesized xanthine oxidase/xanthine dehydrogenase inhibitor, caused neither pyrimidine metabolism abnormality nor renal impairment in DNFB-sensitized mice. Also, normal mice administered high doses of allopurinol showed abnormal pyrimidine metabolism together with renal toxicity which could be ameliorated by uridine, indicating that allopurinol essentially causes pyrimidine metabolism abnormality leading to renal impairment. In DNFB-sensitized mice, allopurinol increased urinary OD excretion to an extent similar to that in normal mice administered the same dose of allopurinol. However, renal impairment by allopurinol was more striking in DNFB-sensitized mice than in normal mice. Histopathological observations showed that allopurinol induced calculus formation in the collecting tubules and papillary duct. Calculus formation was increased by DNFB and decreased by uridine. These observations indicate that the enhancement of the renal toxicity of allopurinol by DNFB-sensitization may be due to some biological interactions between DNFB and allopurinol. In humans, it is possible that there are some biological interactions which serve to enhance the toxicity of allopurinol, resulting in the development of allopurinol hypersensitivity syndrome (AHS). In contrast, TEI-6720, had no effect on pyrimidine metabolism and showed no toxic effect.
Collapse
|
|
25 |
43 |
23
|
Caldwell MA, He X, Svendsen CN. 5-Bromo-2'-deoxyuridine is selectively toxic to neuronal precursors in vitro. Eur J Neurosci 2006; 22:2965-70. [PMID: 16324131 DOI: 10.1111/j.1460-9568.2005.04504.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effect of 5-bromo-2'-deoxyuridine (BrdU) incorporation on the phenotype of progeny derived from expanded E18 rat striatal precursors was examined. BrdU was administered to cultures for 24 h prior to differentiation. Results revealed that there was selective toxicity of this compound to developing TuJ1+ neurons, but not glia, at concentrations used in most labelling studies. Therefore, a BrdU dose-response curve from 0.2 microM to 10 microM was established. The optimum dose of BrdU for labelling cells was 0.2 microM, well below the 1-10 microm recommended concentration. This dose resulted in the survival of significantly more newborn BrdU/TuJ1+ double-labelled neurons and eliminated the toxic effects of BrdU. Administration of 10 microm BrdU resulted in a significant decrease in extracellular regulated kinase (ERK) phosphorylation compared with untreated cultures, this could be completely restored by the administration of either N-methyl-D-aspartate (NMDA) receptor antagonists such as MK801 or the nitric oxide synthesis inhibitor L-methyl-arginine methyl ester (L-NAME). Our results show that high levels of BrdU are selectively toxic to neurons through a mechanism that activates classical cell death pathways. This has implications for labelling studies both in vivo and in vitro.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
38 |
24
|
Berent-Spillson A, Russell JW. Metabotropic glutamate receptor 3 protects neurons from glucose-induced oxidative injury by increasing intracellular glutathione concentration. J Neurochem 2007; 101:342-54. [PMID: 17402968 DOI: 10.1111/j.1471-4159.2006.04373.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
High glucose concentrations cause oxidative injury and programmed cell death in neurons, and can lead to diabetic neuropathy. Activating the type 3 metabotropic glutamate receptor (mGluR3) prevents glucose-induced oxidative injury in dorsal root ganglion neurons co-cultured with Schwann cells. To determine the mechanisms of protection, studies were performed in rat dorsal root ganglion neuron-Schwann cell co-cultures. The mGluR3 agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate prevented glucose-induced inner mitochondrial membrane depolarization, reactive oxygen species accumulation, and programmed cell death, and increased glutathione (GSH) concentration in co-cultured neurons and Schwann cells, but not in neurons cultured without Schwann cells. Protection was diminished in neurons treated with the GSH synthesis inhibitor l-buthionine-sulfoximine, suggesting that mGluR-mediated protection requires GSH synthesis. GSH precursors and the GSH precursor GSH-ethyl ester also protected neurons from glucose-induced injury, indicating that GSH synthesis in Schwann cells, and transport of reaction precursors to neurons, may underlie mGluR-mediated neuroprotection. These results support the conclusions that activating glial mGluR3 protects neurons from glucose-induced oxidative injury by increasing free radical scavenging and stabilizing mitochondrial function, through increased GSH antioxidant defense.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
37 |
25
|
Hunter ES, Tugman JA. Inhibitors of glycolytic metabolism affect neurulation-staged mouse conceptuses in vitro. TERATOLOGY 1995; 52:317-23. [PMID: 8711618 DOI: 10.1002/tera.1420520602] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to evaluate the apparent discordance between altered glucose metabolism and embryonic energy production, the effects of inhibitors of glucose utilization on morphological development and biochemical changes in mouse embryos in culture were evaluated. Day 9 ICR mouse conceptuses having 3-6 pairs of somites were prepared for culture as previously described. 2-Deoxyglucose (2DG) produced a concentration-dependent effect on development. A 25 microM 2DG concentration did not induce neural tube closure defects (NTDs) but 100 microM, 100% of embryos exhibited this defect. A 17% reduction in the rate of lactate production by the conceptus was produced by a 24-hr exposure period to 100 microM 2DG. Iodoacetate, which inhibits glyceraldehyde-3-phosphate dehydrogenase in adult tissues, produced high rates of NTDs at concentrations > or = 2.5 microM. Following a 24 hour exposure to iodoacetate, lactate production was inhibited at 10 and 25 microM. The effects of 2DG on embryonic ATP content were assessed to test the hypothesis that effects on glucose utilization would effect embryonic ATP content. Despite using 2DG concentrations that alter development and inhibit glycolysis, there were no effects on whole embryo or visceral yolk sac (VYS) ATP content. However, when the embryo was divided into regions, there was a specific reduction in ATP content in the head following a 24-hr exposure period. No effect of 2DG on head ATP content was produced after 12 hr of exposure. To determine if there were region specific differences in 2DG uptake and distribution that could account for the differential effects of 2DG on ATP content, 14C-2DG accumulation in different regions of the embryo and VYS was determined over the 24-hr culture period. The uptake of 2DG was dependent on the medium 2DG concentration and suggested a higher accumulation in regions with decreased ATP. However, when the uptake was monitored for a 1-hr period after a 24-hr exposure, there was no region specific differences in 2DG uptake. These studies further document the adverse developmental effects of inhibitors of glucose utilization during the early stage of neurulation. The biochemical mechanism for induction of these defects is unclear, but an effect on ATP content does not appear to be solely responsible for the dysmorphogenesis.
Collapse
|
|
30 |
36 |