1
|
Abstract
Many questions in evolutionary biology are best addressed by comparing traits in different species. Often such studies involve mapping characters on phylogenetic trees. Mapping characters on trees allows the nature, number, and timing of the transformations to be identified. The parsimony method is the only method available for mapping morphological characters on phylogenies. Although the parsimony method often makes reasonable reconstructions of the history of a character, it has a number of limitations. These limitations include the inability to consider more than a single change along a branch on a tree and the uncoupling of evolutionary time from amount of character change. We extended a method described by Nielsen (2002, Syst. Biol. 51:729-739) to the mapping of morphological characters under continuous-time Markov models and demonstrate here the utility of the method for mapping characters on trees and for identifying character correlation.
Collapse
|
Comparative Study |
22 |
605 |
2
|
Via S, Bouck AC, Skillman S. Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments. Evolution 2000; 54:1626-37. [PMID: 11108590 DOI: 10.1111/j.0014-3820.2000.tb00707.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sympatric races of pea aphids on alfalfa and red clover are highly ecologically specialized and significantly reproductively isolated. Much of the restriction of gene flow between the specialized populations is due to habitat choice behavior of the winged colonizers (Via 1999). Here, we document additional pre- and postmating reproductive isolation through selection against migrants and hybrids in the parental environments. First, a group of randomly chosen genotypes from each race that were experimentally migrated between hosts had very low survival and reproduction on the alternate host relative to genotypes originating from that host (natives). Such selection against cross-host migrants forms a premating barrier to gene flow because it is likely to reduce migrant frequencies before the sexual forms are induced in the fall. Our reciprocal transplant experiment also shows that natural selection acts directly on individual migrants between the crops to favor host choice behavior: genotypes from each host suffered large losses of fitness when forced to migrate to the alternate host plant relative to the fitness they would have enjoyed had they been able to choose their native host. In a companion field study, sequential sampling throughout the summer in newly colonized fields of both alfalfa and clover revealed a decrease in the frequency of host-specific marker alleles characteristic of the alternate crop. These field data further support the hypothesis that selection disfavors migrants that cross between crops. Second, when two sets of F1 hybrids between the races were reciprocally tested on alfalfa and clover, both sets had significantly lower average fitness than the specialized parent in each of the two environments. This demographic selection against hybrids in the parental environments is a source of postmating reproductive isolation between the specialized races. Finally, significant genetic variation in fitness traits was seen among F1 hybrid genotypes from both crosses between alfalfa and clover specialists. Although this variation suggests that a generalized pea aphid could evolve, such generalists are not seen in field collections of these populations.
Collapse
|
|
25 |
224 |
3
|
Clark MA, Moran NA, Baumann P, Wernegreen JJ. Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 2000; 54:517-25. [PMID: 10937228 DOI: 10.1111/j.0014-3820.2000.tb00054.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies of phylogenetic congruence between aphids and their symbiotic bacteria (Buchnera) supported long-term vertical transmission of symbionts. However, those studies were based on distantly related aphids and would not have revealed horizontal transfer of symbionts among closely related hosts. Aphid species of the genus Uroleucon are closely related phylogenetically and overlap in geographic ranges, habitats, and parasitoids. To examine support for congruence of phylogenies of Buchnera and Uroleucon, sequences from four mitochondrial, one nuclear, and one endosymbiont gene (trpB) were obtained. Congruence of phylogenies based on pooled aphid genes with phylogenies based on trpB was highly significant: Most nodes resolved by trpB corresponded to nodes resolved by the pooled aphid genes. Furthermore, no nodes were both inconsistent between the trees and strongly supported in both trees. Two kinds of analyses testing the null hypothesis of perfect congruence between pairwise combinations of datasets and tree topologies were performed: the Kishino-Hasegawa test and the likelihood-ratio test. Both tests indicated significant disagreement among most pairwise combinations of mitochondrial, nuclear, and symbiont datasets. Because rampant recombination among mitochondrial genomes of different aphid species is unlikely, inaccurate assumptions in the evolutionary models underlying these tests appear to be causing the hypothesis of a shared history to be incorrectly rejected. Moreover, trpB was more consistent with the aphid genes as a set than any single aphid gene was with the others, suggesting that the symbionts show the same phylogeny as the aphids. Overall, analyses support the interpretation that symbionts and aphids have undergone strict cospeciation, with no horizontal transmission of symbionts even among closely related, ecologically similar aphid hosts.
Collapse
|
|
25 |
173 |
4
|
Abstract
Wolbachia form a group of intracellular bacteria that alter reproduction in their arthropod hosts. Two major phylogenetic subdivisions (A and B) of Wolbachia occur. Using a polymerase chain reaction assay we surveyed for the A and B group Wolbachia in 82 insect species from two temperate host-parasitoid communities (food webs) and a general collection of Lepidoptera caught at a light trap. One host-parasitoid community was based around leaf-mining Lepidoptera, and the other around Aphids. We found that: (i) 22.0% of insects sampled were infected with Wolbachia; and (ii) the prevalence and type (A or B) of Wolbachia infection differed significantly between communities and taxonomic groups. We obtained DNA sequences from the ftsZ gene for the group B Wolbachia found in six leaf-mining species and one of their parasitoids, as well as four of the Lepidoptera caught by a light trap. Taken together, the results of our survey and phylogenetic analyses of the sequence data suggest that host-parasitoid transfer of Wolbanchia is not the major route through which the species we have examined become infected. In addition, the Wolbachia strains observed in five leaf-mining species from the same genus were not closely related, indicating that transfer between species has not occurred due to a shared feeding niche or cospeciation.
Collapse
|
|
27 |
123 |
5
|
Ali A, Li H, Schneider WL, Sherman DJ, Gray S, Smith D, Roossinck MJ. Analysis of genetic bottlenecks during horizontal transmission of Cucumber mosaic virus. J Virol 2006; 80:8345-50. [PMID: 16912285 PMCID: PMC1563891 DOI: 10.1128/jvi.00568-06] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 06/15/2006] [Indexed: 11/20/2022] Open
Abstract
Genetic bottlenecks may occur in virus populations when only a few individuals are transferred horizontally from one host to another, or when a viral population moves systemically from the infection site. Genetic bottlenecks during the systemic movement of an RNA plant virus population were reported previously (H. Li and M. J. Roossinck, J. Virol. 78:10582-10587, 2004). In this study we mechanically inoculated an artificial population consisting of 12 restriction enzyme marker mutants of Cucumber mosaic virus (CMV) onto young leaves of squash plants and used two aphid species, Aphis gossypii and Myzus persicae, to transmit the virus populations from infected source plants to healthy squash plants. Horizontal transmission by aphids constituted a significant bottleneck, as the population in the aphid-inoculated plants contained far fewer mutants than the original inoculum source. Additional experiments demonstrated that genetic variation in the artificial population of CMV is not reduced during the acquisition of the virus but is significantly reduced during the inoculation period.
Collapse
|
research-article |
19 |
112 |
6
|
Brisson JA. Aphid wing dimorphisms: linking environmental and genetic control of trait variation. Philos Trans R Soc Lond B Biol Sci 2010; 365:605-16. [PMID: 20083636 PMCID: PMC2817143 DOI: 10.1098/rstb.2009.0255] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Both genetic and environmental factors underlie phenotypic variation. While research at the interface of evolutionary and developmental biology has made excellent advances in understanding the contribution of genes to morphology, less well understood is the manner in which environmental cues are incorporated during development to influence the phenotype. Also virtually unexplored is how evolutionary transitions between environmental and genetic control of trait variation are achieved. Here, I review investigations into molecular mechanisms underlying phenotypic plasticity in the aphid wing dimorphism system. Among aphids, some species alternate between environmentally sensitive (polyphenic) and genetic (polymorphic) control of wing morph determination in their life cycle. Therefore, a traditional molecular genetic approach into understanding the genetically controlled polymorphism may provide a unique avenue into not only understanding the molecular basis of polyphenic variation in this group, but also the opportunity to compare and contrast the mechanistic basis of environmental and genetic control of similar dimorphisms.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
105 |
7
|
Puterka GJ, Black WC, Steiner WM, Burton RL. Genetic variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers. Heredity (Edinb) 1993; 70 ( Pt 6):604-18. [PMID: 8335479 DOI: 10.1038/hdy.1993.87] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Genetic analyses were conducted on Diuraphis noxia (Mordvilko) populations collected from wheat, barley and other grasses from various countries throughout the world. These collections had been found to contain clones that differed in virulence from various cultivars, cuticular hydrocarbon profiles and life cycle characters. Discrete genetic markers analysed in this study included allozymes and arbitrary regions of the genome amplified by the polymerase chain reaction (RAPD-PCR). In all, 23 enzymes were evaluated; 17 of these enzymes representing 20 isozyme loci, were judged suitable for allozyme analysis. Polymorphisms were detected at three (15 per cent) loci: beta-esterase (beta-EST), phosphoglucose isomerase (PGI), and 6-phosphogluconate dehydrogenase (6-PGDH). The average expected heterozygosity amongst these loci was 4.9 per cent in the worldwide collection. Allozyme variation was absent within most populations, particularly within those countries where the species was recently introduced. Much greater genetic variation was detected when populations were analysed with RAPD-PCR. Populations were analysed with 69 polymorphic bands amplified by seven primers. All populations could be distinguished with this method. Cluster analyses indicated strong similarities between U.S.A. populations and collections from South Africa, Mexico, France and Turkey. The most variation was detected among populations from the Middle East and southern Russia.
Collapse
|
|
32 |
102 |
8
|
Russell JA, Moran NA. Horizontal transfer of bacterial symbionts: heritability and fitness effects in a novel aphid host. Appl Environ Microbiol 2006; 71:7987-94. [PMID: 16332777 PMCID: PMC1317397 DOI: 10.1128/aem.71.12.7987-7994.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of several bacterial lineages are known only as symbionts of insects and move among hosts through maternal transmission. Such vertical transfer promotes strong fidelity within these associations, favoring the evolution of microbially mediated effects that improve host fitness. However, phylogenetic evidence indicates occasional horizontal transfer among different insect species, suggesting that some microbial symbionts retain a generalized ability to infect multiple hosts. Here we examine the abilities of three vertically transmitted bacteria from the Gammaproteobacteria to infect and spread within a novel host species, the pea aphid, Acyrthosiphon pisum. Using microinjection, we transferred symbionts from three species of natural aphid hosts into a common host background, comparing transmission efficiencies between novel symbionts and those naturally infecting A. pisum. We also examined the fitness effects of two novel symbionts to determine whether they should persist under natural selection acting at the host level. Our results reveal that these heritable bacteria vary in their capacities to utilize A. pisum as a host. One of three novel symbionts failed to undergo efficient maternal transmission in A. pisum, and one of the two efficiently transmitted bacteria depressed aphid growth rates. Although these findings reveal that negative fitness effects and low transmission efficiency can prevent the establishment of a new infection following horizontal transmission, they also indicate that some symbionts can overcome these obstacles, accounting for their widespread distributions across aphids and related insects.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
97 |
9
|
Sabater-Muñoz B, Legeai F, Rispe C, Bonhomme J, Dearden P, Dossat C, Duclert A, Gauthier JP, Ducray DG, Hunter W, Dang P, Kambhampati S, Martinez-Torres D, Cortes T, Moya A, Nakabachi A, Philippe C, Prunier-Leterme N, Rahbé Y, Simon JC, Stern DL, Wincker P, Tagu D. Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera). Genome Biol 2006; 7:R21. [PMID: 16542494 PMCID: PMC1557754 DOI: 10.1186/gb-2006-7-3-r21] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/23/2006] [Accepted: 02/16/2006] [Indexed: 11/30/2022] Open
Abstract
Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
95 |
10
|
Hill CB, Crull L, Herman TK, Voegtlin DJ, Hartman GL. A new soybean aphid (Hemiptera: Aphididae) biotype identified. JOURNAL OF ECONOMIC ENTOMOLOGY 2010; 103:509-15. [PMID: 20429468 DOI: 10.1603/ec09179] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Shortly after its arrival, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), became established as the most important insect pest of soybean, Glycine max L. (Merr.), in the northern part of the North American soybean production region. Soybean resistance is an environmentally sustainable method to manage the pest and new soybean aphid resistant cultivars are beginning to be deployed into production. However, an earlier study identifying a soybean aphid biotype that could colonize plants with the Rag1 resistance gene has raised concerns about the durability of soybean aphid resistance genes. Choice and nonchoice tests conducted in this study characterized the colonization of a soybean aphid isolate, collected from the overwintering host Frangula alnus P. Mill in Springfield Fen, IN, on different aphid resistant soybean genotypes. This isolate readily colonized plants with the Rag2 resistance gene, distinguishing it from the two biotypes previously characterized and indicating that it represented a new biotype named biotype 3. The identification of soybean aphid biotypes that can overcome Rag1 and Rag2 resistance, even before soybean cultivars with the resistance genes have been deployed in production, suggests that there is high variability in virulence within soybean aphid populations present in North America. Such variability in virulence gives the pest a high potential to adapt to and reduce the effective life of resistance genes deployed in production. The search for new soybean aphid resistance genes must, therefore, continue, along with the development of alternative sustainable strategies to manage the pest.
Collapse
|
|
15 |
81 |
11
|
Delmotte F, Leterme N, Bonhomme J, Rispe C, Simon JC. Multiple routes to asexuality in an aphid species. Proc Biol Sci 2001; 268:2291-9. [PMID: 11703868 PMCID: PMC1088879 DOI: 10.1098/rspb.2001.1778] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyclical parthenogens, including aphids, are important models for studying the evolution of sex. However, little is known about transitions to asexuality in aphids, although the mode of origin of asexual lineages has important consequences for their level of genetic diversity, ecological adaptability and the outcome of competition with their sexual relatives. Thus, we surveyed nuclear, mitochondrial and biological data obtained on cyclical and obligate parthenogens of the bird cherry-oat aphid, Rhopalosiphum padi (L), to investigate the frequency of transitions from sexuality to permanent asexuality. Many instances of asexual lineages retaining the ability to produce males are known in aphids, so particular attention was paid to the existence of occasional matings between females from sexual lineages and males produced by asexual lineages, which have the potential to produce new asexual lineages. Phylogenetic inference based on microsatellite and mitochondrial data indicates at least three independent origins of asexuality in R. padi, yielding the strongest evidence to date for multiple origins of asexuality in an aphid. Moreover, several lines of evidence demonstrate that transitions to asexuality result from two mechanisms: a complete spontaneous loss of sex and repeated gene flow from essentially asexual lineages into sexual ones.
Collapse
|
research-article |
24 |
78 |
12
|
Gauthier JP, Outreman Y, Mieuzet L, Simon JC. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PLoS One 2015; 10:e0120664. [PMID: 25807173 PMCID: PMC4373712 DOI: 10.1371/journal.pone.0120664] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/05/2015] [Indexed: 02/01/2023] Open
Abstract
Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was underestimated due to the possible loss of environmental or transient taxa.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
78 |
13
|
Peccoud J, Simon JC, McLaughlin HJ, Moran NA. Post-Pleistocene radiation of the pea aphid complex revealed by rapidly evolving endosymbionts. Proc Natl Acad Sci U S A 2009; 106:16315-20. [PMID: 19805299 PMCID: PMC2752580 DOI: 10.1073/pnas.0905129106] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Indexed: 11/18/2022] Open
Abstract
Adaptation to different resources has the potential to cause rapid species diversification, but few studies have been able to quantify the time scale of recent adaptive radiations. The pea aphid, Acyrthosiphon pisum, a model of speciation for host-specialized parasites, consists of several biotypes (races or species) living on distinct legume hosts. To document this radiation, we used rapidly evolving sequences from Buchnera, the maternally transmitted bacterial endosymbiont of aphids. Analyses of Buchnera pseudogene sequences revealed that 11 host-associated biotypes sort mostly into distinct matrilines despite low sequence divergence. A calibration based on divergence times of 7 sequenced genomes of Buchnera allowed us to date the last maternal ancestor of these biotypes between 8,000 and 16,000 years, with a burst of diversification at an estimated 3,600-9,500 years. The recency of this diversification, which is supported by microsatellite data, implies that the pea aphid complex ranks among the most rapid adaptive radiations yet documented. This diversification coincides with post-Pleistocene warming and with the domestication and anthropogenic range expansion of several of the legume hosts of pea aphids. Thus, we hypothesize that the new availability or abundance of resources triggered a cascade of divergence events in this newly formed complex.
Collapse
|
research-article |
16 |
74 |
14
|
Nicholson SJ, Nickerson ML, Dean M, Song Y, Hoyt PR, Rhee H, Kim C, Puterka GJ. The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genomics 2015; 16:429. [PMID: 26044338 PMCID: PMC4561433 DOI: 10.1186/s12864-015-1525-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The Russian wheat aphid, Diuraphis noxia Kurdjumov, is one of the most important pests of small grains throughout the temperate regions of the world. This phytotoxic aphid causes severe systemic damage symptoms in wheat, barley, and other small grains as a direct result of the salivary proteins it injects into the plant while feeding. RESULTS We sequenced and de novo assembled the genome of D. noxia Biotype 2, the strain most virulent to resistance genes in wheat. The assembled genomic scaffolds span 393 MB, equivalent to 93% of its 421 MB genome, and contains 19,097 genes. D. noxia has the most AT-rich insect genome sequenced to date (70.9%), with a bimodal CpG(O/E) distribution and a complete set of methylation related genes. The D. noxia genome displays a widespread, extensive reduction in the number of genes per ortholog group, including defensive, detoxification, chemosensory, and sugar transporter groups in comparison to the Acyrthosiphon pisum genome, including a 65% reduction in chemoreceptor genes. Thirty of 34 known D. noxia salivary genes were found in this assembly. These genes exhibited less homology with those salivary genes commonly expressed in insect saliva, such as glucose dehydrogenase and trehalase, yet greater conservation among genes that are expressed in D. noxia saliva but not detected in the saliva of other insects. Genes involved in insecticide activity and endosymbiont-derived genes were also found, as well as genes involved in virus transmission, although D. noxia is not a viral vector. CONCLUSIONS This genome is the second sequenced aphid genome, and the first of a phytotoxic insect. D. noxia's reduced gene content of may reflect the influence of phytotoxic feeding in shaping the D. noxia genome, and in turn in broadening its host range. The presence of methylation-related genes, including cytosine methylation, is consistent with other parthenogenetic and polyphenic insects. The D. noxia genome will provide an important contrast to the A. pisum genome and advance functional and comparative genomics of insects and other organisms.
Collapse
|
research-article |
10 |
73 |
15
|
Harwood JD, Desneux N, Yoo HJS, Rowley DL, Greenstone MH, Obrycki JJ, O'Neil RJ. Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: a molecular approach. Mol Ecol 2007; 16:4390-400. [PMID: 17784913 DOI: 10.1111/j.1365-294x.2007.03482.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The soybean aphid, Aphis glycines (Hemiptera: Aphididae), is a pest of soybeans in Asia, and in recent years has caused extensive damage to soybeans in North America. Within these agroecosystems, generalist predators form an important component of the assemblage of natural enemies, and can exert significant pressure on prey populations. These food webs are complex and molecular gut-content analyses offer nondisruptive approaches for examining trophic linkages in the field. We describe the development of a molecular detection system to examine the feeding behaviour of Orius insidiosus (Hemiptera: Anthocoridae) upon soybean aphids, an alternative prey item, Neohydatothrips variabilis (Thysanoptera: Thripidae), and an intraguild prey species, Harmonia axyridis (Coleoptera: Coccinellidae). Specific primer pairs were designed to target prey and were used to examine key trophic connections within this soybean food web. In total, 32% of O. insidiosus were found to have preyed upon A. glycines, but disproportionately high consumption occurred early in the season, when aphid densities were low. The intensity of early season predation indicates that O. insidiosus are important biological control agents of A. glycines, although data suggest that N. variabilis constitute a significant proportion of the diet of these generalist predators. No Orius were found to contain DNA of H. axyridis, suggesting intraguild predation upon these important late-season predators during 2005 was low. In their entirety, these results implicate O. insidiosus as a valuable natural enemy of A. glycines in this soybean agroecosystem.
Collapse
|
|
18 |
73 |
16
|
Carletto J, Martin T, Vanlerberghe-Masutti F, Brévault T. Insecticide resistance traits differ among and within host races in Aphis gossypii. PEST MANAGEMENT SCIENCE 2010; 66:301-307. [PMID: 19908228 DOI: 10.1002/ps.1874] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND The polyphagous cotton-melon aphid Aphis gossypii Glover is structured into geographically widespread host races comprising a few clones specialised on Cucurbitaceae, cotton, eggplant or pepper. To assess insecticide resistance among and within host races, leaf disc bioassays were conducted on aphid clones collected from Cucurbitaceae (genotypes C4 and C9), cotton (genotypes Burk and Ivo), eggplant (genotype Auber) and pepper (genotype PsP4). Molecular diagnostic (PCR-RFLP) and enzyme assays were also performed to detect the basic mechanisms underlying insecticide resistance. RESULTS All six clones were susceptible to acetamiprid (neonicotinoid) or carbosulfan (carbamate). Conversely, all clones were resistant to dimethoate (organophosphate) (RF = 4.1-38.1) and carried mutation S431F in the acetylcholinesterase gene. Auber, PsP4 and Burk also carried mutation A302S in this gene, which possibly conferred moderate resistance (RF = 3.7-6.8) to profenofos and monocrotophos (organophosphates). Auber and Burk were highly resistant (RF = 41.2 and 473 respectively) to cypermethrin (pyrethroid). This resistance was likely associated with point mutation super-kdr (M918L) in the voltage-gated sodium channel gene (para gene) or metabolic detoxification mediated by esterase and oxidase enzymes. CONCLUSION Multiple resistance to a broad range of insecticides and multiple mechanisms of resistance in some clones could explain to some extent the low genetic diversity observed within A. gossypii host races.
Collapse
|
Comparative Study |
15 |
73 |
17
|
Fenton B, Woodford JA, Malloch G. Analysis of clonal diversity of the peach-potato aphid, Myzus persicae (Sulzer), in Scotland, UK and evidence for the existence of a predominant clone. Mol Ecol 1998; 7:1475-87. [PMID: 9819902 DOI: 10.1046/j.1365-294x.1998.00479.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clones of the peach-potato aphid, Myzus persicae (Sulzer), mostly from Scotland, UK were examined using an rDNA fingerprinting technique. Eighty patterns (genotypes) were found amongst the 276 clones. A large number of clones (30%) from all sample areas in Scotland exhibited the same simple pattern, suggesting the presence of a single M. persicae clone. There was no difference in genotype distributions between M. persicae collected from brassica or potato crops, suggesting that host-adapted genotypes have no advantage in the field. Different fingerprints were randomly distributed in the environment, although clones taken from the same leaf were more often the same fingerprint. Highly distinctive fingerprints, which were more widely distributed, suggest that this technique could be used to follow individual clones. In addition to the common clonal type, multiple fingerprint bands were found over successive years, implying that, in Scotland, local overwintering asexual populations are the most common source of M. persicae in the following year.
Collapse
|
|
27 |
72 |
18
|
Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer HM, Klinkhamer PGL. Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 2005; 31:1493-508. [PMID: 16222788 DOI: 10.1007/s10886-005-5793-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The evolution of the diversity in plant secondary compounds is often thought to be driven by insect herbivores, although there is little empirical evidence for this assumption. To investigate whether generalist insect herbivores could play a role in the evolution of the diversity of related compounds, we examined if (1) related compounds differ in their effects on generalists, (2) there is a synergistic effect among compounds, and (3) effects of related compounds differed among insect species. The effects of pyrrolizidine alkaloids (PAs) were tested on five generalist insect herbivore species of several genera using artificial diets or neutral substrates to which PAs were added. We found evidence that structurally related PAs differed in their effects to the thrips Frankliniella occidentalis, the aphid Myzus persicae, and the locust Locusta migratoria. The individual PAs had no effect on Spodoptera exigua and Mamestra brassicae caterpillars. For S. exigua, we found indications for synergistic deterrent effects of PAs in PA mixtures. The relative effects of PAs differed between insect species. The PA senkirkine had the strongest effect on the thrips, but had no effect at all on the aphids. Our results show that generalist herbivores could potentially play a role in the evolution and maintenance of the diversity of PAs.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
72 |
19
|
Shufran KA, Burd JD, Anstead JA, Lushai G. Mitochondrial DNA sequence divergence among greenbug (Homoptera: aphididae) biotypes: evidence for host-adapted races. INSECT MOLECULAR BIOLOGY 2000; 9:179-184. [PMID: 10762425 DOI: 10.1046/j.1365-2583.2000.00177.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The full complement of known greenbug, Schizaphis graminum (Rondani), biotypes found in the USA were subjected to a molecular phylogenetic analysis based on a 1.2-kb portion of the cytochrome oxidase I mitochondrial gene. In addition to these nine biotypes (B, C, E, F, G, H, I, J and K), a probable isolate of the enigmatic biotype A (NY), a 'new biotype' collected from Elymus canadensis (L.) (CWR), and an isolate from Germany (EUR) were included. Schizaphis rotundiventris (Signoret) was included as an outgroup. Genetic distances among S. graminum biotypes ranged from 0.08% to 6.17% difference in nucleotide substitutions. Neighbour-joining, maximum parsimony and maximum likelihood analyses all produced dendrograms revealing three clades within S. graminum. Clade 1 contained the 'agricultural' biotypes commonly found on sorghum and wheat (C, E, K, I, plus J) and there were few substitutions among these biotypes. Clade 2 contained F, G and NY, and Clade 3 contained B, CWR and EUR, all of which are rarely found on crops. The rarest biotype, H, fell outside the above clades and may represent another Schizaphis species. S. graminum biotypes are a mixture of genotypes belonging to three clades and may have diverged as host-adapted races on wild grasses.
Collapse
|
Comparative Study |
25 |
67 |
20
|
Inbar M, Wink M, Wool D. The evolution of host plant manipulation by insects: molecular and ecological evidence from gall-forming aphids on Pistacia. Mol Phylogenet Evol 2004; 32:504-11. [PMID: 15223033 DOI: 10.1016/j.ympev.2004.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2003] [Revised: 01/07/2004] [Indexed: 11/24/2022]
Abstract
One of the most striking characteristics of gall-forming insects is the variability in gall position, morphology, and complexity. Our knowledge of the driving forces behind the evolutionary divergence of gall types is limited. Natural enemies, competition, and behavioral constraints might be involved. We present a cladogram, based on sequences of COI and COII (1952bp), of mitochondrial DNA for the evolution of 14 species of gall-forming aphids (Fordinae). These insects induce five gall types with remarkable morphological variation on Pistacia spp. hosts. The parsimony cladogram divides the Fordinae into three lineages, Fordini and Baizongiini, and a third (new) sister group including the previously Fordini member, Smynthurodes betae (West). We then use ecological data to trace and explain the evolution of gall morphology. The aphids seem to have evolved gradually towards better ability to manipulate their host plant, induce stronger sinks, and gain higher reproductive success. We suggest that the ancestral gall type was a simple, open, "pea"-sized gall located on the leaflet midvein. Some Fordini and S. betae evolved a two-gall life cycle, inducing a new gall type on the leaflet margin. The Baizongiini improved the manipulation of their host by inducing larger galls near the midvein, with stronger sinks supporting thousands of aphids. Similar gall types are induced at similar sites on different Pistacia hosts suggesting control of the aphids on gall morphology and frequent host shifts. Thus, even extreme specialization (specific gall and host) is flexible.
Collapse
|
|
21 |
64 |
21
|
Abstract
The aphid family Lachnidae (c. 320 spp.)-sister-group to the economically devastating family Aphididae (c. 3300 spp.)-encompasses a diverse array of associations with hostplants and attendant hymenopterans and of life histories, including potentially long-term parthenogenesis. Most-parsimonious phylogenetic trees were inferred from partial (905-coding-bp) sequences of elongation factor 1alpha (EF-1alpha) and complete (675-bp) sequences of cytochrome oxidase 2 (CO2). The EF-1alpha, CO2, and combined analyses did not conflict with each other. Most tribes and infratribal relationships were robustly supported; intertribal relationships were mostly unresolved in the separate analysis and only weakly supported in the combined analysis. Both genes indicated a close relationship between the genera Nippolachnus and Tuberolachnus, both of which include species with the unusual habit of feeding along the midrib of leaves of Eriobotrya and which are here referred to the tribe Tuberolachnini Mamontova. A sister-group relationship between Tuberolachnini and the putatively ancient asexual tribe Tramini is supported. The combined analysis provides support (albeit weak) for the hypothesis that conifer-feeding is ancestral in Lachninae, which in turn implies that conifer-feeding may be a homologous and uninterrupted habit across disparate families of aphidoids (e.g., Adelgidae, Mindaridae, Drepanosiphidae, and Lachnidae).
Collapse
|
Comparative Study |
25 |
62 |
22
|
Frantz A, Plantegenest M, Mieuzet L, Simon JC. Ecological specialization correlates with genotypic differentiation in sympatric host-populations of the pea aphid. J Evol Biol 2006; 19:392-401. [PMID: 16599915 DOI: 10.1111/j.1420-9101.2005.01025.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pea aphid, Acyrthosiphon pisum, encompasses distinct host races specialized on various Fabaceae species, but the extent of genetic divergence associated with ecological specialization varies greatly depending on plant and geographic origins of aphid populations. Here, we studied the genetic structure of French sympatric pea aphid populations collected on perennial (pea and faba bean) and annual (alfalfa and red clover) hosts using 14 microsatellite loci. Classical and Bayesian population genetics analyses consistently identified genetic clusters mostly related to plant origin: the pea/faba bean cluster was highly divergent from the red clover and the alfalfa ones, indicating they represent different stages along the continuum of genetic differentiation. Some genotypes were assigned to a cluster differing from the one expected from their plant origin while others exhibited intermediate genetic characteristics. These results suggest incomplete barriers to gene flow. However, this limited gene flow seems insufficient to prevent ecological specialization and genetic differentiation in sympatry.
Collapse
|
Comparative Study |
19 |
61 |
23
|
von Dohlen CD, Rowe CA, Heie OE. A test of morphological hypotheses for tribal and subtribal relationships of Aphidinae (Insecta: Hemiptera: Aphididae) using DNA sequences. Mol Phylogenet Evol 2005; 38:316-29. [PMID: 16368250 DOI: 10.1016/j.ympev.2005.04.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/14/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Aphidinae is the most diverse major lineage of aphids (Aphididae). Aphidinae currently dominate the temperate, northern-hemisphere fauna, but only since the late Tertiary, and few species are native to the southern hemisphere. The success of Aphidinae may be linked to the evolution of an unusual life cycle, host alternation. The classification and phylogeny of Aphidinae have been controversial; schemes based on morphology have been confounded by widespread homoplasy. Here we present the first phylogenetic study of higher-level Aphidinae relationships based on molecular data (elongation factor-1alpha, leucine tRNA, and cytochrome oxidase II sequences). Analyses supported the monophyly of Aphidini and its subtribes, Aphidina and Ropalosiphina, but revealed novel relationships concerning Pterocommatini and Macrosiphini, with the former nested within the latter tribe as the sister to Cavariella. Several relationships within Pterocommatini + Macrosiphini corresponded better with host-plant affiliations than with aphid classification. Overall, relationships found here challenge several traditional views of Aphidinae evolution: they suggest more than one origin of host alternation in the family, and they question the assumption that Aphidinae originated in the northern hemisphere.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
60 |
24
|
von Dohlen CD, Kurosu U, Aoki S. Phylogenetics and evolution of the eastern Asian-eastern North American disjunct aphid tribe, Hormaphidini (Hemiptera: Aphididae). Mol Phylogenet Evol 2002; 23:257-67. [PMID: 12069555 DOI: 10.1016/s1055-7903(02)00025-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A conspicuous biogeographic pattern of the Northern Hemisphere is the disjunct occurrence of related taxa on different continents. Perhaps best studied in plants, this pattern includes disjunct distributions of genera in eastern Asia and eastern North America. Such continental disjunctions are thought to be the remnants of a mostly continuously distributed, mixed mesophytic forest dating to the Miocene, which subsequently became fragmented by geological and climatic changes. Some highly host-specific insects, namely aphids, live on descendants of the mixed mesophytic forest taxa and exhibit the same disjunct distributions as that of their host plants. We estimated the phylogeny of Hormaphidini aphids, which host-alternate between witch-hazel (Hamamelis; an eastern Asian-eastern North American disjunct genus) and birch (Betula). Based on partial nuclear elongation factor 1alpha and mitochondrial tRNA leucine/cytochrome oxidase II sequences, trees inferred from maximum-parsimony and maximum-likelihood showed strong support for two monophyletic genera (Hamamelistes and Hormaphis), each containing a clade of Japanese and a clade of North American species. The estimated divergence dates of Asian and North American clades in both genera was 20-30 million years ago, consistent with the idea that aphids may have experienced the same vicariance events as those of their host plants.
Collapse
|
|
23 |
55 |
25
|
Lamelas A, Pérez-Brocal V, Gómez-Valero L, Gosalbes MJ, Moya A, Latorre A. Evolution of the secondary symbiont "Candidatus serratia symbiotica" in aphid species of the subfamily lachninae. Appl Environ Microbiol 2008; 74:4236-4240. [PMID: 18502932 PMCID: PMC2446524 DOI: 10.1128/aem.00022-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 05/12/2008] [Indexed: 02/07/2023] Open
Abstract
Buchnera aphidicola BCc, the primary endosymbiont of the aphid Cinara cedri (subfamily Lachninae), is losing its symbiotic capacity and might be replaced by the coresident "Candidatus Serratia symbiotica." Phylogenetic and morphological analyses within the subfamily Lachninae indicate two different "Ca. Serratia symbiotica" lineages and support the longtime coevolution of both symbionts in C. cedri.
Collapse
|
research-article |
17 |
53 |