1
|
Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, Kirchhof P, Kjeldsen K, Kuck KH, Hernandez-Madrid A, Nikolaou N, Norekvål TM, Spaulding C, Van Veldhuisen DJ. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 2015; 36:2793-2867. [PMID: 26320108 DOI: 10.1093/eurheartj/ehv316] [Citation(s) in RCA: 2616] [Impact Index Per Article: 261.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
MESH Headings
- Acute Disease
- Aged
- Anti-Arrhythmia Agents/therapeutic use
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/therapy
- Autopsy/methods
- Cardiac Resynchronization Therapy/methods
- Cardiomyopathies/complications
- Cardiomyopathies/therapy
- Cardiotonic Agents/therapeutic use
- Catheter Ablation/methods
- Child
- Coronary Artery Disease/complications
- Coronary Artery Disease/therapy
- Death, Sudden, Cardiac/prevention & control
- Defibrillators
- Drug Therapy, Combination
- Early Diagnosis
- Emergency Treatment/methods
- Female
- Heart Defects, Congenital/complications
- Heart Defects, Congenital/therapy
- Heart Transplantation/methods
- Heart Valve Diseases/complications
- Heart Valve Diseases/therapy
- Humans
- Mental Disorders/complications
- Myocardial Infarction/complications
- Myocardial Infarction/therapy
- Myocarditis/complications
- Myocarditis/therapy
- Nervous System Diseases/complications
- Nervous System Diseases/therapy
- Out-of-Hospital Cardiac Arrest/therapy
- Pregnancy
- Pregnancy Complications, Cardiovascular/therapy
- Primary Prevention/methods
- Quality of Life
- Risk Assessment
- Sleep Apnea, Obstructive/complications
- Sleep Apnea, Obstructive/therapy
- Sports/physiology
- Stroke Volume/physiology
- Terminal Care/methods
- Ventricular Dysfunction, Left/complications
- Ventricular Dysfunction, Left/therapy
Collapse
|
Practice Guideline |
10 |
2616 |
2
|
Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, Denjoy I, Guicheney P, Breithardt G, Keating MT, Towbin JA, Beggs AH, Brink P, Wilde AA, Toivonen L, Zareba W, Robinson JL, Timothy KW, Corfield V, Wattanasirichaigoon D, Corbett C, Haverkamp W, Schulze-Bahr E, Lehmann MH, Schwartz K, Coumel P, Bloise R. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 2001; 103:89-95. [PMID: 11136691 DOI: 10.1161/01.cir.103.1.89] [Citation(s) in RCA: 1150] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The congenital long-QT syndrome (LQTS) is caused by mutations on several genes, all of which encode cardiac ion channels. The progressive understanding of the electrophysiological consequences of these mutations opens unforeseen possibilities for genotype-phenotype correlation studies. Preliminary observations suggested that the conditions ("triggers") associated with cardiac events may in large part be gene specific. METHODS AND RESULTS We identified 670 LQTS patients of known genotype (LQT1, n=371; LQT2, n=234; LQT3, n=65) who had symptoms (syncope, cardiac arrest, sudden death) and examined whether 3 specific triggers (exercise, emotion, and sleep/rest without arousal) differed according to genotype. LQT1 patients experienced the majority of their events (62%) during exercise, and only 3% occurred during rest/sleep. These percentages were almost reversed among LQT2 and LQT3 patients, who were less likely to have events during exercise (13%) and more likely to have events during rest/sleep (29% and 39%). Lethal and nonlethal events followed the same pattern. Corrected QT interval did not differ among LQT1, LQT2, and LQT3 patients (498, 497, and 506 ms, respectively). The percent of patients who were free of recurrence with ss-blocker therapy was higher and the death rate was lower among LQT1 patients (81% and 4%, respectively) than among LQT2 (59% and 4%, respectively) and LQT3 (50% and 17%, respectively) patients. CONCLUSIONS Life-threatening arrhythmias in LQTS patients tend to occur under specific circumstances in a gene-specific manner. These data allow new insights into the mechanisms that relate the electrophysiological consequences of mutations on specific genes to clinical manifestations and offer the possibility of complementing traditional therapy with gene-specific approaches.
Collapse
|
Clinical Trial |
24 |
1150 |
3
|
Abstract
hERG potassium channels are essential for normal electrical activity in the heart. Inherited mutations in the HERG gene cause long QT syndrome, a disorder that predisposes individuals to life-threatening arrhythmias. Arrhythmia can also be induced by a blockage of hERG channels by a surprisingly diverse group of drugs. This side effect is a common reason for drug failure in preclinical safety trials. Insights gained from the crystal structures of other potassium channels have helped our understanding of the block of hERG channels and the mechanisms of gating.
Collapse
|
Review |
19 |
1140 |
4
|
Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT. CaV1.2 Calcium Channel Dysfunction Causes a Multisystem Disorder Including Arrhythmia and Autism. Cell 2004; 119:19-31. [PMID: 15454078 DOI: 10.1016/j.cell.2004.09.011] [Citation(s) in RCA: 1113] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/09/2004] [Accepted: 08/17/2004] [Indexed: 11/25/2022]
Abstract
Ca(V)1.2, the cardiac L-type calcium channel, is important for excitation and contraction of the heart. Its role in other tissues is unclear. Here we present Timothy syndrome, a novel disorder characterized by multiorgan dysfunction including lethal arrhythmias, webbing of fingers and toes, congenital heart disease, immune deficiency, intermittent hypoglycemia, cognitive abnormalities, and autism. In every case, Timothy syndrome results from the identical, de novo Ca(V)1.2 missense mutation G406R. Ca(V)1.2 is expressed in all affected tissues. Functional expression reveals that G406R produces maintained inward Ca(2+) currents by causing nearly complete loss of voltage-dependent channel inactivation. This likely induces intracellular Ca(2+) overload in multiple cell types. In the heart, prolonged Ca(2+) current delays cardiomyocyte repolarization and increases risk of arrhythmia, the ultimate cause of death in this disorder. These discoveries establish the importance of Ca(V)1.2 in human physiology and development and implicate Ca(2+) signaling in autism.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/physiopathology
- Action Potentials/genetics
- Animals
- Arrhythmias, Cardiac/complications
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Autistic Disorder/complications
- Autistic Disorder/genetics
- Autistic Disorder/physiopathology
- Brain/metabolism
- Brain/physiopathology
- Brain Chemistry/genetics
- CHO Cells
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/genetics
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Child
- Cricetinae
- Female
- Genetic Diseases, Inborn/complications
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/physiopathology
- Heart/physiopathology
- Humans
- Infant, Newborn
- Limb Deformities, Congenital/complications
- Limb Deformities, Congenital/genetics
- Male
- Mice
- Mutation, Missense/genetics
- Myocytes, Cardiac/metabolism
- Neurons/metabolism
- Oocytes
- Pedigree
- Syndrome
- Xenopus laevis
Collapse
|
|
21 |
1113 |
5
|
Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ, Spudich S, De Girolami U, Seidman JG, Seidman C, Muntoni F, Müehle G, Johnson W, McDonough B. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 1999; 341:1715-24. [PMID: 10580070 DOI: 10.1056/nejm199912023412302] [Citation(s) in RCA: 923] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inherited mutations cause approximately 35 percent of cases of dilated cardiomyopathy; however, few genes associated with this disease have been identified. Previously, we located a gene defect that was responsible for autosomal dominant dilated cardiomyopathy and conduction-system disease on chromosome 1p1-q21, where nuclear-envelope proteins lamin A and lamin C are encoded by the LMNA (lamin A/C) gene. Mutations in the head or tail domain of this gene cause Emery-Dreifuss muscular dystrophy, a childhood-onset disease characterized by joint contractures and in some cases by abnormalities of cardiac conduction during adulthood. METHODS We evaluated 11 families with autosomal dominant dilated cardiomyopathy and conduction-system disease. Sequences of the lamin A/C exons were determined in probands from each family, and variants were confirmed by restriction-enzyme digestion. The genotypes of the family members were ascertained. RESULTS Five novel missense mutations were identified: four in the alpha-helical-rod domain of the lamin A/C gene, and one in the lamin C tail domain. Each mutation caused heritable, progressive conduction-system disease (sinus bradycardia, atrioventricular conduction block, or atrial arrhythmias) and dilated cardiomyopathy. Heart failure and sudden death occurred frequently within these families. No family members with mutations had either joint contractures or skeletal myopathy. Serum creatine kinase levels were normal in family members with mutations of the lamin rod but mildly elevated in some family members with a defect in the tail domain of lamin C. CONCLUSIONS Genetic defects in distinct domains of the nuclear-envelope proteins lamin A and lamin C selectively cause dilated cardiomyopathy with conduction-system disease or autosomal dominant Emery-Dreifuss muscular dystrophy. Missense mutations in the rod domain of the lamin A/C gene provide a genetic cause for dilated cardiomyopathy and indicate that this intermediate filament protein has an important role in cardiac conduction and contractility.
Collapse
|
|
26 |
923 |
6
|
Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999; 97:175-87. [PMID: 10219239 DOI: 10.1016/s0092-8674(00)80728-x] [Citation(s) in RCA: 869] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A novel potassium channel gene has been cloned, characterized, and associated with cardiac arrhythmia. The gene encodes MinK-related peptide 1 (MiRP1), a small integral membrane subunit that assembles with HERG, a pore-forming protein, to alter its function. Unlike channels formed only with HERG, mixed complexes resemble native cardiac IKr channels in their gating, unitary conductance, regulation by potassium, and distinctive biphasic inhibition by the class III antiarrhythmic E-4031. Three missense mutations associated with long QT syndrome and ventricular fibrillation are identified in the gene for MiRP1. Mutants form channels that open slowly and close rapidly, thereby diminishing potassium currents. One variant, associated with clarithromycin-induced arrhythmia, increases channel blockade by the antibiotic. A mechanism for acquired arrhythmia is revealed: genetically based reduction in potassium currents that remains clinically silent until combined with additional stressors.
Collapse
|
|
26 |
869 |
7
|
Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 2007; 13:486-91. [PMID: 17401374 DOI: 10.1038/nm1569] [Citation(s) in RCA: 813] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 02/26/2007] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs, about 22 nucleotides in length, that mediate post-transcriptional gene silencing by annealing to inexactly complementary sequences in the 3'-untranslated regions of target mRNAs. Our current understanding of the functions of miRNAs relies mainly on their tissue-specific or developmental stage-dependent expression and their evolutionary conservation, and therefore is primarily limited to their involvement in developmental regulation and oncogenesis. Of more than 300 miRNAs that have been identified, miR-1 and miR-133 are considered to be muscle specific. Here we show that miR-1 is overexpressed in individuals with coronary artery disease, and that when overexpressed in normal or infarcted rat hearts, it exacerbates arrhythmogenesis. Elimination of miR-1 by an antisense inhibitor in infarcted rat hearts relieved arrhythmogenesis. miR-1 overexpression slowed conduction and depolarized the cytoplasmic membrane by post-transcriptionally repressing KCNJ2 (which encodes the K(+) channel subunit Kir2.1) and GJA1 (which encodes connexin 43), and this likely accounts at least in part for its arrhythmogenic potential. Thus, miR-1 may have important pathophysiological functions in the heart, and is a potential antiarrhythmic target.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
813 |
8
|
|
Case Reports |
24 |
700 |
9
|
Plaster NM, Tawil R, Tristani-Firouzi M, Canún S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptácek LJ. Mutations in Kir2.1 Cause the Developmental and Episodic Electrical Phenotypes of Andersen's Syndrome. Cell 2001; 105:511-9. [PMID: 11371347 DOI: 10.1016/s0092-8674(01)00342-7] [Citation(s) in RCA: 645] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Andersen's syndrome is characterized by periodic paralysis, cardiac arrhythmias, and dysmorphic features. We have mapped an Andersen's locus to chromosome 17q23 near the inward rectifying potassium channel gene KCNJ2. A missense mutation in KCNJ2 (encoding D71V) was identified in the linked family. Eight additional mutations were identified in unrelated patients. Expression of two of these mutations in Xenopus oocytes revealed loss of function and a dominant negative effect in Kir2.1 current as assayed by voltage-clamp. We conclude that mutations in Kir2.1 cause Andersen's syndrome. These findings suggest that Kir2.1 plays an important role in developmental signaling in addition to its previously recognized function in controlling cell excitability in skeletal muscle and heart.
Collapse
|
|
24 |
645 |
10
|
Wehrens XHT, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ, Sun J, Guatimosim S, Song LS, Rosemblit N, D'Armiento JM, Napolitano C, Memmi M, Priori SG, Lederer WJ, Marks AR. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 2003; 113:829-40. [PMID: 12837242 DOI: 10.1016/s0092-8674(03)00434-3] [Citation(s) in RCA: 556] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Arrhythmias, a common cause of sudden cardiac death, can occur in structurally normal hearts, although the mechanism is not known. In cardiac muscle, the ryanodine receptor (RyR2) on the sarcoplasmic reticulum releases the calcium required for muscle contraction. The FK506 binding protein (FKBP12.6) stabilizes RyR2, preventing aberrant activation of the channel during the resting phase of the cardiac cycle. We show that during exercise, RyR2 phosphorylation by cAMP-dependent protein kinase A (PKA) partially dissociates FKBP12.6 from the channel, increasing intracellular Ca(2+) release and cardiac contractility. FKBP12.6(-/-) mice consistently exhibited exercise-induced cardiac ventricular arrhythmias that cause sudden cardiac death. Mutations in RyR2 linked to exercise-induced arrhythmias (in patients with catecholaminergic polymorphic ventricular tachycardia [CPVT]) reduced the affinity of FKBP12.6 for RyR2 and increased single-channel activity under conditions that simulate exercise. These data suggest that "leaky" RyR2 channels can trigger fatal cardiac arrhythmias, providing a possible explanation for CPVT.
Collapse
|
|
22 |
556 |
11
|
Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Wu YS, Guerchicoff A, Bianchi F, Giustetto C, Schimpf R, Brugada P, Antzelevitch C. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 2003; 109:30-5. [PMID: 14676148 DOI: 10.1161/01.cir.0000109482.92774.3a] [Citation(s) in RCA: 520] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Sudden cardiac death takes the lives of more than 300 000 Americans annually. Malignant ventricular arrhythmias occurring in individuals with structurally normal hearts account for a subgroup of these sudden deaths. The present study describes the genetic basis for a new clinical entity characterized by sudden death and short-QT intervals in the ECG. METHODS AND RESULTS Three families with hereditary short-QT syndrome and a high incidence of ventricular arrhythmias and sudden cardiac death were studied. In 2 of them, we identified 2 different missense mutations resulting in the same amino acid change (N588K) in the S5-P loop region of the cardiac IKr channel HERG (KCNH2). The mutations dramatically increase IKr, leading to heterogeneous abbreviation of action potential duration and refractoriness, and reduce the affinity of the channels to IKr blockers. CONCLUSIONS We demonstrate a novel genetic and biophysical mechanism responsible for sudden death in infants, children, and young adults caused by mutations in KCNH2. The occurrence of sudden cardiac death in the first 12 months of life in 2 patients suggests the possibility of a link between KCNH2 gain of function mutations and sudden infant death syndrome. KCNH2 is the binding target for a wide spectrum of cardiac and noncardiac pharmacological compounds. Our findings may provide better understanding of drug interaction with KCNH2 and have implications for diagnosis and therapy of this and other arrhythmogenic diseases.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
520 |
12
|
Wilde AAM, Antzelevitch C, Borggrefe M, Brugada J, Brugada R, Brugada P, Corrado D, Hauer RNW, Kass RS, Nademanee K, Priori SG, Towbin JA. Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation 2002; 106:2514-9. [PMID: 12417552 DOI: 10.1161/01.cir.0000034169.45752.4a] [Citation(s) in RCA: 515] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
MESH Headings
- Adult
- Anti-Arrhythmia Agents
- Arrhythmias, Cardiac/classification
- Arrhythmias, Cardiac/complications
- Arrhythmias, Cardiac/diagnosis
- Arrhythmias, Cardiac/genetics
- Arrhythmogenic Right Ventricular Dysplasia/diagnosis
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Diagnosis, Differential
- Electrocardiography/standards
- Electrophysiologic Techniques, Cardiac
- Female
- Genes, Dominant
- Humans
- Male
- NAV1.5 Voltage-Gated Sodium Channel
- Protein Subunits/genetics
- Risk
- Sodium Channels/genetics
- Syncope/etiology
- Syndrome
Collapse
|
Consensus Development Conference |
23 |
515 |
13
|
James CA, Bhonsale A, Tichnell C, Murray B, Russell SD, Tandri H, Tedford RJ, Judge DP, Calkins H. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol 2013; 62:1290-1297. [PMID: 23871885 DOI: 10.1016/j.jacc.2013.06.033] [Citation(s) in RCA: 480] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/02/2013] [Accepted: 06/18/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This study sought to determine how exercise influences penetrance of arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) among patients with desmosomal mutations. BACKGROUND Although animal models and anecdotal evidence suggest that exercise is a risk factor for ARVD/C, there have been no systematic human studies. METHODS Eighty-seven carriers (46 male; mean age, 44 ± 18 years) were interviewed about regular physical activity from 10 years of age. The relationship of exercise with sustained ventricular arrhythmia (ventricular tachycardia/ventricular fibrillation [VT/VF]), stage C heart failure (HF), and meeting diagnostic criteria for ARVD/C (2010 Revised Task Force Criteria [TFC]) was studied. RESULTS Symptoms developed in endurance athletes (N = 56) at a younger age (30.1 ± 13.0 years vs. 40.6 ± 21.1 years, p = 0.05); they were more likely to meet TFC at last follow-up (82% vs. 35%, p < 0.001) and have a lower lifetime survival free of VT/VF (p = 0.013) and HF (p = 0.004). Compared with those who did the least exercise per year (lowest quartile) before presentation, those in the second (odds ratio [OR]: 6.64, p = 0.013), third (OR: 16.7, p = 0.001), and top (OR: 25.3, p < 0.0001) quartiles were increasingly likely to meet TFC. Among 61 individuals who did not present with VT/VF, the 13 subjects experiencing a first VT/VF event over a mean follow-up of 8.4 ± 6.7 years were all endurance athletes (p = 0.002). Survival from a first VT/VF event was lowest among those who exercised most (top quartile) both before (p = 0.036) and after (p = 0.005) clinical presentation. Among individuals in the top quartile, a reduction in exercise decreased VT/VF risk (p = 0.04). CONCLUSIONS Endurance exercise and frequent exercise increase the risk of VT/VF, HF, and ARVD/C in desmosomal mutation carriers. These findings support exercise restriction for these patients.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
480 |
14
|
Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating MT. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A 2005; 102:8089-96; discussion 8086-8. [PMID: 15863612 PMCID: PMC1149428 DOI: 10.1073/pnas.0502506102] [Citation(s) in RCA: 459] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Timothy syndrome (TS) is a multisystem disorder that causes syncope and sudden death from cardiac arrhythmias. Prominent features include congenital heart disease, immune deficiency, intermittent hypoglycemia, cognitive abnormalities, and autism. All TS individuals have syndactyly (webbing of fingers and toes). We discovered that TS resulted from a recurrent, de novo cardiac L-type calcium channel (CaV1.2) mutation, G406R. G406 is located in alternatively spliced exon 8A, encoding transmembrane segment S6 of domain I. Here, we describe two individuals with a severe variant of TS (TS2). Neither child had syndactyly. Both individuals had extreme prolongation of the QT interval on electrocardiogram, with a QT interval corrected for heart rate ranging from 620 to 730 ms, causing multiple arrhythmias and sudden death. One individual had severe mental retardation and nemaline rod skeletal myopathy. We identified de novo missense mutations in exon 8 of CaV1.2 in both individuals. One was an analogous mutation to that found in exon 8A in classic TS, G406R. The other mutation was G402S. Exon 8 encodes the same region as exon 8A, and the two are mutually exclusive. The spliced form of CaV1.2 containing exon 8 is highly expressed in heart and brain, accounting for approximately 80% of CaV1.2 mRNAs. G406R and G402S cause reduced channel inactivation, resulting in maintained depolarizing L-type calcium currents. Computer modeling showed prolongation of cardiomyocyte action potentials and delayed afterdepolarizations, factors that increase risk of arrhythmia. These data indicate that gain-of-function mutations of CaV1.2 exons 8 and 8A cause distinct forms of TS.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
459 |
15
|
Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, Grossi S, Richiardi E, Borggrefe M. Short QT Syndrome: a familial cause of sudden death. Circulation 2003; 108:965-70. [PMID: 12925462 DOI: 10.1161/01.cir.0000085071.28695.c4] [Citation(s) in RCA: 410] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND A prolonged QT interval is associated with a risk for life-threatening events. However, little is known about prognostic implications of the reverse-a short QT interval. Several members of 2 different families were referred for syncope, palpitations, and resuscitated cardiac arrest in the presence of a positive family history for sudden cardiac death. Autopsy did not reveal any structural heart disease. All patients had a constantly and uniformly short QT interval at ECG. METHODS AND RESULTS Six patients from both families were submitted to extensive noninvasive and invasive work-up, including serial resting ECGs, echocardiogram, cardiac MRI, exercise testing, Holter ECG, and signal-averaged ECG. Four of 6 patients underwent electrophysiological evaluation including programmed ventricular stimulation. In all subjects, a structural heart disease was excluded. At baseline ECG, all patients exhibited a QT interval <or=280 ms (QTc <or=300 ms). During electrophysiological study, short atrial and ventricular refractory periods were documented in all and increased ventricular vulnerability to fibrillation in 3 of 4 patients. CONCLUSIONS The short QT syndrome is characterized by familial sudden death, short refractory periods, and inducible ventricular fibrillation. It is important to recognize this ECG pattern because it is related to a high risk of sudden death in young, otherwise healthy subjects.
Collapse
|
Clinical Trial |
22 |
410 |
16
|
Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD, Richter W, Jin SLC, Conti M, Marks AR. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 2005; 123:25-35. [PMID: 16213210 PMCID: PMC2901878 DOI: 10.1016/j.cell.2005.07.030] [Citation(s) in RCA: 391] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 07/07/2005] [Accepted: 07/29/2005] [Indexed: 11/17/2022]
Abstract
Phosphodiesterases (PDEs) regulate the local concentration of 3',5' cyclic adenosine monophosphate (cAMP) within cells. cAMP activates the cAMP-dependent protein kinase (PKA). In patients, PDE inhibitors have been linked to heart failure and cardiac arrhythmias, although the mechanisms are not understood. We show that PDE4D gene inactivation in mice results in a progressive cardiomyopathy, accelerated heart failure after myocardial infarction, and cardiac arrhythmias. The phosphodiesterase 4D3 (PDE4D3) was found in the cardiac ryanodine receptor (RyR2)/calcium-release-channel complex (required for excitation-contraction [EC] coupling in heart muscle). PDE4D3 levels in the RyR2 complex were reduced in failing human hearts, contributing to PKA-hyperphosphorylated, "leaky" RyR2 channels that promote cardiac dysfunction and arrhythmias. Cardiac arrhythmias and dysfunction associated with PDE4 inhibition or deficiency were suppressed in mice harboring RyR2 that cannot be PKA phosphorylated. These data suggest that reduced PDE4D activity causes defective RyR2-channel function associated with heart failure and arrhythmias.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- 3',5'-Cyclic-AMP Phosphodiesterases/deficiency
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Animals
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/enzymology
- Arrhythmias, Cardiac/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 3
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Disease Models, Animal
- Enzyme Inhibitors/adverse effects
- Heart Failure/chemically induced
- Heart Failure/enzymology
- Heart Failure/genetics
- Macromolecular Substances/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Muscle Contraction/physiology
- Myocardium/enzymology
- Myocytes, Cardiac/enzymology
- Phosphorylation
- Ryanodine Receptor Calcium Release Channel/metabolism
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
391 |
17
|
Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, Beggs AH, Cappuccio FP, Sagnella GA, Kass RS, Keating MT. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 2002; 297:1333-6. [PMID: 12193783 DOI: 10.1126/science.1073569] [Citation(s) in RCA: 359] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Every year, approximately 450,000 individuals in the United States die suddenly of cardiac arrhythmia. We identified a variant of the cardiac sodium channel gene SCN5A that is associated with arrhythmia in African Americans (P = 0.000028) and linked with arrhythmia risk in an African-American family (P = 0.005). In transfected cells, the variant allele (Y1102) accelerated channel activation, increasing the likelihood of abnormal cardiac repolarization and arrhythmia. About 13.2% of African Americans carry the Y1102 allele. Because Y1102 has a subtle effect on risk, most carriers will never have an arrhythmia. However, Y1102 may be a useful molecular marker for the prediction of arrhythmia susceptibility in the context of additional acquired risk factors such as the use of certain medications.
Collapse
|
|
23 |
359 |
18
|
McNair WP, Ku L, Taylor MRG, Fain PR, Dao D, Wolfel E, Mestroni L. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 2004; 110:2163-7. [PMID: 15466643 DOI: 10.1161/01.cir.0000144458.58660.bb] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND We studied a large family affected by an autosomal dominant cardiac conduction disorder associated with sinus node dysfunction, arrhythmia, and right and occasionally left ventricular dilatation and dysfunction. Previous linkage analysis mapped the disease phenotype to a 30-cM region on chromosome 3p22-p25 (CMD1E). This region also contains a locus for right ventricular cardiomyopathy (ARVD5) and the cardiac sodium channel gene (SCN5A), mutations that cause isolated progressive cardiac conduction defect (Lenegre syndrome), long-QT syndrome (LQT3), and Brugada syndrome. METHODS AND RESULTS Family members were studied, and the positional candidate gene SCN5A was screened for mutations. We identified, by direct sequencing, a heterozygous G-to-A mutation at position 3823 that changed an aspartic acid to asparagine (D1275N) in a highly conserved residue of exon 21. This mutation was present in all affected family members, was absent in 300 control chromosomes, and predicted a change of charge within the S3 segment of domain III. CONCLUSIONS Our findings expand the clinical spectrum of disorders of the cardiac sodium channel to include cardiac dilation and dysfunction and support the hypothesis that genes encoding ion channels can be implicated in dilated cardiomyopathies.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
331 |
19
|
Arnestad M, Crotti L, Rognum TO, Insolia R, Pedrazzini M, Ferrandi C, Vege A, Wang DW, Rhodes TE, George AL, Schwartz PJ. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation 2007; 115:361-7. [PMID: 17210839 DOI: 10.1161/circulationaha.106.658021] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The hypothesis that some cases of sudden infant death syndrome (SIDS) could be caused by long-QT syndrome (LQTS) has been supported by molecular studies. However, there are inadequate data regarding the true prevalence of mutations in arrhythmia-susceptibility genes among SIDS cases. Given the importance and potential implications of these observations, we performed a study to more accurately quantify the contribution to SIDS of LQTS gene mutations and rare variants. METHODS AND RESULTS Molecular screening of 7 genes (KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, KCNJ2, CAV3) associated with LQTS was performed with denaturing high-performance liquid chromatography and nucleotide sequencing of genomic DNA from 201 cases diagnosed as SIDS according to the Nordic Criteria, and from 182 infant and adult controls. All SIDS and control cases originated from the same regions in Norway. Genetic analysis was blinded to diagnosis. Mutations and rare variants were found in 26 of 201 cases (12.9%). On the basis of their functional effect, however, we considered 8 mutations and 7 rare variants found in 19 of 201 cases as likely contributors to sudden death (9.5%; 95% CI, 5.8 to 14.4%). CONCLUSIONS We demonstrated that 9.5% of cases diagnosed as SIDS carry functionally significant genetic variants in LQTS genes. The present study demonstrates that sudden arrhythmic death is an important contributor to SIDS. As these variants likely modify ventricular repolarization and QT interval duration, our results support the debated concept that an ECG would probably identify most infants at risk for sudden death due to LQTS either in infancy or later on in life.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
331 |
20
|
Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PIW, Yin X, Estrada K, Bis JC, Marciante K, Rivadeneira F, Noseworthy PA, Sotoodehnia N, Smith NL, Rotter JI, Kors JA, Witteman JCM, Hofman A, Heckbert SR, O'Donnell CJ, Uitterlinden AG, Psaty BM, Lumley T, Larson MG, Stricker BHC. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet 2009; 41:399-406. [PMID: 19305408 PMCID: PMC2701449 DOI: 10.1038/ng.364] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 01/19/2009] [Indexed: 12/13/2022]
Abstract
QT interval duration, reflecting myocardial repolarization on the electrocardiogram, is a heritable risk factor for sudden cardiac death and drug-induced arrhythmias. We conducted a meta-analysis of three genome-wide association studies in 13,685 individuals of European ancestry from the Framingham Heart Study, the Rotterdam Study and the Cardiovascular Health Study, as part of the QTGEN consortium. We observed associations at P < 5 x 10(-8) with variants in NOS1AP, KCNQ1, KCNE1, KCNH2 and SCN5A, known to be involved in myocardial repolarization and mendelian long-QT syndromes. Associations were found at five newly identified loci, including 16q21 near NDRG4 and GINS3, 6q22 near PLN, 1p36 near RNF207, 16p13 near LITAF and 17q12 near LIG3 and RFFL. Collectively, the 14 independent variants at these 10 loci explain 5.4-6.5% of the variation in QT interval. These results, together with an accompanying paper, offer insights into myocardial repolarization and suggest candidate genes that could predispose to sudden cardiac death and drug-induced arrhythmias.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
330 |
21
|
Tan HL, Hofman N, van Langen IM, van der Wal AC, Wilde AAM. Sudden unexplained death: heritability and diagnostic yield of cardiological and genetic examination in surviving relatives. Circulation 2005; 112:207-13. [PMID: 15998675 DOI: 10.1161/circulationaha.104.522581] [Citation(s) in RCA: 325] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sudden death mostly follows from cardiac disorders that elicit lethal ventricular arrhythmias. In young individuals, it often remains unexplained because history and/or postmortem analysis are absent or provide no clue. Because such sudden unexplained deaths (SUDs) may have heritable causes, cardiological and genetic assessment of surviving relatives of SUD victims may reveal the underlying disease and unmask presymptomatic carriers. We aimed to establish the diagnostic yield of such assessments. METHODS AND RESULTS We investigated 43 consecutive families with > or =1 SUD victim who died at < or =40 years of age. All studied relatives underwent resting/exercise ECG and Doppler echocardiography. Molecular genetic analysis was conducted to confirm the diagnosis. We identified an inherited disease and likely cause of death in 17 of 43 families (40%). Twelve families had primary electrical disease: catecholaminergic polymorphic ventricular tachycardia (5 families), long-QT syndrome (4 families), Brugada syndrome (2 families), and long-QT/Brugada syndrome (1 family). Furthermore, we found arrhythmogenic right ventricular cardiomyopathy (3 families), hypertrophic cardiomyopathy (1 family), and familial hypercholesterolemia (1 family). Molecular genetic analysis provided confirmation in 10 families. Finding the diagnosis was more likely when more relatives were examined and in families with > or =2 SUD victims < or =40 years of age. The resting/exercise ECG had a high diagnostic yield. These efforts unmasked 151 presymptomatic disease carriers (8.9 per family). CONCLUSIONS Examination of relatives of young SUD victims has a high diagnostic yield, with identification of the disease in 40% of families and 8.9 presymptomatic carriers per family. Simple procedures (examining many relatives) and routine tests (resting/exercise ECG) constitute excellent diagnostic strategies. Molecular genetics provide strong supportive information.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
325 |
22
|
van Berlo JH, de Voogt WG, van der Kooi AJ, van Tintelen JP, Bonne G, Yaou RB, Duboc D, Rossenbacker T, Heidbüchel H, de Visser M, Crijns HJGM, Pinto YM. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med (Berl) 2004; 83:79-83. [PMID: 15551023 DOI: 10.1007/s00109-004-0589-1] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
This study evaluated common clinical characteristics of patients with lamin A/C gene mutations that cause either isolated dilated cardiomyopathy or dilated cardiomyopathy in association with skeletal muscular dystrophy. We pooled clinical data of all published carriers of lamin A/C gene mutations as cause of skeletal and/or cardiac muscle disease and reviewed ECG findings. Cardiac dysrhythmias were reported in 92% of patients after the age of 30 years; heart failure was reported in 64% after the age of 50. Sudden death was the most frequently reported mode of death (46%) in both the cardiac and the neuromuscular phenotype. Carriers of lamin A/C gene mutations often received a pacemaker (28%). However, this intervention did not alter the rate of sudden death. Review of the ECG findings typically showed a low amplitude P wave and prolongation of the PR interval with a narrow QRS complex. This meta-analysis suggests that cardiomyopathy due to lamin A/C gene mutations portends a high risk of sudden death, and that this risk does not differ between subjects with predominantly cardiac or neuromuscular disease. This implies then that all carriers of a lamin A/C gene mutation need to be carefully screened with particular emphasis also on tachyarrhythmias. Prospective studies are needed to evaluate risk stratification and proper treatment strategies.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
317 |
23
|
Abstract
Genetic alterations of various ion channels produce heritable cardiac arrhythmias that predispose affected individuals to sudden death. The investigation of such 'channelopathies' continues to yield remarkable insights into the molecular basis of cardiac excitability. The concept of channelopathies is not restricted to genetic disorders; notably, changes in the expression or post-translational modification of ion channels underlie the fatal arrhythmias associated with heart failure. Recognizing the fundamental defects in channelopathies provides the basis for new strategies of treatment, including tailored pharmacotherapy and gene therapy.
Collapse
|
Review |
23 |
290 |
24
|
|
Review |
22 |
286 |
25
|
Nyegaard M, Overgaard MT, Søndergaard MT, Vranas M, Behr ER, Hildebrandt LL, Lund J, Hedley PL, Camm AJ, Wettrell G, Fosdal I, Christiansen M, Børglum AD. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet 2012; 91:703-12. [PMID: 23040497 DOI: 10.1016/j.ajhg.2012.08.015] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/03/2012] [Accepted: 08/15/2012] [Indexed: 01/13/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2 calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac death.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
281 |