1
|
Kannan D, Yadav N, Ahmad S, Namdev P, Bhattacharjee S, Lochab B, Singh S. Pre-clinical study of iron oxide nanoparticles fortified artesunate for efficient targeting of malarial parasite. EBioMedicine 2019; 45:261-277. [PMID: 31255656 PMCID: PMC6642363 DOI: 10.1016/j.ebiom.2019.06.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/01/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Artesunate the most potent antimalarial is widely used for the treatment of multidrug-resistant malaria. The antimalarial cytotoxicity of artesunate has been mainly attributed to its selective, irreversible and iron- radical-mediated damage of parasite biomolecules. In the present research, iron oxide nanoparticle fortified artesunate was tested in P. falciparum and in an experimental malaria mouse model for enhancement in the selectivity and toxicity of artesunate towards parasite. Artesunate was fortified with nontoxic biocompatible surface modified iron oxide nanoparticle which is specially designed and synthesized for the sustained pH-dependent release of Fe2+ within the parasitic food vacuole for enhanced ROS spurt. METHODS Antimalarial efficacy of Iron oxide nanoparticle fortified artesunate was evaluated in wild type and artemisinin-resistant Plasmodium falciparum (R539T) grown in O + ve human blood and in Plasmodium berghei ANKA infected swiss albino mice. Internalization of nanoparticles, the pH-dependent release of Fe2+, production of reactive oxygen species and parasite biomolecule damage by iron oxide nanoparticle fortified artesunate was studied using various biochemical, biophysical, ultra-structural and fluorescence microscopy. For determining the efficacy of ATA-IONP+ART on resistant parasite ring survival assay was performed. RESULTS The nanoparticle fortified artesunate was highly efficient in the 1/8th concentration of artesunate IC50 and led to retarded growth of P. falciparum with significant damage to macromolecules mediated via enhanced ROS production. Similarly, preclinical In vivo studies also signified a radical reduction in parasitemia with ~8-10-fold reduced dosage of artesunate when fortified with iron oxide nanoparticles. Importantly, the ATA-IONP combination was efficacious against artemisinin-resistant parasites. INTERPRETATION Surface coated iron-oxide nanoparticle fortified artesunate can be developed into a potent therapeutic agent towards multidrug-resistant and artemisinin-resistant malaria in humans. FUND: This study is supported by the Centre for Study of Complex Malaria in India funded by the National Institute of Health, USA.
Collapse
|
research-article |
6 |
39 |
2
|
Fan Z, Jiang B, Zhu Q, Xiang S, Tu L, Yang Y, Zhao Q, Huang D, Han J, Su G, Ge D, Hou Z. Tumor-Specific Endogenous Fe II-Activated, MRI-Guided Self-Targeting Gadolinium-Coordinated Theranostic Nanoplatforms for Amplification of ROS and Enhanced Chemodynamic Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14884-14904. [PMID: 32167740 DOI: 10.1021/acsami.0c00970] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low drug payload and lack of tumor-targeting for chemodynamic therapy (CDT) result in an insufficient reactive oxygen species (ROS) generation, which seriously hinders its further clinical application. Therefore, how to improve the drug payload and tumor targeting for amplification of ROS and combine it with chemotherapy has been a huge challenge in CDT. Herein, methotrexate (MTX), gadolinium (Gd), and artesunate (ASA) were used as theranostic building blocks to be coordinately assembled into tumor-specific endogenous FeII-activated and magnetic resonance imaging (MRI)-guided self-targeting carrier-free nanoplatforms (NPs) for amplification of ROS and enhanced chemodynamic chemotherapy. The obtained ASA-MTX-GdIII NPs exhibited extremely high drug payload (∼96 wt %), excellent physiological stability, long circulating ability (half-time: ∼12 h), and outstanding tumor accumulation. Moreover, ASA-MTX-GdIII NPs could be specifically uptaken by tumor cells via folate (FA) receptors and subsequently be disassembled via lysosomal acidity-induced coordination breakage, resulting in drug burst release. Most strikingly, the produced ASA could be catalyzed by tumor-specific overexpressed endogenous FeII ions to generate sufficient ROS for enhancing the main chemodynamic efficacy, which could exert a synergistic effect with the assistant chemotherapy of MTX. Interestingly, ASA-MTX-GdIII NPs caused a lower ROS generation and toxicity on normal cell lines that seldom expressed endogenous FeII ions. Under MRI guidance with assistance of self-targeting, significantly superior synergistic tumor therapy was performed on FA receptor-overexpressed tumor-bearing mice with a higher ROS generation and an almost complete elimination of tumor. This work highlights ASA-MTX-GdIII NPs as an efficient chemodynamic-chemotherapeutic agent for MRI imaging and tumor theranostics.
Collapse
|
|
5 |
35 |
3
|
Zhao PH, Wu YL, Li XY, Feng LL, Zhang L, Zheng BY, Ke MR, Huang JD. Aggregation-Enhanced Sonodynamic Activity of Phthalocyanine-Artesunate Conjugates. Angew Chem Int Ed Engl 2022; 61:e202113506. [PMID: 34761489 DOI: 10.1002/anie.202113506] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/05/2021] [Indexed: 12/15/2022]
Abstract
The clinical prospect of sonodynamic therapy (SDT) has not been fully realized due to the scarcity of efficient sonosensitizers. Herein, we designed phthalocyanine-artesunate conjugates (e.g. ZnPcT4 A), which could generate up to ca. 10-fold more reactive oxygen species (ROS) than the known sonosensitizer protoporphyrin IX. Meanwhile, an interesting and significant finding of aggregation-enhanced sonodynamic activity (AESA) was observed for the first time. ZnPcT4 A showed about 60-fold higher sonodynamic ROS generation in the aggregated form than in the disaggregated form in aqueous solutions. That could be attributed to the boosted ultrasonic cavitation of nanostructures. The level of the AESA effect depended on the aggregation ability of sonosensitizer molecules and the particle size of their aggregates. Moreover, biological studies demonstrated that ZnPcT4 A had high anticancer activities and biosafety. This study thus opens up a new avenue the development of efficient organic sonosensitizers.
Collapse
|
|
3 |
21 |
4
|
Rathner A, Rathner P, Friedrich A, Wießner M, Kitzler CM, Schernthaner J, Karl T, Krauß J, Lottspeich F, Mewes W, Hintner H, Bauer JW, Breitenbach M, Müller N, Breitenbach-Koller H, von Hagen J. Drug Development for Target Ribosomal Protein rpL35/uL29 for Repair of LAMB3R635X in Rare Skin Disease Epidermolysis Bullosa. Skin Pharmacol Physiol 2021; 34:167-182. [PMID: 33823521 DOI: 10.1159/000513260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/22/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Epidermolysis bullosa (EB) describes a family of rare genetic blistering skin disorders. Various subtypes are clinically and genetically heterogeneous, and a lethal postpartum form of EB is the generalized severe junctional EB (gs-JEB). gs-JEB is mainly caused by premature termination codon (PTC) mutations in the skin anchor protein LAMB3 (laminin subunit beta-3) gene. The ribosome in majority of translational reads of LAMB3PTC mRNA aborts protein synthesis at the PTC signal, with production of a truncated, nonfunctional protein. This leaves an endogenous readthrough mechanism needed for production of functional full-length Lamb3 protein albeit at insufficient levels. Here, we report on the development of drugs targeting ribosomal protein L35 (rpL35), a ribosomal modifier for customized increase in production of full-length Lamb3 protein from a LAMB3PTC mRNA. METHODS Molecular docking studies were employed to identify small molecules binding to human rpL35. Molecular determinants of small molecule binding to rpL35 were further characterized by titration of the protein with these ligands as monitored by nuclear magnetic resonance (NMR) spectroscopy in solution. Changes in NMR chemical shifts were used to map the docking sites for small molecules onto the 3D structure of the rpL35. RESULTS Molecular docking studies identified 2 FDA-approved drugs, atazanavir and artesunate, as candidate small-molecule binders of rpL35. Molecular interaction studies predicted several binding clusters for both compounds scattered throughout the rpL35 structure. NMR titration studies identified the amino acids participating in the ligand interaction. Combining docking predictions for atazanavir and artesunate with rpL35 and NMR analysis of rpL35 ligand interaction, one binding cluster located near the N-terminus of rpL35 was identified. In this region, the nonidentical binding sites for atazanavir and artesunate overlap and are accessible when rpL35 is integrated in its natural ribosomal environment. CONCLUSION Atazanavir and artesunate were identified as candidate compounds binding to ribosomal protein rpL35 and may now be tested for their potential to trigger a rpL35 ribosomal switch to increase production of full-length Lamb3 protein from a LAMB3PTC mRNA for targeted systemic therapy in treating gs-JEB.
Collapse
|
|
4 |
9 |
5
|
Xu P, Wang X, Li T, Li L, Wu H, Tu J, Zhang R, Zhang L, Guo Z, Chen Q. Bioinspired Microenvironment Responsive Nanoprodrug as an Efficient Hydrophobic Drug Self-Delivery System for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33926-33936. [PMID: 34254767 DOI: 10.1021/acsami.1c09612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artemisinin compounds have shown satisfactory safety records in anti-malarial clinical practice over decades and have revealed value as inexpensive anti-tumor adjuvant chemotherapeutic drugs. However, the rational design and precise preparation of nanomedicines based on the artemisinin drugs are still limited due to their non-aromatic and fragile chemical structure. Herein, a bioinspired coordination-driven self-assembly strategy was developed to manufacture the artemisinin-based nanoprodrug with a significantly increased drug loading efficacy (∼70 wt %) and decreased preparation complexity compared to conventional nanodrugs. The nanoprodrug has suitable size distribution and robust colloidal stability for cancer targeting in vivo. The nanoprodrug was able to quickly disassemble in the tumor microenvironment with weak acidity and a high glutathione concentration, which guarantees a better tumor inhibitory effect than direct administration and fewer side effects on normal tissues in vivo. This work highlights a new strategy to harness a robust, simplified, organic solvent-free, and highly repeatable route for nanoprodrug manufacturing, which may offer opportunities to develop cost-effective, safe, and clinically available nanomedicines.
Collapse
|
|
4 |
3 |
6
|
Chang Y, Lyu T, Luan X, Yang Y, Cao Y, Qiu Y, Feng H. Artesunate-multiple pharmacological effects beyond treating malaria. Eur J Med Chem 2025; 286:117292. [PMID: 39842343 DOI: 10.1016/j.ejmech.2025.117292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Artesunate, a semisynthetic derivative of artemisinin, is not only recommended as the first-line drug for treating severe malaria but is also a significant member of Artemisinin-based Combination Therapies (ACTs), used in combination with other artemisinin derivatives for treating uncomplicated malaria. Beyond its potent anti-malarial activity, artesunate has garnered considerable attention for its pharmacological effects, which encompass broad-spectrum anti-tumor, anti-viral, and anti-inflammatory properties. It has collectively demonstrated superior drug tolerance, low toxicity, and mild side effects in cell line experiments in vitro, experimental animal models, and clinical drug researches, as a monotherapy or in combination with other agents. Investigating the pharmacological effects of artesunate will facilitate the exploration of novel drug applications and enhance the comprehensive clinical applications.
Collapse
|
Review |
1 |
|
7
|
Li W, Yang Z, Yang C, Guo W. Novel hollow ultrasound-triggered ZnFe 2O 4-Bi 2MoO 6 S-scheme heterojunction for efficient ferroptosis-based tumor therapy. J Colloid Interface Sci 2025; 683:132-146. [PMID: 39673926 DOI: 10.1016/j.jcis.2024.12.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/24/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
This study addresses the challenge of enhancing ferroptosis efficacy for tumor therapy, particularly the limited therapeutic efficiency of current inducers due to tumor microenvironment constraints. Herein, we developed a hollow ultrasound-triggered ZnFe2O4-Bi2MoO6 (ZB) S-scheme heterojunction loaded with artesunate (ART) to overcome these limitations. The ZB heterojunction with a particle size of ∼250 nm efficiently separates electron-hole pairs under ultrasound (US), promoting the generation of reactive oxygen species (ROS). The photodynamic effect of ZB further boosts ROS production, while ART, controlled-released by phase change materials under laser/US stimulation, enhances ROS production via Fe2+-mediated decomposition. This triple-enhanced strategy accumulates lipid peroxidation (LPO), significantly improving ferroptosis effects with a tumor suppression rate of 94.3 %. Moreover, ZB enables multimodal imaging and stimulates antitumor immunity, demonstrating its potential as a diagnostic and therapeutic agent. Our findings demonstrate the potential of this ZB@ART system in advancing ferroptosis-based tumor therapies, inspiring future designs of efficient ferroptosis inducers.
Collapse
|
|
1 |
|
8
|
Li W, Wang Y, Xu H, Zhang X, Ju Z, Shao W, Lv R. Enhanced Photothermal/Immunotherapy under NIR Irradiation Based on Hollow Mesoporous Responsive Nanomotor. Inorg Chem 2025; 64:495-509. [PMID: 39727277 DOI: 10.1021/acs.inorgchem.4c05059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
In this research, a hollow mesoporous responsive nanomotor was proposed for enhanced photothermal/immunotherapy under near infrared (NIR) irradiation. HA-HMCuS/AS as the nanomotor composed of hollow mesoporous copper sulfide (HMCuS) loaded with artesunate (AS) and hyaluronic acid (HA) was utilized to induce the polarization of tumor-associated macrophages. At the beginning, ResNet18 deep learning model was utilized to predict the Brunauer-Emmett-Teller (BET) surface area of HMCuS based on the morphology data set which was obtained from our conventional research. And then, we predicted that the as-synthesized HMCuS has a large surface area, which is beneficial for drug loading. Then, upon near-infrared light irradiation, HA-HMCuS/AS exhibited significant cytotoxicity against breast cancer cells and induced tumor thermal ablation. Additionally, HA-HMCuS/AS was found to inhibit the expression of TREM2 at the tumor site, promoting the transition of M2-type macrophages to M1-type macrophages in tumor tissue and enhancing the inflammatory response at the tumor site. In addition, photothermal therapy enabled tumor cells to release tumor-associated antigen and injury-related molecular patterns, promote the maturation and metastasis of dendritic cells, and further activate the body's specific antitumor immune response. By combining photothermal therapy with immunotherapy, the HA-HMCuS nanomotor demonstrated even more robust tumor ablation and suppression effects.
Collapse
|
|
1 |
|
9
|
Pradhan D, Biswasroy P, Ramchandani M, Pradhan DK, Bhola RK, Goyal A, Ghosh G, Rath G. Development, characterization, and evaluation of withaferin-A and artesunate-loaded pH-responsive acetal-dextran polymeric nanoparticles for the management of malaria. Int J Biol Macromol 2024; 273:133220. [PMID: 38897506 DOI: 10.1016/j.ijbiomac.2024.133220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Artemisinin and its derivatives have been commonly used to treat malaria. However, the emergence of resistance against artemisinin derivatives has posed a critical challenge in malaria management. In the present study, we have proposed a combinatorial approach, utilizing pH-responsive acetal-dextran nanoparticles (Ac-Dex NPs) as carriers for the delivery of withaferin-A (WS-3) and artesunate (Art) to improve treatment efficacy of malaria. The optimized WS-3 and Art Ac-Dex NPs demonstrated enhanced pH-responsive release profiles under parasitophorous mimetic conditions (pH 5.5). Computational molecular modeling reveals that Ac-Dex's polymeric backbone strongly interacts with merozoite surface protein-1 (MSP-1), preventing erythrocyte invasion. In-vitro antimalarial activity of drug-loaded Ac-Dex NPs reveals a 1-1.5-fold reduction in IC50 values compared to pure drug against the 3D7 strain of Plasmodium falciparum. Treatment with WS-3 Ac-Dex NPs (100 mg/kg) and Art Ac-Dex NPs (30 mg/kg) to Plasmodium berghei-infected mice resulted in 78.11 % and 100 % inhibition of parasitemia. Notably, the combination therapy comprised of Art and WS-3 Ac-Dex NPs achieved complete inhibition of parasitemia even at a half dose of Art, indicating the synergistic potential of the combinations. However, further investigations are necessary to confirm the safety and effectiveness of WS-3 and Art Ac-Dex NPs for their successful clinical implications.
Collapse
|
|
1 |
|
10
|
Saeed MA, Ansari MT, Ch BA. Enhancement of solubility and dissolution profile of artesunate by employing solid dispersion approach: An in-vitro evaluation. PAKISTAN JOURNAL OF PHARMACEUTICAL SCIENCES 2019; 32:353-361. [PMID: 30829215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Current study was designed with an aim to improve the solubility and dissolution profile of artesunate by preparing solid dispersions through solvent evaporation and freeze-drying techniques using polyethylene glycol 4000 (PEG4000) as solubility enhancer. Developed formulations were characterized for FTIR, XRD, TGA and SEM. Maximum increase in solubility was attained by freeze-dried solid dispersions (FD F444) i.e. 2.99 folds and 2.66 folds by solvent evaporation solid dispersion (SE F44) as compare to pure drug. Amorphous nature of artesunate in solid dispersions was confirmed from XRD diffractographs. Surface morphology indicated the existence of rough surface in freeze- dried solid dispersions (FDDs) and smooth surface in solvent evaporation solid dispersions (SEDs). Rapid dissolution rates were exhibited by fast dissolving tablets of optimized formulations. Moreover, the release of the drug was dominated by the first order kinetics (R2 = 0.9932) with the Fickian type of diffusion mechanism (n<0.450).
Collapse
|
|
6 |
|
11
|
Ma J, Liao Z, Li J, Li X, Guo H, Zhong Q, Huang J, Shuai X, Chen S. A cRGD-modified liposome for targeted delivery of artesunate to inhibit angiogenesis in endometriosis. Biomater Sci 2025; 13:1045-1058. [PMID: 39829388 DOI: 10.1039/d4bm01506a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Currently, hormonal therapy for endometriosis faces challenges in achieving a balance between treatment and preserving the chance of pregnancy. Therefore, the development of non-hormonal therapy holds significant clinical importance. Angiogenesis is a hallmark of endometriosis, and anti-angiogenic therapies targeting the hypoxia-inducible factor-1α (HIF-1α) pathway are considered potential approaches for endometriosis. However, angiogenesis is also involved in numerous physiological processes, including pregnancy, and systemic anti-angiogenesis may lead to severe adverse effects. To address this, a cRGD-modified liposome nanodrug (cRGD-LP-ART) is synthesized, which enhances drug efficacy while reducing adverse reactions. Artesunate (ART), a non-hormonal drug used to treat malaria, has shown anti-angiogenic effects beyond its original indications in various benign and malignant diseases. With cRGD modification, cRGD-LP-ART can target ectopic lesions and inhibit local angiogenesis by suppressing the HIF-1α/vascular endothelial growth factor (VEGF) pathway. Furthermore, cRGD-LP-ART exhibits better therapeutic effects than free ART, without affecting ovarian function or causing atrophy of the eutopic endometrium, making it a promising new option for non-hormonal therapy of endometriosis. As a combination of liposomes and a clinically approved drug, cRGD-LP-ART holds great potential and clinical prospects for the treatment of endometriosis.
Collapse
|
|
1 |
|
12
|
Ren M, Liang S, Lin S, Huang R, Chen Y, Zhang Y, Xu Y. Design, synthesis and biological evaluation of artesunate-Se derivatives as anticancer agents by inducing GPX4-mediated ferroptosis. Bioorg Chem 2024; 152:107733. [PMID: 39180865 DOI: 10.1016/j.bioorg.2024.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
A series of organoselenium compounds based on the hybridization of artesunate (ART) scaffolds and Se functionalities (-SeCN and -SeCF3) were synthesized. The redox properties of artesunate-SeCN and artesunate-SeCF3 derivatives were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), and the results showed that compounds 2c, 2f and 3e have a good free radical scavenging activity. Their cytotoxicity was evaluated against four types of cancer cell lines, SW480 (human colon adenocarcinoma cells), HCT116 (human colorectal adenocarcinoma cells), HepG2 (human hepatocellular carcinoma cells), MCF-7 (human breast cancer cells). The MTT results showed that compared with ART and 5-FU, compound 2c exhibited potent in vitro antiproliferative activity in SW480, HCT116, and MCF-7 cancer cell lines, and was thus chose for further antitumor mechanism investigation. The antitumor mechanism study revealed that compound 2c induced ferroptosis in HCT116 cells by inhibiting the expression of GPX4 protein, accompanying by the up-regulation of intracellular ROS levels. Mitochondria in HCT116 cells exhibit depolarization of mitochondrial membrane potential (MMP) and ultrastructural changes in morphology, which indicated that 2c resulted in mitochondrial dysfunction and ferroptosis. Moreover, 2c could increase the levels of lipid peroxidation and ferrous ion, which further confirm that compound 2c may exert its antitumor effect through ferroptosis. Overall, these results suggest that the artesunate-Se candidates could provide promising new lead derivatives for further potential anticancer drug development.
Collapse
|
|
1 |
|
13
|
Wang DD, He L, Qi MH, Zhao HY, Yu AX, Huang SW. Mitochondria-targeting artesunate-rhein conjugates: Linker-modulated cell-permeability, heme-affinity and anticancer activity. Eur J Med Chem 2025; 282:117100. [PMID: 39615162 DOI: 10.1016/j.ejmech.2024.117100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Heme, abundant in the mitochondria of cancer cells, is a key target for the anticancer activity of artemisinin (ART). Current strategies to enhance the anticancer activity of ART focus solely on its delivery to heme-enriched subcellular localizations while overlooking the decisive effects of ART-heme interactions. Here, we propose an ingenious strategy that synergizes mitochondria-targeted drug delivery and linker-mediated drug conformation modulation, thereby significantly enhancing the anticancer activity of ART. By strategically conjugating artemisinin (ART) with the mitochondria-targeting rhein (R) using different linkers, we aimed to precisely adjust the conformation of the conjugates. Comprehensive computational analysis revealed that the conjugate with the optimal linker length (C4) displayed a favorable conformation that facilitated cell permeability and exhibited the highest binding affinity to heme and Fe ions. Moreover, it exhibited superior tumor suppression capabilities both in vitro and in vivo, overcoming the uncertainty of in vivo application caused by the rapid clearance of the conventional mitochondria-targeted cation TPP+, and even inducing immunogenic cell death associated with immunotherapy. This novel strategy opens up a new avenue for the development of drug conjugate systems.
Collapse
|
|
1 |
|
14
|
Mujtaba MA, Fule R, Amin P, Elhassan GO, Almoutairi MMM, Kaleem M, Warsi MH. Development of Hot Melt Extruded Co-Formulated Artesunate and Amodiaquine- Soluplus ® Solid Dispersion System in Fixed-Dose Form: Amorphous State Characterization and Pharmacokinetic Evaluation. Curr Drug Metab 2024; 25:505-522. [PMID: 39323345 DOI: 10.2174/0113892002330772240912055518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION This study aims to develop co-amorphous Solid Dispersion (SD) system containing antimalarials Artesunate (ARS) and Amodiaquine (AMQ) to improve its oral bioavailability employing the Hot Melt Extrusion (HME) technique. Soluplus® was selected as a polymeric excipient, whereas Lutrol F127, Lutrol F68, TPGS, and PEG400 as surfactants were incorporated along with Soluplus® to enhance extrudability, improve hydrophilicity, and improve the blend viscosity during HME. Soluplus® with surfactant combination successfully stabilizes both drugs during extrusion by generating SD because of its lower glass transition temperature (Tg) and viscoelastic behavior. METHODS Physicochemical characterizations were performed using FTIR, DSC, TGA, and XRD, which confirmed the amorphousization of drugs in the SD system. The molecular level morphology of the optimized formulation was quantified using high-resolution techniques such as Atomic-Force Microscopy (AFM), Raman spectral, and mapping analysis. The transition of the crystalline drugs into a stable amorphous form has been demonstrated by 1H-NMR and 2D-NMR studies. The in vivo pharmacokinetics study in rats showed that the SD-containing drug-Soluplus-TPGS (FDC10) formulation has 36.63-56.13 (ARS-AMQ) folds increase in the Cmax and 41.87-54.34 (ARS-AMQ) folds increase AUC (0-72) as compared to pure drugs. RESULTS Pharmacokinetic analysis shows that a fixed-dose combination of 50:135 mg of both APIs (ARSAMQ) significantly increased oral bioavailability by elevating Cmax and AUC, in comparison to pure APIs and also better than the marketed product Coarsucam®. CONCLUSION Therefore, the developed melt extruded co-amorphous formulation has enhanced bioavailability and has more effectiveness than the marketed product Coarsucam®. .
Collapse
|
|
1 |
|
15
|
Yan W, Liu D, Xie H, Shen J, Fang Y, Sun Y, Jiao W, Jin Y. 3D printing of multi-unit gastro-retentive tablets for the pulsatile release of artesunate. Int J Pharm 2024; 658:124204. [PMID: 38710297 DOI: 10.1016/j.ijpharm.2024.124204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Pulsatile drug delivery is hardly achieved by conventional gastro-retentive dosage forms. Artesunate as a typical anti-malaria medicine needs oral pulsatile release. Here, artesunate-loaded pulsatile-release multi-unit gastro-retentive tablets (APGTs) were prepared with a semi-solid extrusion three-dimensional (3D) printing method. An APGT was composed of three units: artesunate-loaded immediate and delayed release units and a block unit. The matrix of the immediate/delayed release units consisted of polyvinylpyrrolidone (PVP) K30 and croscarmellose sodium, which improved the rapid release of artesunate when contacting water. The block unit consisted of octadecanol, hydroxypropyl methyl cellulose K15M, PVP K30, and poloxamer F68. APGTs showed multi-phase release in simulated gastric liquids (SGLs). The first immediate release phase continued for 1 h followed by a long block phase for 7 h. The second rapid release phase was initiated when the eroded holes in the block unit extended to the inner delayed release unit, and this phase continued for about 14 h. Low-density APGTs could ensure their long-term floating in the stomach. Oral APGTs remained in the rabbit stomach for about 20 h. 3D printing provides a new strategy for the preparation of oral pulsatile-release tablets.
Collapse
|
|
1 |
|
16
|
Zhang C, Hu B, Ren J, Du W, Meng M. Thiol-Amino Bifunctional Metal-Organic-Framework-Based Membrane Regulating Hydrophobic Sites for Selective Separation of Artesunate. Inorg Chem 2024; 63:14699-14711. [PMID: 39047187 DOI: 10.1021/acs.inorgchem.4c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The selective separation and purification of artesunate (ARU) and artemisinin (ART) using zirconium-based metal-organic frameworks (MOF), especially UiO-66 MOF, are receiving increasing attention. In this study, tunable "hydrophobic" sites of thiol (-SH) were introduced to amino-functionalized MOFs (UiO-66-NH2) to fabricate a thiol-amino bifunctional UiO-66/polyvinylidene fluoride (PVDF)-blended membrane (S1-UiO/PVDF-DPIM) via the delayed-phase-inversion method for selective separation of ARU/ART. The adsorption results indicated that the modification of UiO-66-NH2 with thiol can indeed increase the ARU adsorption. The thiol-functional MOF (S1-UiO-66-NH2) was chosen as the optimal thiol-amino bifunctional MOF, as it possessed the maximum ARU adsorption capacity (111.14 mg g-1) and the highest selective-separation factor (α = 51.84). The ATR FT-IR dynamic spectrum disclosed the recognition mechanism, indicating that incorporating thiol groups into a hydrophilic MOF as hydrophobic sites can boost adsorption efficiency. Moreover, the static-selective permeation results showed that the S1-UiO/PVDF-DPIM preferentially transfers ARU when mixed with ART, even achieving complete ARU/ART separation. The most crucial aspect was the introduction of a hydrophobic core of -SH and new spontaneously formed disulfide bonds to S1-UiO/PVDF-DPIM, creating alternated hydrogen bonds and hydrophobic interactions. This work provides an alternative strategy to prepare hydrophobic-hydrophilic MOF-based membranes for the highly efficient and selective separation of complex analogue systems.
Collapse
|
|
1 |
|
17
|
Zhang Y, Meng Y, Wang S, Zu Y, Zhao X. Exploring pectin-casein micelles as novel carriers for oral drug delivery of artesunate in the treatment of systemic lupus erythematosus. Int J Biol Macromol 2024; 271:132523. [PMID: 38788864 DOI: 10.1016/j.ijbiomac.2024.132523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/06/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The oral route of administration is considered the optimal choice for treating chronic diseases due to its convenience and non-invasiveness, which can help prevent physical and mental harm to patients undergoing long-term treatment. However, challenges such as safety, gastrointestinal stability, and bioavailability of oral drugs often limit their effectiveness. Natural biomacromolecule micelles, known for their safety, stability, biocompatibility, and diverse functions, have emerged as promising carriers for oral treatment of chronic diseases like systemic lupus erythematosus (SLE) with fat-soluble drugs. This study introduces an innovative approach by developing an oral delivery system using chemically synthesized natural biomacromolecules to load artesunate for treating SLE. By synthesizing amphiphilic polymer micelles from pectin and casein through a carbodiimide reaction, a more stable structure is achieved. The hydrophobic core of these micelles encapsulates artesunate, resulting in the formation of an oral delivery system (PC-AS) with several advantages, including high drug loading and encapsulation efficiency, small particle size, negative potential, strong stability in the gastrointestinal tract, low toxicity and side effects, strong adhesion in the small intestine, and high bioavailability. These advantages facilitate efficient absorption of artesunate in the gastrointestinal tract, leading to improved bioavailability and effective alleviation of SLE-like symptoms in MRL/lpr mice. By utilizing chemically synthesized natural macromolecular micelles for delivering artesunate in the treatment of SLE, this study overcomes the oral barriers associated with the original drug and presents a novel solution for the long-term oral treatment of chronic diseases.
Collapse
|
|
1 |
|