1
|
Sundaram SS, Kannan A, Chintaluri PG, Sreekala AGV, Nathan VK. Thermostable bacterial L-asparaginase for polyacrylamide inhibition and in silico mutational analysis. Int Microbiol 2024; 27:1765-1779. [PMID: 38519776 DOI: 10.1007/s10123-024-00493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
The L-asparaginase (ASPN) enzyme has received recognition in various applications including acrylamide degradation in the food industry. The synthesis and application of thermostable ASPN enzymes is required for its use in the food sector, where thermostable enzymes can withstand high temperatures. To achieve this goal, the bacterium Bacillus subtilis was isolated from the hot springs of Tapovan for screening the production of thermostable ASPN enzyme. Thus, ASPN with a maximal specific enzymatic activity of 0.896 U/mg and a molecular weight of 66 kDa was produced from the isolated bacteria. The kinetic study of the enzyme yielded a Km value of 1.579 mM and a Vmax of 5.009 µM/min with thermostability up to 100 min at 75 °C. This may have had a positive indication for employing the enzyme to stop polyacrylamide from being produced. The current study has also been extended to investigate the interaction of native and mutated ASPN enzymes with acrylamide. This concluded that the M10 (with 10 mutations) has the highest protein and thermal stability compared to the wild-type ASPN protein sequence. Therefore, in comparison to a normal ASPN and all other mutant ASPNs, M10 is the most favorable mutation. This research has also demonstrated the usage of ASPN in food industrial applications.
Collapse
|
2
|
Ebrahimi V, Hashemi A. Optimizing recombinant production of L-asparaginase 1 from Saccharomyces cerevisiae using response surface methodology. Folia Microbiol (Praha) 2024; 69:1205-1219. [PMID: 38581537 DOI: 10.1007/s12223-024-01163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
L-asparaginase is an essential enzyme used in cancer treatment, but its production faces challenges like low yield, high cost, and immunogenicity. Recombinant production is a promising method to overcome these limitations. In this study, response surface methodology (RSM) was used to optimize the production of L-asparaginase 1 from Saccharomyces cerevisiae in Escherichia coli K-12 BW25113. The Box-Behnken design (BBD) was utilized for the RSM modeling, and a total of 29 experiments were conducted. These experiments aimed to examine the impact of different factors, including the concentration of isopropyl-b-LD-thiogalactopyranoside (IPTG), the cell density prior to induction, the duration of induction, and the temperature, on the expression level of L-asparaginase 1. The results revealed that while the post-induction temperature, cell density at induction time, and post-induction time all had a significant influence on the response, the post-induction time exhibited the greatest effect. The optimized conditions (induction at cell density 0.8 with 0.7 mM IPTG for 4 h at 30 °C) resulted in a significant amount of L-asparaginase with a titer of 93.52 μg/mL, which was consistent with the model-based prediction. The study concluded that RSM optimization effectively increased the production of L-asparaginase 1 in E. coli, which could have the potential for large-scale fermentation. Further research can explore using other host cells, optimizing the fermentation process, and examining the effect of other variables to increase production.
Collapse
|
3
|
Aktar BY, Aysan A, Turunen O, Yağci T, Solğun HA, Binay B. L-Asparaginase from Lachancea Thermotolerans: Effect of Lys99Ala on Enzyme Performance and in vitro Antileukemic Efficacy. Biotechnol J 2024; 19:e202400507. [PMID: 39552048 DOI: 10.1002/biot.202400507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
L-asparaginases (EC 3.5.1.1) are amidohydrolase enzymes that predominantly catalyze conversion of L-asparagine to L-aspartic acid and ammonia. In addition, some exhibit secondary L-glutaminase activity. Escherichia coli and Erwinia chrysanthemi L-asparaginases are widely used in the pharmaceutical industry to produce therapeutically important compounds. In the therapeutic use of enzymes, bacterial L-asparaginases can trigger immune responses, leading to a high rate of adverse effects that diminish the effectiveness of the treatment. This situation has forced scientists to search for promising L-asparaginases from new sources. Yeast L-asparaginases could be useful in reducing toxicity and enhancing efficacy but they have been poorly studied to date. Here, we characterized the yeast Lachancea thermotolerans L-asparaginase (LtASNase) purified by affinity chromatography. It has a specific activity of 313.8 U/mg and a high kcat value (312.4 s). We demonstrated through a semi-rational design that the mutations of Lys99 show varying effects on catalytic activity, with the Lys99Ala mutant increasing specific activity 3.3-fold. Furthermore, the in vitro antileukemic activity of the non-formulated form of Lys99Ala LtASNase was evaluated against SUP-B15 and REH cell lines. The results demonstrated that LtASNase exhibits significant antileukemic potential, comparable to commercial type II bacterial enzymes. The understanding of the mutant L-asparaginases examined in this study will significantly contribute to the development of new and more effective yeast-derived asparaginases.
Collapse
|
4
|
Abdullah EM, Khan MS, Aziz IM, Alokail MS, Karthikeyan S, Rupavarshini M, Bhat SA, Ataya FS. Expression, characterization and cytotoxicity of recombinant l-asparaginase II from Salmonella paratyphi cloned in Escherichia coli. Int J Biol Macromol 2024; 279:135458. [PMID: 39251007 DOI: 10.1016/j.ijbiomac.2024.135458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
L-asparaginase is a remarkable antineoplastic enzyme used in medicine for the treatment of acute lymphoblastic leukemia (ALL) as well as in food industries. In this work, the L-asparaginase-II gene from Salmonella paratyphi was codon-optimized, cloned, and expressed in E. coli as a His-tag fusion protein. Then, using a two-step chromatographic procedure it was purified to homogeneity as confirmed by SDS-PAGE, which also showed its monomeric molecular weight to be 37 kDa. This recombinant L-asparaginase II from Salmonella paratyphi (recSalA) was optimally active at pH 7.0 and 40 °C temperature. It was highly specific for L-asparagine as a substrate, while its glutaminase activity was low. The specific activity was found to be 197 U/mg and the kinetics elements Km, Vmax, and kcat were determined to be 21 mM, 28 μM/min, and 39.6 S-1, respectively. Thermal stability was assessed using a spectrofluorometer and showed Tm value of 45 °C. The in-vitro effects of recombinant asparaginase on three different human cancerous cell lines (MCF7, A549 and Hep-2) by MTT assay showed remarkable anti-proliferative activity. Moreover, recSalA exhibited significant morphological changes in cancer cells and IC50 values ranged from 28 to 45.5 μg/ml for tested cell lines. To investigate the binding mechanism of SalA, both substrates L-asparagine and l-glutamine were docked with the protein and the binding energy was calculated to be -4.2 kcal mol-1 and - 4.4 kcal mol-1, respectively. In summary, recSalA has significant efficacy as an anticancer agent with potential implications in oncology while its in-vivo validation needs further investigation.
Collapse
|
5
|
Habibi R, Zibaee I, Talebi R, Behravan J, Tarighi S, Brejnrod A, Kjøller AH, Sørensen SJ, Madsen JS. L-asparaginase-driven antibiosis in Pseudomonas fluorescens EK007: A promising biocontrol strategy against fire blight. Int J Biol Macromol 2024; 281:136402. [PMID: 39383903 DOI: 10.1016/j.ijbiomac.2024.136402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Fire blight, caused by Erwinia amylovora, is a destructive bacterial disease affecting pear and apple trees. The biocontrol ability of Pseudomonas fluorescens EK007 suppresses E. amylovora through competitive exclusion. In this study, EK007 was isolated from the pear phylloplane and characterized as an effective biological agent through antibacterial compounds. To identify the mechanisms underlying EK007's biocontrol activity, physiological tests, transposon insertion mutant libraries, allelic exchange, and whole-genome sequencing were performed. A transposon mutation in the massC homolog gene, part of the massetolide A lipopeptide biosynthesis cluster, reduced the biocontrol efficiency. Allelic exchange confirmed cyclic lipopeptide (CLP) as part of the mechanism. Additionally, a gacA mutant isolated by transposon mutagenesis showed deficient inhibition activity. Culture conditions and nutritional sources clearly influenced EK007's antimicrobial activity against E. amylovora. Growth yield generally correlated with antibiotic production, with amino acids and iron affecting production. Asparagine and aspartate shut down biocontrol activity. This study presents preliminary findings on a novel CLP that may contribute to EK007's antibacterial activity against E. amylovora. While EK007 shows promise as a biocontrol candidate compared to related strains, these results are based solely on in vitro studies, highlighting the need for further investigations to evaluate its efficacy in natural environments.
Collapse
|
6
|
Sania A, Muhammad MA, Sajed M, Ahmad N, Aslam M, Tang XF, Rashid N. Engineering Tk1656, a highly active l-asparaginase from Thermococcus kodakarensis, for enhanced activity and stability. Int J Biol Macromol 2024; 281:136442. [PMID: 39389482 DOI: 10.1016/j.ijbiomac.2024.136442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
l-Asparaginases catalyze the hydrolysis of l-asparagine to l-aspartic acid and ammonia. These enzymes have potential applications in therapeutics and food industry. Tk1656, a highly active and thermostable l-asparaginase from Thermococcus kodakarensis, has been proved effective in selective killing of acute lymphocytic leukemia cells and in reducing acrylamide formation in baked and fried foods. However, it displayed <5 % activity under physiological conditions compared to the optimal activity at 85 °C and pH 9.5. We have attempted engineering of this valuable enzyme to improve the characteristics required for therapeutic and industrial applications. Based on the literature and crystal structure of Tk1656, nine specific mutant variants were designed, produced in Escherichia coli, and the purified mutant enzymes were compared with the wild-type. One of the mutants, K299L, displayed >20 % increase in activity at 85 °C. H158S substitution resulted in >5 °C increase in the optimal temperature. Similarly, a mesophilic-like mutation L56D, resulted in >5-fold increase in activity at pH 7.0 and 37 °C compared to that of the wild-type enzyme. The substrate specificity of the mutant variants remained unchanged. These results demonstrate that L56D and K299L variants of Tk1656 are the potent enzymes for therapeutics and acrylamide mitigation applications, respectively.
Collapse
|
7
|
Wu YX, Li MJ, Liu Y, Guo M, Lan MN, Zheng HJ. ASPG and DAD1 are potential placental-derived biomarkers for ASD-like symptom severity levels in male/female offspring. Placenta 2024; 155:78-87. [PMID: 39154487 DOI: 10.1016/j.placenta.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION An early evaluating system for autism spectrum disorder (ASD) severity is crucial. Questionnaire survey is challenging for accurately assessing the severity levels for ASD in children. METHODS Offspring with ASD-like phenotypes were induced by treating pregnant mice with Poly (I:C) at GD12.5 and the placentae corresponding to the offspring were obtained by caesarean. The autism severity composite score (ASCS) for offspring was calculated through behavioral tests. HE staining and immunohistochemistry were used to observe the morphology of placenta. Candidate biomarkers were identified by weighted protein co-expression network analysis (WPCNA) combined with machine learning and further validated by ELISA. Sperman's was used to analyze the correlation between biomarkers and metabolome. RESULTS The placental weight and mean vascular area of male offspring with ASD-like phenotypes were significantly decreased compared with typical mice. According to the WPCNA, four modules were identified and significantly correlated with ASCS of offspring. Two biomarkers (ASPG and DAD1) with high correlation with ASCS in offspring were identified. DISCUSSION VEGF pathway may contribute to sexual dimorphism in placental morphology within mice with ASD-like phenotypes in term. The placental ASPG and DAD1 levels could reflect ASD-like symptom severity levels in male/female mice offspring.
Collapse
|
8
|
Ni D, Xu W, Zhang W, Mu W. Identification of a thermostable L-asparaginase from Pyrococcus yayanosii CH1 and its application in the reduction of acrylamide. Extremophiles 2024; 28:44. [PMID: 39313567 DOI: 10.1007/s00792-024-01360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
L-asparaginase (ASNase, E.C. 3.5.1.1) catalyzes the deamination of L-asparagine to L-aspartic acid and ammonia and is widely used in medicine to treat acute lymphocytic leukemia. It also has significant applications in the food industry by inhibiting acrylamide formation. In this study, we characterized a thermostable ASNase from the hyper thermophilic strain, Pyrococcus yayanosii CH1. The recombinant enzyme (PyASNase) exhibited maximal activity at pH 8.0 and 85 °C. Moreover, PyASNase demonstrated promising thermostability across temperatures ranging from 70 to 95 °C. The kinetic parameters of PyASNase for L-asparagine were a Km of 6.3 mM, a kcat of 1989s-1, and a kcat/Km of 315.7 mM-1 s-1. Treating potato samples with 10 U/mL of PyASNase at 85 °C for merely 10 min reduced the acrylamide content in the final product by 82.5%, demonstrating a high efficiency and significant advantage of PyASNase in acrylamide inhibition.
Collapse
|
9
|
Gomes JGDS, Brandão LC, Pinheiro DP, Pontes LQ, Carneiro RF, Quintela BCSF, Marinho ACM, Furtado GP, Rocha BAM. Kinetics characterization of a low immunogenic recombinant l-asparaginase from Phaseolus vulgaris with cytotoxic activity against leukemia cells. Int J Biol Macromol 2024; 275:133731. [PMID: 38986978 DOI: 10.1016/j.ijbiomac.2024.133731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
l-asparaginases play a crucial role in the treatment of acute lymphoblastic leukemia (ALL), a type of cancer that mostly affects children and teenagers. However, it is common for these molecules to cause adverse reactions during treatment. These downsides ignite the search for novel asparaginases to mitigate these problems. Thus, this work aimed to produce and characterize a recombinant asparaginase from Phaseolus vulgaris (Asp-P). In this study, Asp-P was expressed in Escherichia coli with high yields and optimum activity at 40 °C, pH 9.0. The enzyme Km and Vmax values were 7.05 mM and 1027 U/mg, respectively. Asp-P is specific for l-asparagine, showing no activity against l-glutamine and other amino acids. The enzyme showed a higher cytotoxic effect against Raji than K562 cell lines, but only at high concentrations. In silico analysis indicated that Asp-P has lower immunogenicity than a commercial enzyme. Asp-P induced biofilm formation by Candida sp. due to sublethal dose, showing an underexplored potential of asparaginases. The absence of glutaminase activity, lower immunogenicity and optimal activity similar to physiological temperature conditions are characteristics that indicate Asp-P as a potential new commercial enzyme in the treatment of ALL and its underexplored application in the treatment of other diseases.
Collapse
|
10
|
Zhang S, Cai X, Wei J, Wang H, Liu C, Li X, Tang L, Zhou X, Zhang J. GhWRKY40 Interacts with an Asparaginase GhAP D6 Involved in Fiber Development in Upland Cotton ( Gossypium hirsutum L.). Genes (Basel) 2024; 15:979. [PMID: 39202340 PMCID: PMC11353873 DOI: 10.3390/genes15080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Fiber quality improvement is a primary goal in cotton breeding. Identification of fiber quality-related genes and understanding the underlying molecular mechanisms are essential prerequisites. Previously, studies determined that silencing the gene GhWRKY40 resulted in longer cotton fibers; however, both the underlying mechanisms and whether this transcription factor is additionally involved in the regulation of cotton fiber strength/fineness are unknown. In the current study, we verified that GhWRKY40 influences the fiber strength, fiber fineness, and fiber surface structure by using virus-induced gene silencing (VIGS). Potential proteins that may interact with the nucleus-localized GhWRKY40 were screened in a yeast two-hybrid (Y2H) nuclear-system cDNA library constructed from fibers at 0, 10, and 25 days post-anthesis (DPA) in two near-isogenic lines differing in fiber length and strength. An aspartyl protease/asparaginase-related protein, GhAPD6, was identified and confirmed by Y2H and split-luciferase complementation assays. The expression of GhAPD6 was approximately 30-fold higher in the GhWRKY40-VIGS lines at 10 DPA and aspartyl protease activity was significantly upregulated in the GhWRKY40-VIGS lines at 10-20 DPA. This study suggested that GhWRKY40 may interact with GhAPD6 to regulate fiber development in cotton. The results provide a theoretical reference for the selection and breeding of high-quality cotton fibers assisted by molecular technology.
Collapse
|
11
|
Narayanan N, Marvin-Peek J, Abouelnaaj MK, Majid D, Wang B, Brown BD, Qiu Y, Kornblau SM, Abbas HA. Reverse Phase Proteomic Array Profiling of Asparagine Synthetase Expression in Newly Diagnosed Acute Myeloid Leukemia. J Proteome Res 2024; 23:2495-2504. [PMID: 38829961 PMCID: PMC11226376 DOI: 10.1021/acs.jproteome.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Asparaginase-based therapy is a cornerstone in acute lymphoblastic leukemia (ALL) treatment, capitalizing on the methylation status of the asparagine synthetase (ASNS) gene, which renders ALL cells reliant on extracellular asparagine. Contrastingly, ASNS expression in acute myeloid leukemia (AML) has not been thoroughly investigated, despite studies suggesting that AML with chromosome 7/7q deletions might have reduced ASNS levels. Here, we leverage reverse phase protein arrays to measure ASNS expression in 810 AML patients and assess its impact on outcomes. We find that AML with inv(16) has the lowest overall ASNS expression. While AML with deletion 7/7q had ASNS levels slightly lower than those of AML without deletion 7/7q, this observation was not significant. Low ASNS expression correlated with improved overall survival (46 versus 54 weeks, respectively, p = 0.011), whereas higher ASNS levels were associated with better response to venetoclax-based therapy. Protein correlation analysis demonstrated association between ASNS and proteins involved in methylation and DNA repair. In conclusion, while ASNS expression was not lower in patients with deletion 7/7q as initially predicted, ASNS levels were highly variable across AML patients. Further studies are needed to assess whether patients with low ASNS expression are susceptible to asparaginase-based therapy due to their inability to augment compensatory ASNS expression upon asparagine depletion.
Collapse
|
12
|
Zhang L, Ding S, Tang X, Gao R, Huo R, Xie G. The Improved Antineoplastic Activity of Thermophilic L-Asparaginase Tli10209 via Site-Directed Mutagenesis. Biomolecules 2024; 14:686. [PMID: 38927089 PMCID: PMC11202230 DOI: 10.3390/biom14060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Amino acid deprivation therapy (AADT) is a novel anticancer therapy, considered nontoxic and selective. Thermophilic L-asparaginase enzymes display high stability and activity at elevated temperatures. However, they are of limited use in clinical applications because of their low substrate affinity and reduced activity under physiological conditions, which may necessitate an improved dosage, leading to side effects and greater costs. Thus, in an attempt to improve the activity of L-Asn at 37 °C, with the use of a semi-rational design, eight active-site mutants of Thermococcus litoralis DSM 5473 L-asparaginase Tli10209 were developed. T70A exhibited a 5.11-fold increase compared with the wild enzyme in physiological conditions. Double-mutant enzymes were created by combining mutants with higher hydrolysis activity. T70A/F36Y, T70A/K48L, and T70A/D50G were enhanced by 5.59-, 6.38-, and 5.58-fold. The immobilized enzyme applied in MCF-7 breast cancer cells only required one-seventh of the dose of the free enzyme to achieve the same inhibition rate under near-infrared irradiation. This provides a proof of concept that it is possible to reduce the consumption of L-Asn by improving its activity, thus providing a method to manage side effects.
Collapse
|
13
|
Zhang W, Dai Q, Huang Z, Xu W. Identification and Thermostability Modification of the Mesophilic L-asparaginase from Limosilactobacillus secaliphilus. Appl Biochem Biotechnol 2024; 196:3387-3401. [PMID: 37656355 DOI: 10.1007/s12010-023-04715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
L-asparaginase (L-ASNase, E.C.3.5.1.1) could effectively inhibit the formation of acrylamide (AA) by hydrolyzing the AA precursor L-asparagine. However, most of the L-ASNases showed a relatively weak thermostability, posing a big threat on the application of enzyme at high processing temperatures. Here, the recombinant L-ASNase from mesophilic bacteria Limosilactobacillus secaliphilus was identified for the first time. The recombinant enzyme exhibited its optimal activity at pH 8.0 and 60 ℃. Additionally, the thermostability of L. secaliphilus L-ASNase was enhanced by site-directed mutagenesis after multiple sequence alignment. Ten mutants were reasonably constructed, among which the single-point mutants L24Y, S55T, and V155S showed more than 1 ℃ elevated Tm value compared to the wild-type enzyme. In addition, the half-life of mutant at 40, 50, and 55 ℃ was 376.7 min, 62.1 min, and 18.7 min, much higher than that of wild-type enzyme. The molecular dynamic simulation showed that compared to the wild-type enzyme, the structural stability of V155S was greatly strengthened due to the lower RMSF and RMSD value as well as a decreased total energy compared to that of the wild-type enzyme. The results were positive and provided some useful information for the thermostability modification of L-ASNase.
Collapse
|
14
|
Ruiz-Lara G, Costa-Silva TA, Muso-Cachumba JJ, Cevallos Espinel J, Fontes MG, Garcia-Maya M, Rahman KM, Rangel-Yagui CDO, Monteiro G. Nonclinical Evaluation of Single-Mutant E. coli Asparaginases Obtained by Double-Mutant Deconvolution: Improving Toxicological, Immune and Inflammatory Responses. Int J Mol Sci 2024; 25:6008. [PMID: 38892196 PMCID: PMC11172649 DOI: 10.3390/ijms25116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Acute lymphoblastic leukaemia is currently treated with bacterial L-asparaginase; however, its side effects raise the need for the development of improved and efficient novel enzymes. Previously, we obtained low anti-asparaginase antibody production and high serum enzyme half-life in mice treated with the P40S/S206C mutant; however, its specific activity was significantly reduced. Thus, our aim was to test single mutants, S206C and P40S, through in vitro and in vivo assays. Our results showed that the drop in specific activity was caused by P40S substitution. In addition, our single mutants were highly stable in biological environment simulation, unlike the double-mutant P40S/S206C. The in vitro cell viability assay demonstrated that mutant enzymes have a higher cytotoxic effect than WT on T-cell-derived ALL and on some solid cancer cell lines. The in vivo assays were performed in mice to identify toxicological effects, to evoke immunological responses and to study the enzymes' pharmacokinetics. From these tests, none of the enzymes was toxic; however, S206C elicited lower physiological changes and immune/allergenic responses. In relation to the pharmacokinetic profile, S206C exhibited twofold higher activity than WT and P40S two hours after injection. In conclusion, we present bioengineered E. coli asparaginases with high specific enzyme activity and fewer side effects.
Collapse
|
15
|
Kato S, Tamura K, Masuda Y, Konishi M, Yamanaka K, Oikawa T. A novel type IIb L-asparaginase from Latilactobacillus sakei LK-145: characterization and application. Arch Microbiol 2024; 206:266. [PMID: 38761213 DOI: 10.1007/s00203-024-03979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024]
Abstract
We succeeded in homogeneously expressing and purifying L-asparaginase from Latilactobacillus sakei LK-145 (Ls-Asn1) and its mutated enzymes C196S, C264S, C290S, C196S/C264S, C196S/C290S, C264S/C290S, and C196S/C264S/C290S-Ls-Asn1. Enzymological studies using purified enzymes revealed that all cysteine residues of Ls-Asn1 were found to affect the catalytic activity of Ls-Asn1 to varying degrees. The mutation of Cys196 did not affect the specific activity, but the mutation of Cys264, even a single mutation, significantly decreased the specific activity. Furthermore, C264S/C290S- and C196S/C264S/C290S-Ls-Asn1 almost completely lost their activity, suggesting that C290 cooperates with C264 to influence the catalytic activity of Ls-Asn1. The detailed enzymatic properties of three single-mutated enzymes (C196S, C264S, and C290S-Ls-Asn1) were investigated for comparison with Ls-Asn1. We found that only C196S-Ls-Asn1 has almost the same enzymatic properties as that of Ls-Asn1 except for its increased stability for thermal, pH, and the metals NaCl, KCl, CaCl2, and FeCl2. We measured the growth inhibitory effect of Ls-Asn1 and C196S-Ls-Asn1 on Jurkat cells, a human T-cell acute lymphoblastic leukemia cell line, using L-asparaginase from Escherichia coli K-12 as a reference. Only C196S-Ls-Asn1 effectively and selectively inhibited the growth of Jurkat T-cell leukemia, which suggested that it exhibited antileukemic activity. Furthermore, based on alignment, phylogenetic tree analysis, and structural modeling, we also proposed that Ls-Asn1 is a so-called "Type IIb" novel type of asparaginase that is distinct from previously reported type I or type II asparaginases. Based on the above results, Ls-Asn1 is expected to be useful as a new leukemia therapeutic agent.
Collapse
|
16
|
Garcia-Montojo M, Fathi S, Rastegar C, Simula ER, Doucet-O'Hare T, Cheng YHH, Abrams RPM, Pasternack N, Malik N, Bachani M, Disanza B, Maric D, Lee MH, Wang H, Santamaria U, Li W, Sampson K, Lorenzo JR, Sanchez IE, Mezghrani A, Li Y, Sechi LA, Pineda S, Heiman M, Kellis M, Steiner J, Nath A. TDP-43 proteinopathy in ALS is triggered by loss of ASRGL1 and associated with HML-2 expression. Nat Commun 2024; 15:4163. [PMID: 38755145 PMCID: PMC11099023 DOI: 10.1038/s41467-024-48488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) proteinopathy in brain cells is the hallmark of amyotrophic lateral sclerosis (ALS) but its cause remains elusive. Asparaginase-like-1 protein (ASRGL1) cleaves isoaspartates, which alter protein folding and susceptibility to proteolysis. ASRGL1 gene harbors a copy of the human endogenous retrovirus HML-2, whose overexpression contributes to ALS pathogenesis. Here we show that ASRGL1 expression was diminished in ALS brain samples by RNA sequencing, immunohistochemistry, and western blotting. TDP-43 and ASRGL1 colocalized in neurons but, in the absence of ASRGL1, TDP-43 aggregated in the cytoplasm. TDP-43 was found to be prone to isoaspartate formation and a substrate for ASRGL1. ASRGL1 silencing triggered accumulation of misfolded, fragmented, phosphorylated and mislocalized TDP-43 in cultured neurons and motor cortex of female mice. Overexpression of ASRGL1 restored neuronal viability. Overexpression of HML-2 led to ASRGL1 silencing. Loss of ASRGL1 leading to TDP-43 aggregation may be a critical mechanism in ALS pathophysiology.
Collapse
|
17
|
Mittra D, Mahalik S. Improving the production of recombinant L-Asparaginase-II in Escherichia coli by co-expressing catabolite repressor activator ( cra) gene. Prep Biochem Biotechnol 2024; 54:709-719. [PMID: 38692288 DOI: 10.1080/10826068.2023.2279097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Identification of a single genetic target for microbial strain improvement is difficult due to the complexity of the genetic regulatory network. Hence, a more practical approach is to identify bottlenecks in the regulatory networks that control critical metabolic pathways. The present work focuses on enhancing cellular physiology by increasing the metabolic flux through the central carbon metabolic pathway. Global regulator cra (catabolite repressor activator), a DNA-binding transcriptional dual regulator was selected for the study as it controls the expression of a large number of operons that modulate central carbon metabolism. To upregulate the activity of central carbon metabolism, the cra gene was co-expressed using a plasmid-based system. Co-expression of cra led to a 17% increase in the production of model recombinant protein L-Asparaginase-II. A pulse addition of 0.36% of glycerol every two hours post-induction, further increased the production of L-Asparaginase-II by 35% as compared to the control strain expressing only recombinant protein. This work exemplifies that upregulating the activity of central carbon metabolism by tuning the expression of regulatory genes like cra can relieve the host from cellular stress and thereby promote the growth as well as expression of recombinant hosts.
Collapse
|
18
|
Combret V, Rincé I, Budin-Verneuil A, Muller C, Deutscher J, Hartke A, Sauvageot N. Utilization of glycoprotein-derived N-acetylglucosamine-L-asparagine during Enterococcus faecalis infection depends on catabolic and transport enzymes of the glycosylasparaginase locus. Res Microbiol 2024; 175:104169. [PMID: 37977353 DOI: 10.1016/j.resmic.2023.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Enterococcus faecalis is a Gram-positive clinical pathogen causing severe infections. Its survival during infection depends on its ability to utilize host-derived metabolites, such as protein-deglycosylation products. We have identified in E. faecalis OG1RF a locus (ega) involved in the catabolism of the glycoamino acid N-acetylglucosamine-L-asparagine. This locus is separated into two transcription units, genes egaRP and egaGBCD1D2, respectively. RT-qPCR experiments revealed that the expression of the ega locus is regulated by the transcriptional repressor EgaR. Electromobility shift assays evidenced that N-acetylglucosamine-L-asparagine interacts directly with the EgaR protein, which leads to the transcription of the ega genes. Growth studies with egaG, egaB and egaC mutants confirmed that the encoded proteins are necessary for N-acetylglucosamine-L-asparagine catabolism. This glycoamino acid is transported and phosphorylated by a specific phosphotransferase system EIIABC components (OG1RF_10751, EgaB, EgaC) and subsequently hydrolyzed by the glycosylasparaginase EgaG, which generates aspartate and 6-P-N-acetyl-β-d-glucosaminylamine. The latter can be used as a fermentable carbon source by E. faecalis. Moreover, Galleria mellonella larvae had a significantly higher survival rate when infected with ega mutants compared to the wild-type strain, suggesting that the loss of N-acetylglucosamine-L-asparagine utilization affects enterococcal virulence.
Collapse
|
19
|
Lailaja VP, Hari V, Sumithra TG, Anusree VN, Suresh G, Sanil NK, Sharma S R K, Gopalakrishnan A. In vitro and in silico analysis unravelled clinically desirable attributes of Bacillus altitudinis L-asparaginase. J Appl Microbiol 2024; 135:lxae062. [PMID: 38467390 DOI: 10.1093/jambio/lxae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
AIMS To identify a marine L-asparaginase with clinically desirable attributes and characterize the shortlisted candidate through in silico tools. METHODS AND RESULTS Marine bacterial strains (number = 105) isolated from marine crabs were evaluated through a stepwise strategy incorporating the crucial attributes for therapeutic safety. The results demonstrated the potential of eight bacterial species for extracellular L-asparaginase production. However, only one isolate (Bacillus altitudinis CMFRI/Bal-2) showed clinically desirable attributes, viz. extracellular production, type-II nature, lack of concurrent L-glutaminase and urease activities, and presence of ansZ (functional gene for clinical type). The enzyme production was 22.55 ± 0.5 µM/mg protein/min within 24 h without optimization. The enzyme also showed good activity and stability in pH 7-8 and temperature 37°C, predicting the functioning inside the human body. The Michealis-Menten constant (Km) was 14.75 µM. Detailed in silico analysis based on functional gene authenticating the results of in vitro characterization and predicted the nonallergenic characteristic of the candidate. Docking results proved the higher affinity of the shortlisted candidate to L-asparagine than L-glutamine and urea. CONCLUSION Comprehensively, the study highlighted B. altitudinis type II asparaginase as a competent candidate for further research on clinically safe asparaginases.
Collapse
|
20
|
Zhou Y, Shen J, Chi H, Zhu X, Lu Z, Lu F, Zhu P. Rational engineering and insight for a L-glutaminase activity reduced type II L-asparaginase from Bacillus licheniformis and its antileukemic activity in vitro. Int J Biol Macromol 2024; 257:128690. [PMID: 38092107 DOI: 10.1016/j.ijbiomac.2023.128690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
Type II L-asparaginase (ASNase) has been approved by the FDA for treating acute lymphoid leukemia (ALL), but its therapeutic effect is limited by low catalytic efficiency and L-glutaminase (L-Gln) activity. This study utilized free energy based molecular dynamics calculations to identify residues associated with substrate binding in Bacillus licheniformis L-asparaginase II (BLASNase) with high catalytical activity. After saturation and combination mutagenesis, the mutant LGT (74 L/75G/111 T) with intensively reduced l-glutamine catalytic activity was generated. The l-glutamine/L-asparagine activity (L-Gln/L-Asn) of LGT was only 6.6 % of parent BLASNase, whereas the L-asparagine (L-Asn) activity was preserved >90 %. Furthermore, structural comparison and molecular dynamics calculations indicated that the mutant LGT had reduced binding ability and affinity towards l-glutamine. To evaluate its effect on acute leukemic cells, LGT was supplied in treating MOLT-4 cells. The experimental results demonstrated that LGT was more cytotoxic and promoted apoptosis compared with commercial Escherichia coli ASNase. Overall, our findings firstly provide insights into reducing l-glutamine activity without impacting L-asparagine activity for BLASNase to possess remarkable potential for anti-leukemia therapy.
Collapse
|
21
|
Tripathy RK, Anakha J, Pande AH. Towards development of biobetter: L-asparaginase a case study. Biochim Biophys Acta Gen Subj 2024; 1868:130499. [PMID: 37914146 DOI: 10.1016/j.bbagen.2023.130499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND L-asparaginase (ASNase) has played a key role in the management of acute lymphoblastic leukaemia (ALL). As an amidohydrolase, it catalyzes the hydrolysis of L-asparagine, a crucial step in the treatment of ALL. Various ASNase variants have evolved from diverse sources since it was first used in paediatric patients in the 1960s. This review describes the available ASNase and approaches being used to develop ASNase as a biobetter candidate. SCOPE OF REVIEW The review discusses the Glycosylation and PEGylation techniques, which are frequently used to develop biobetter versions of the majority of the therapeutic proteins. Further, it explores current ASNase biobetters in therapeutic use and discusses the protein engineering and chemical modification approaches that were employed to reduce immunogenicity, extend protein half-life, and enhance protease stability of ASNase. Emerging strategies like immobilization and encapsulation are also highlighted as potential pathways for improving ASNase properties. MAJOR CONCLUSIONS The purpose of the development of ASNase biobetter is to achieve a novel therapeutic candidate that could improve catalytic efficiency, in vivo stability with minimum glutaminase (GLNase) activity and toxicity. Modification of ASNase by immobilization and encapsulation or by fusion technologies like Albumin fusion, Fc fusion, ELP fusion, XTEN fusion, etc. can be exploited to develop a novel biobetter candidate suitable for therapeutic approaches. GENERAL SIGNIFICANCE This review emphasizes the importance of biobetter development for therapeutic proteins like ASNase. Improved ASNase molecules have the potential to significantly advance the treatment of ALL and have broader implications in the pharmaceutical industry.
Collapse
|
22
|
de Lima JY, de Castro Andreassa E, Venturi Biembengut Í, de Arruda Campos Brasil de Souza T. Dissecting dual specificity: Identifying key residues in L-asparaginase for enhanced acute lymphoid leukemia therapy and reduced adverse effects. Int J Biol Macromol 2024; 254:127998. [PMID: 37949271 DOI: 10.1016/j.ijbiomac.2023.127998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
L-asparaginase from Escherichia coli (EcA) has been used for the treatment of acute lymphoid leukemia (ALL) since the 1970s. Nevertheless, the enzyme has a second specificity that results in glutaminase breakdown, resulting in depletion from the patient's body, causing severe adverse effects. Despite the huge interest in the use of this enzyme, the exact process of glutamine depletion is still unknown and there is no consensus regarding L-asparagine hydrolysis. Here, we investigate the role of T12, Y25, and T89 in asparaginase and glutaminase activities. We obtained individual clones containing mutations in the T12, Y25 or T89 residues. After the recombinant production of wild-type and mutated EcA, The purified samples were subjected to structural analysis using Nano Differential Scanning Fluorimetry, which revealed that all samples contained thermostable molecules in their active structural conformation, the homotetramer conformation. The quaternary conformation was confirmed by DLS and SEC. The activity enzymatic assay combined with molecular dynamics simulation identified the contribution of T12, Y25, and T89 residues in EcA glutaminase and asparaginase activities. Our results mapped the enzymatic behavior paving the way for the designing of improved EcA enzymes, which is important in the treatment of ALL.
Collapse
|
23
|
Rodrigues Andrade KC, Cordeiro de Abreu JA, Guimarães MB, Abrunhosa LS, Leôncio Rodrigues AL, Fonseca-Bazzo YM, Silveira D, Souza PM, Magalhães PO. Heterologous expression of fungal L-asparaginase: a systematic review. Future Microbiol 2024; 19:157-171. [PMID: 37882841 DOI: 10.2217/fmb-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023] Open
Abstract
Aim: To review the available literature about heterologous expression of fungal L-asparaginase (L-ASNase). Materials & methods: A search was conducted across PubMed, Science Direct, Scopus and Web of Science databases; 4172 citations were identified and seven articles were selected. Results: The results showed that heterologous expression of fungal L-ASNase was performed mostly in bacterial expression systems, except for a study that expressed L-ASNase in a yeast system. Only three publications reported the purification and characterization of the enzyme. Conclusion: The information reported in this systematic review can contribute significantly to the recognition of the importance of biotechnological techniques for L-ASNase production.
Collapse
|
24
|
Tam SY, Chung SF, Kim CF, To JC, So PK, Cheung KK, Chung WH, Wong KY, Leung YC. Development of a bioengineered Erwinia chrysanthemi asparaginase to enhance its anti-solid tumor potential for treating gastric cancer. Int J Biol Macromol 2023; 253:127742. [PMID: 37923039 DOI: 10.1016/j.ijbiomac.2023.127742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Asparaginase has been traditionally applied for only treating acute lymphoblastic leukemia due to its ability to deplete asparagine. However, its ultimate anticancer potential for treating solid tumors has not yet been unleashed. In this study, we bioengineered Erwinia chrysanthemi asparaginase (ErWT), one of the US Food and Drug Administration-approved types of amino acid depleting enzymes, to achieve double amino acid depletions for treating a solid tumor. We constructed a fusion protein by joining an albumin binding domain (ABD) to ErWT via a linker (GGGGS)5 to achieve ABD-ErS5. The ABD could bind to serum albumin to form an albumin-ABD-ErS5 complex, which could avoid renal clearance and escape from anti-drug antibodies, resulting in a remarkably prolonged elimination half-life of ABD-ErS5. Meanwhile, ABD-ErS5 did not only deplete asparagine but also glutamine for ∼2 weeks. A biweekly administration of ABD-ErS5 (1.5 mg/kg) significantly suppressed tumor growth in an MKN-45 gastric cancer xenograft model, demonstrating a novel approach for treating solid tumor depleting asparagine and glutamine. Multiple administrations of ABD-ErS5 did not cause any noticeable histopathological abnormalities of key organs, suggesting the absence of acute toxicity to mice. Our results suggest ABD-ErS5 is a potential therapeutic candidate for treating gastric cancer.
Collapse
|
25
|
Watanabe A, Miyake K, Yamada Y, Sunamura EI, Yotani T, Kagami K, Kasai S, Tamai M, Harama D, Akahane K, Goi K, Sakaguchi K, Goto H, Kitahara S, Inukai T. Utility of ASNS gene methylation evaluated with the HPLC method as a pharmacogenomic biomarker to predict asparaginase sensitivity in BCP-ALL. Epigenetics 2023; 18:2268814. [PMID: 37839090 PMCID: PMC10578186 DOI: 10.1080/15592294.2023.2268814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
Asparaginase is an important agent for the treatment of acute lymphoblastic leukaemia (ALL), but it is occasionally associated with severe adverse events. Thus, for safer and more efficacious therapy, a clinical biomarker predicting asparaginase sensitivity is highly anticipated. Asparaginase depletes serum asparagine by deaminating asparagine into aspartic acid, and ALL cells are thought to be sensitive to asparaginase due to reduced asparagine synthetase (ASNS) activity. We have recently shown that allele-specific methylation of the ASNS gene is highly involved in asparaginase sensitivity in B-precursor ALL (BCP-ALL) by using next-generation sequence (NGS) analysis of bisulphite PCR products of the genomic DNA. Here, we sought to confirm the utility of methylation status of the ASNS gene evaluated with high-performance liquid chromatography (HPLC) analysis of bisulphite PCR products for future clinical applications. In the global methylation status of 23 CpG sites at the boundary region of promoter and exon 1 of the ASNS gene, a strong positive correlation was confirmed between the mean percent methylation evaluated with the HPLC method and that with the NGS method in 79 BCP-ALL cell lines (R2 = 0.85, p = 1.3 × 10-33) and in 63 BCP-ALL clinical samples (R2 = 0.84, p = 5.0 × 10-26). Moreover, methylation status of the ASNS gene evaluated with the HPLC method was significantly associated with in vitro asparaginase sensitivities as well as gene and protein expression levels of ASNS. These observations indicated that the ASNS gene methylation status evaluated with the HPLC method is a reliable biomarker for predicting the asparaginase sensitivity of BCP-ALL.
Collapse
|