1
|
Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 2001; 11:1095-9. [PMID: 11381035 PMCID: PMC311129 DOI: 10.1101/gr.180501] [Citation(s) in RCA: 779] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We describe a simple method of using rolling circle amplification to amplify vector DNA such as M13 or plasmid DNA from single colonies or plaques. Using random primers and phi29 DNA polymerase, circular DNA templates can be amplified 10,000-fold in a few hours. This procedure removes the need for lengthy growth periods and traditional DNA isolation methods. Reaction products can be used directly for DNA sequencing after phosphatase treatment to inactivate unincorporated nucleotides. Amplified products can also be used for in vitro cloning, library construction, and other molecular biology applications.
Collapse
|
research-article |
24 |
779 |
2
|
Paez JG, Lin M, Beroukhim R, Lee JC, Zhao X, Richter DJ, Gabriel S, Herman P, Sasaki H, Altshuler D, Li C, Meyerson M, Sellers WR. Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res 2004; 32:e71. [PMID: 15150323 PMCID: PMC419624 DOI: 10.1093/nar/gnh069] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Major efforts are underway to systematically define the somatic and germline genetic variations causally associated with disease. Genome-wide genetic analysis of actual clinical samples is, however, limited by the paucity of genomic DNA available. Here we have tested the fidelity and genome representation of phi29 polymerase-based genome amplification (phi29MDA) using direct sequencing and high density oligonucleotide arrays probing >10,000 SNP alleles. Genome representation was comprehensive and estimated to be 99.82% complete, although six regions encompassing a maximum of 5.62 Mb failed to amplify. There was no degradation in the accuracy of SNP genotyping and, in direct sequencing experiments sampling 500,000 bp, the estimated error rate (9.5 x 10(-6)) was the same as in paired unamplified samples. The detection of cancer-associated loss of heterozygosity and copy number changes, including homozygous deletion and gene amplification, were similarly robust. These results suggest that phi29MDA yields high fidelity, near-complete genome representation suitable for high resolution genetic analysis.
Collapse
|
Journal Article |
21 |
223 |
3
|
Moffitt JR, Chemla YR, Aathavan K, Grimes S, Jardine PJ, Anderson DL, Bustamante C. Intersubunit coordination in a homomeric ring ATPase. Nature 2009; 457:446-50. [PMID: 19129763 PMCID: PMC2716090 DOI: 10.1038/nature07637] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 11/11/2008] [Indexed: 12/22/2022]
Abstract
Homomeric ring ATPases perform many vital and varied tasks in the cell, ranging from chromosome segregation to protein degradation. Here we report the direct observation of the intersubunit coordination and step size of such a ring ATPase, the double-stranded-DNA packaging motor in the bacteriophage phi29. Using high-resolution optical tweezers, we find that packaging occurs in increments of 10 base pairs (bp). Statistical analysis of the preceding dwell times reveals that multiple ATPs bind during each dwell, and application of high force reveals that these 10-bp increments are composed of four 2.5-bp steps. These results indicate that the hydrolysis cycles of the individual subunits are highly coordinated by means of a mechanism novel for ring ATPases. Furthermore, a step size that is a non-integer number of base pairs demands new models for motor-DNA interactions.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
219 |
4
|
Raghunathan A, Ferguson HR, Bornarth CJ, Song W, Driscoll M, Lasken RS. Genomic DNA amplification from a single bacterium. Appl Environ Microbiol 2005; 71:3342-7. [PMID: 15933038 PMCID: PMC1151817 DOI: 10.1128/aem.71.6.3342-3347.2005] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic DNA was amplified about 5 billion-fold from single, flow-sorted bacterial cells by the multiple displacement amplification (MDA) reaction, using phi 29 DNA polymerase. A 662-bp segment of the 16S rRNA gene could be accurately sequenced from the amplified DNA. MDA methods enable new strategies for studying non-culturable microorganisms.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
219 |
5
|
Inoue-Nagata AK, Albuquerque LC, Rocha WB, Nagata T. A simple method for cloning the complete begomovirus genome using the bacteriophage phi29 DNA polymerase. J Virol Methods 2004; 116:209-11. [PMID: 14738990 DOI: 10.1016/j.jviromet.2003.11.015] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bacteriophage phiDNA polymerase amplifies circular DNA in a rolling circle amplification mechanism. This characteristic was applied to amplify and clone the complete circular DNA genome of a begomovirus. Total DNA extracted from infected tissue was used as the template of an amplification reaction using the commercial kit TempliPhi (Amersham Biosciences). The amplified DNA could be used for direct sequencing and was cloned after digestion with a single cutting restriction endonuclease. The use of this enzyme simplified the cloning steps and increased the cloning efficiency of the complete genome of a circular plant DNA virus.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
214 |
6
|
Abstract
Murein hydrolases appear to be widespread in the virions of bacteriophages infecting Gram-positive or Gram-negative bacteria. Muralytic activity has been found in virions of the majority of a diverse collection of phages. Where known, the enzyme is either part of a large protein or found associated with other structural components of the virion that limit enzyme activity. In most cases, the lack of genetic and structural characterization of the phage precludes making a definitive identification of the enzymatic protein species. However, three proteins with muralytic activity have been unequivocally identified. T7gp16 is a 144 kDa internal head protein that is ejected into the cell at the initiation of infection; its enzyme activity is required only when the cell wall is more highly cross-linked. P22gp4 is part of the neck of the particle and is essential for infectivity. The activity associated with virions of Bacillus subtilis phage ø29 and its relatives lies in the terminal protein gp3. These studies lead to a general mechanism describing how phage genomes are transported across the bacterial cell wall.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
149 |
7
|
Kamtekar S, Berman AJ, Wang J, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29. Mol Cell 2004; 16:609-18. [PMID: 15546620 DOI: 10.1016/j.molcel.2004.10.019] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/21/2004] [Accepted: 10/06/2004] [Indexed: 11/30/2022]
Abstract
The DNA polymerase from phage phi29 is a B family polymerase that initiates replication using a protein as a primer, attaching the first nucleotide of the phage genome to the hydroxyl of a specific serine of the priming protein. The crystal structure of phi29 DNA polymerase determined at 2.2 A resolution provides explanations for its extraordinary processivity and strand displacement activities. Homology modeling suggests that downstream template DNA passes through a tunnel prior to entering the polymerase active site. This tunnel is too small to accommodate double-stranded DNA and requires the separation of template and nontemplate strands. Members of the B family of DNA polymerases that use protein primers contain two sequence insertions: one forms a domain not previously observed in polymerases, while the second resembles the specificity loop of T7 RNA polymerase. The high processivity of phi29 DNA polymerase may be explained by its topological encirclement of both the downstream template and the upstream duplex DNA.
Collapse
|
|
21 |
136 |
8
|
Hutchison CA, Smith HO, Pfannkoch C, Venter JC. Cell-free cloning using phi29 DNA polymerase. Proc Natl Acad Sci U S A 2005; 102:17332-6. [PMID: 16286637 PMCID: PMC1283157 DOI: 10.1073/pnas.0508809102] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe conditions for rolling-circle amplification (RCA) of individual DNA molecules 5-7 kb in size by >10(9)-fold, using phi29 DNA polymerase. The principal difficulty with amplification of small amounts of template by RCA using phi29 DNA polymerase is "background" DNA synthesis that usually occurs when template is omitted, or at low template concentrations. Reducing the reaction volume while keeping the amount of template fixed increases the template concentration, resulting in a suppression of background synthesis. Cell-free cloning of single circular molecules by using phi29 DNA polymerase was achieved by carrying out the amplification reactions in very small volumes, typically 600 nl. This procedure allows cell-free cloning of individual synthetic DNA molecules that cannot be cloned in Escherichia coli, for example synthetic phage genomes carrying lethal mutations. It also allows cell-free cloning of genomic DNA isolated from bacteria. This DNA can be sequenced directly from the phi29 DNA polymerase reaction without further amplification. In contrast to PCR amplification, RCA using phi29 DNA polymerase does not produce mutant jackpots, and the high processivity of the enzyme eliminates stuttering at homopolymer tracts. Cell-free cloning has many potential applications to both natural and synthetic DNA. These include environmental DNA samples that have proven difficult to clone and synthetic genes encoding toxic products. The method may also speed genome sequencing by eliminating the need for biological cloning.
Collapse
|
Comparative Study |
20 |
134 |
9
|
Berman AJ, Kamtekar S, Goodman JL, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases. EMBO J 2007; 26:3494-505. [PMID: 17611604 PMCID: PMC1933411 DOI: 10.1038/sj.emboj.7601780] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/30/2007] [Indexed: 11/09/2022] Open
Abstract
Replicative DNA polymerases (DNAPs) move along template DNA in a processive manner. The structural basis of the mechanism of translocation has been better studied in the A-family of polymerases than in the B-family of replicative polymerases. To address this issue, we have determined the X-ray crystal structures of phi29 DNAP, a member of the protein-primed subgroup of the B-family of polymerases, complexed with primer-template DNA in the presence or absence of the incoming nucleoside triphosphate, the pre- and post-translocated states, respectively. Comparison of these structures reveals a mechanism of translocation that appears to be facilitated by the coordinated movement of two conserved tyrosine residues into the insertion site. This differs from the mechanism employed by the A-family polymerases, in which a conserved tyrosine moves into the templating and insertion sites during the translocation step. Polymerases from the two families also interact with downstream single-stranded template DNA in very different ways.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
128 |
10
|
|
Review |
29 |
91 |
11
|
Qi X, Bakht S, Devos KM, Gale MD, Osbourn A. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Res 2001; 29:E116. [PMID: 11713336 PMCID: PMC92587 DOI: 10.1093/nar/29.22.e116] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A flexible, non-gel-based single nucleotide polymorphism (SNP) detection method is described. The method adopts thermostable ligation for allele discrimination and rolling circle amplification (RCA) for signal enhancement. Clear allelic discrimination was achieved after staining of the final reaction mixtures with Cybr-Gold and visualisation by UV illumination. The use of a compatible buffer system for all enzymes allows the reaction to be initiated and detected in the same tube or microplate well, so that the experiment can be scaled up easily for high-throughput detection. Only a small amount of DNA (i.e. 50 ng) is required per assay, and use of carefully designed short padlock probes coupled with generic primers and probes make the SNP detection cost effective. Biallelic assay by hybridisation of the RCA products with fluorescence dye-labelled probes is demonstrated, indicating that ligation-RCA (L-RCA) has potential for multiplexed assays.
Collapse
|
research-article |
24 |
89 |
12
|
Goodrich-Blair H, Shub DA. Beyond homing: competition between intron endonucleases confers a selective advantage on flanking genetic markers. Cell 1996; 84:211-21. [PMID: 8565067 DOI: 10.1016/s0092-8674(00)80976-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The closely related B. subtilis bacteriophages SPO1 and SP82 have similar introns inserted into a conserved domain of their DNA polymerase genes. These introns encode endonucleases with unique properties. Other intron-encoded "homing" endonucleases cleave both strands of intronless DNA; subsequent repair results in unidirectional gene conversion to the intron-containing allele. In contrast, the enzymes described here cleave one strand on both intron-containing and intronless targets at different distances from their common intron insertion site. Most surprisingly, each enzyme prefers DNA of the heterologous phage. The SP82-encoded endonuclease is responsible for exclusion of the SPO1 intron and flanking genetic markers from the progeny of mixed infections, a novel selective advantage imparted by an intron to the genome in which it resides.
Collapse
|
|
29 |
79 |
13
|
Kimura K, Itoh Y. Characterization of poly-gamma-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-gamma-glutamate. Appl Environ Microbiol 2003; 69:2491-7. [PMID: 12732513 PMCID: PMC154523 DOI: 10.1128/aem.69.5.2491-2497.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some Bacillus subtilis strains, including natto (fermented soybeans) starter strains, produce a capsular polypeptide of glutamate with a gamma-linkage, called poly-gamma-glutamate (gamma-PGA). We identified and purified a monomeric 25-kDa degradation enzyme for gamma-PGA (designated gamma-PGA hydrolase, PghP) from bacteriophage PhiNIT1 in B. subtilis host cells. The monomeric PghP internally hydrolyzed gamma-PGA to oligopeptides, which were then specifically converted to tri-, tetra-, and penta-gamma-glutamates. Monoiodoacetate and EDTA both inhibited the PghP activity, but Zn(2+) or Mn(2+) ions fully restored the enzyme activity inhibited by the chelator, suggesting that a cysteine residue(s) and these metal ions participate in the catalytic mechanism of the enzyme. The corresponding pghP gene was cloned and sequenced from the phage genome. The deduced PghP sequence (208 amino acids) with a calculated M(r) of 22,939 was not significantly similar to any known enzyme. Thus, PghP is a novel gamma-glutamyl hydrolase. Whereas phage PhiNIT1 proliferated in B. subtilis cells encapsulated with gamma-PGA, phage BS5 lacking PghP did not survive well on such cells. Moreover, all nine phages that contaminated natto during fermentation produced PghP, supporting the notion that PghP is important in the infection of natto starters that produce gamma-PGA. Analogous to polysaccharide capsules, gamma-PGA appears to serve as a physical barrier to phage absorption. Phages break down the gamma-PGA barrier via PghP so that phage progenies can easily establish infection in encapsulated cells.
Collapse
|
research-article |
22 |
78 |
14
|
Canceill D, Viguera E, Ehrlich SD. Replication slippage of different DNA polymerases is inversely related to their strand displacement efficiency. J Biol Chem 1999; 274:27481-90. [PMID: 10488082 DOI: 10.1074/jbc.274.39.27481] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication slippage is a particular type of error caused by DNA polymerases believed to occur both in bacterial and eukaryotic cells. Previous studies have shown that deletion events can occur in Escherichia coli by replication slippage between short duplications and that the main E. coli polymerase, DNA polymerase III holoenzyme is prone to such slippage. In this work, we present evidence that the two other DNA polymerases of E. coli, DNA polymerase I and DNA polymerase II, as well as polymerases of two phages, T4 (T4 pol) and T7 (T7 pol), undergo slippage in vitro, whereas DNA polymerase from another phage, Phi29, does not. Furthermore, we have measured the strand displacement activity of the different polymerases tested for slippage in the absence and in the presence of the E. coli single-stranded DNA-binding protein (SSB), and we show that: (i) polymerases having a strong strand displacement activity cannot slip (DNA polymerase from Phi29); (ii) polymerases devoid of any strand displacement activity slip very efficiently (DNA polymerase II and T4 pol); and (iii) stimulation of the strand displacement activity by E. coli SSB (DNA polymerase I and T7 pol), by phagic SSB (T4 pol), or by a mutation that affects the 3' --> 5' exonuclease domain (DNA polymerase II exo(-) and T7 pol exo(-)) is correlated with the inhibition of slippage. We propose that these observations can be interpreted in terms of a model, for which we have shown that high strand displacement activity of a polymerase diminishes its propensity to slip.
Collapse
|
|
26 |
77 |
15
|
|
|
30 |
75 |
16
|
Soengas MS, Gutiérrez C, Salas M. Helix-destabilizing activity of phi 29 single-stranded DNA binding protein: effect on the elongation rate during strand displacement DNA replication. J Mol Biol 1995; 253:517-29. [PMID: 7473731 DOI: 10.1006/jmbi.1995.0570] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The single-stranded DNA (ssDNA)-binding protein (SSB) of bacteriophage phi 29 is one of the virus-encoded proteins required for viral DNA replication. We have found that phi 29 SSB has helix-destabilizing activity since it removes secondary structure of the ssDNA in phi 29 replicative intermediates, as revealed by electron microscopy, and displaces oligonucleotides annealed to M13 ssDNA. To investigate the mechanism of the SSB-dependent stimulation of phi 29 DNA replication we have characterized the helix-destabilizing activity of phi 29 SSB and measured its effect on the DNA elongation rate by phi 29 DNA polymerase, which does not require an accessory helicase. The use of replication reactions where strand displacement is either required (phi 29 DNA replication) or not (conversion of primed M13 ssDNA into double-stranded DNA (dsDNA)) has allowed us to find that (1) strand displacement DNA replication was affected by lowering the temperature or by increasing the salt concentration, since the DNA elongation rate on the phi 29 template was three to fourfold slower than on primed M13 ssDNA, (2) under those conditions, addition of phi 29 SSB stimulated to different extents the DNA elongation rate during phi 29 DNA replication, whereas it had a marginal effect on primed M13 ssDNA replication, and (3) phi 29 SSB increased four to sixfold the phi 29 DNA elongation rate by phi 29 DNA polymerase strand displacement mutants, reaching approximately 50% the rate of the wild-type enzyme. The implications of the helix-destabilizing properties of the phi 29 SSB under conditions in which DNA opening is impaired are discussed.
Collapse
|
|
30 |
74 |
17
|
Yokouchi H, Fukuoka Y, Mukoyama D, Calugay R, Takeyama H, Matsunaga T. Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi29 polymerase. Environ Microbiol 2006; 8:1155-63. [PMID: 16817924 DOI: 10.1111/j.1462-2920.2006.01005.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Limitations in obtaining sufficient specimens and difficulties in extracting high quality DNA from environmental samples have impeded understanding of the structure of microbial communities. In this study, multiple displacement amplification (MDA) using phi29 polymerase was applied to overcome these hindrances. Optimization of the reaction conditions for amplification of the bacterial genome and evaluation of the MDA product were performed using cyanobacterium Synechocystis sp. strain PCC6803. An 8-h MDA reaction yielded a sufficient quantity of DNA from an initial amount of 0.4 ng, which is equivalent to approximately 10(5) cells. Uniform amplification of genes randomly selected from the cyanobacterial genome was confirmed by real-time polymerase chain reaction. The metagenome from bacteria associated with scleractinian corals was used for whole-genome amplification using phi29 polymerase to analyse the microbial diversity. Unidentified bacteria with less than 93% identity to the closest 16S rDNA sequences deposited in DNA Data Bank of Japan were predominantly detected from the coral-associated bacterial community before and after the MDA procedures. Sequencing analysis indicated that alpha-Proteobacteria was the dominant group in Pocillopora damicornis. This study demonstrates that MDA techniques are efficient for genome wide investigation to understand the actual microbial diversity in limited bacterial samples.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
74 |
18
|
Kamtekar S, Berman AJ, Wang J, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. The phi29 DNA polymerase:protein-primer structure suggests a model for the initiation to elongation transition. EMBO J 2006; 25:1335-43. [PMID: 16511564 PMCID: PMC1422159 DOI: 10.1038/sj.emboj.7601027] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 02/08/2006] [Indexed: 11/09/2022] Open
Abstract
The absolute requirement for primers in the initiation of DNA synthesis poses a problem for replicating the ends of linear chromosomes. The DNA polymerase of bacteriophage phi29 solves this problem by using a serine hydroxyl of terminal protein to prime replication. The 3.0 A resolution structure shows one domain of terminal protein making no interactions, a second binding the polymerase and a third domain containing the priming serine occupying the same binding cleft in the polymerase as duplex DNA does during elongation. Thus, the progressively elongating DNA duplex product must displace this priming domain. Further, this heterodimer of polymerase and terminal protein cannot accommodate upstream template DNA, thereby explaining its specificity for initiating DNA synthesis only at the ends of the bacteriophage genome. We propose a model for the transition from the initiation to the elongation phases in which the priming domain of terminal protein moves out of the active site as polymerase elongates the primer strand. The model indicates that terminal protein should dissociate from polymerase after the incorporation of approximately six nucleotides.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
74 |
19
|
Schwarzer D, Stummeyer K, Gerardy-Schahn R, Mühlenhoff M. Characterization of a novel intramolecular chaperone domain conserved in endosialidases and other bacteriophage tail spike and fiber proteins. J Biol Chem 2006; 282:2821-31. [PMID: 17158460 DOI: 10.1074/jbc.m609543200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Folding and assembly of endosialidases, the trimeric tail spike proteins of Escherichia coli K1-specific bacteriophages, crucially depend on their C-terminal domain (CTD). Homologous CTDs were identified in phage proteins belonging to three different protein families: neck appendage proteins of several Bacillus phages, L-shaped tail fibers of coliphage T5, and K5 lyases, the tail spike proteins of phages infecting E. coli K5. By analyzing a representative of each family, we show that in all cases, the CTD is cleaved off after a strictly conserved serine residue and alanine substitution prevented cleavage. Further structural and functional analyses revealed that (i) CTDs are autonomous domains with a high alpha-helical content; (ii) proteolytically released CTDs assemble into hexamers, which are most likely dimers of trimers; (iii) highly conserved amino acids within the CTD are indispensable for CTD-mediated folding and complex formation; (iv) CTDs can be exchanged between proteins of different families; and (v) proteolytic cleavage is essential to stabilize the native protein complex. Data obtained for full-length and proteolytically processed endosialidase variants suggest that release of the CTD increases the unfolding barrier, trapping the mature trimer in a kinetically stable conformation. In summary, we characterize the CTD as a novel C-terminal chaperone domain, which assists folding and assembly of unrelated phage proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
67 |
20
|
Berthet N, Reinhardt AK, Leclercq I, van Ooyen S, Batéjat C, Dickinson P, Stamboliyska R, Old IG, Kong KA, Dacheux L, Bourhy H, Kennedy GC, Korfhage C, Cole ST, Manuguerra JC. Phi29 polymerase based random amplification of viral RNA as an alternative to random RT-PCR. BMC Mol Biol 2008; 9:77. [PMID: 18771595 PMCID: PMC2535778 DOI: 10.1186/1471-2199-9-77] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 09/04/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phi29 polymerase based amplification methods provides amplified DNA with minimal changes in sequence and relative abundance for many biomedical applications. RNA virus detection using microarrays, however, can present a challenge because phi29 DNA polymerase cannot amplify RNA nor small cDNA fragments (<2000 bases) obtained by reverse transcription of certain viral RNA genomes. Therefore, ligation of cDNA fragments is necessary prior phi29 polymerase based amplification. We adapted the QuantiTect Whole Transcriptome Kit (Qiagen) to our purposes and designated the method as Whole Transcriptome Amplification (WTA). RESULTS WTA successfully amplified cDNA from a panel of RNA viruses representing the diversity of ribovirus genome sizes. We amplified a range of genome copy numbers from 15 to 4 x 10(7) using WTA, which yielded quantities of amplified DNA as high as 1.2 microg/microl or 10(10) target copies. The amplification factor varied between 10(9) and 10(6). We also demonstrated that co-amplification occurred when viral RNA was mixed with bacterial DNA. CONCLUSION This is the first report in the scientific literature showing that a modified WGA (WTA) approach can be successfully applied to viral genomic RNA of all sizes. Amplifying viral RNA by WTA provides considerably better sensitivity and accuracy of detection compared to random RT-PCR.
Collapse
|
Comparative Study |
17 |
64 |
21
|
Chai S, Lurz R, Alonso JC. The small subunit of the terminase enzyme of Bacillus subtilis bacteriophage SPP1 forms a specialized nucleoprotein complex with the packaging initiation region. J Mol Biol 1995; 252:386-98. [PMID: 7563059 DOI: 10.1006/jmbi.1995.0505] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Initiation of SPP1 DNA packaging requires the gene 1 and gene 2 products (G1P and G2P), which are different subunits of the terminase enzyme. G1P specifically recognizes the phage packaging initiation region (pac). The apparent equilibrium constant for the G1P-pac-DNA complex was estimated to be 9 nM. DNase I footprinting experiments reveal that the pac region can be subdivided into three discrete sites (pacL, pacC and pacR). G1P binds co-operatively to the non-adjacent pacL and pacR sites. Several G1P protomers bind to the target sequences which map close to the pac cleavage site (pacC site), but do not overlap with it. G1P interacts in a different fashion with the encapsidated (pacR site) and with the non-encapsidated (pacL site) end of the phage genome. G1P interaction with the intrinsically bent pacL DNA occurs only on one face of the DNA double helix. G1P binding to the pacL and in the pacR region results in a DNA loop. Electron microscopy of purified G1P shows that the protein is an oligomer in solution. G1P binding to the core region of the pacL site could facilitate the formation of a higher-order nucleoprotein structure. This specialized complex would allow the pac DNA to form a loop between binding sites brought together by interaction with G1P. The results presented here suggest that G1P could provide a tool to discriminate the first encapsidated end, which contains pacR, from the non-encapsidated pacL end.
Collapse
|
|
30 |
62 |
22
|
Liu J, Jeppesen I, Nielsen K, Jensen TG. Phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther 2006; 13:1188-90. [PMID: 16672982 DOI: 10.1038/sj.gt.3302789] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phi c31 integrase is investigated as a novel tool for nonviral gene therapy as the enzyme can direct site-specific integration into a host chromosome. In order to investigate effects of phi c31 integrase expression in normal human cells, we have generated stably transfected primary human fibroblasts expressing the enzyme. All control cells were cytogenetically normal, but in cells expressing phi c31 integrase, numerous chromosomal abnormalities including various translocations were found, suggesting that the enzyme itself acts as a mutagen.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
61 |
23
|
Kim S, Blainey PC, Schroeder CM, Xie XS. Multiplexed single-molecule assay for enzymatic activity on flow-stretched DNA. Nat Methods 2007; 4:397-9. [PMID: 17435763 DOI: 10.1038/nmeth1037] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 03/06/2007] [Indexed: 11/09/2022]
Abstract
We report a single-molecule assay for nucleic-acid enzymes on flow-stretched DNA templates. To facilitate the detection of slow or intermittent enzymatic activities, we developed the assay with 15-nm spatial resolution at a frame rate of 1 Hz and approximately 10 nm mechanical stability over the timescale of hours. With multiplexed data collection, we applied the assay to phi29 DNA polymerase, HIV-1 reverse transcriptase, lambda exonuclease and Escherichia coli RNA polymerase.
Collapse
|
|
18 |
58 |
24
|
Monsalve M, Calles B, Mencía M, Salas M, Rojo F. Transcription activation or repression by phage psi 29 protein p4 depends on the strength of the RNA polymerase-promoter interactions. Mol Cell 1997; 1:99-107. [PMID: 9659907 DOI: 10.1016/s1097-2765(00)80011-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phage psi 29 protein p4 activates the late A3 promoter and represses the early A2c promoter, in both cases by binding upstream from RNA polymerase (RNAP) and interacting with the C-terminal domain of the RNAP alpha subunit. To investigate how this interaction leads to activation at PA3 and to repression at PA2c, mutant promoters were constructed. We show that the position of protein p4 relative to that of RNAP, which is different at each promoter, does not dictate the outcome of the interaction. Rather, in the absence of a-35 consensus box for sigma A-RNAP activation was observed, while in its presence repression occurred. The results support the view that stabilization of RNAP at the promoter over a threshold level leads to repression.
Collapse
|
|
28 |
56 |
25
|
Owor BE, Shepherd DN, Taylor NJ, Edema R, Monjane AL, Thomson JA, Martin DP, Varsani A. Successful application of FTA® Classic Card technology and use of bacteriophage ϕ29 DNA polymerase for large-scale field sampling and cloning of complete maize streak virus genomes. J Virol Methods 2007; 140:100-5. [PMID: 17174409 DOI: 10.1016/j.jviromet.2006.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/01/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
Leaf samples from 155 maize streak virus (MSV)-infected maize plants were collected from 155 farmers' fields in 23 districts in Uganda in May/June 2005 by leaf-pressing infected samples onto FTA Classic Cards. Viral DNA was successfully extracted from cards stored at room temperature for 9 months. The diversity of 127 MSV isolates was analysed by PCR-generated RFLPs. Six representative isolates having different RFLP patterns and causing either severe, moderate or mild disease symptoms, were chosen for amplification from FTA cards by bacteriophage phi29 DNA polymerase using the TempliPhi system. Full-length genomes were inserted into a cloning vector using a unique restriction enzyme site, and sequenced. The 1.3-kb PCR product amplified directly from FTA-eluted DNA and used for RFLP analysis was also cloned and sequenced. Comparison of cloned whole genome sequences with those of the original PCR products indicated that the correct virus genome had been cloned and that no errors were introduced by the phi29 polymerase. This is the first successful large-scale application of FTA card technology to the field, and illustrates the ease with which large numbers of infected samples can be collected and stored for downstream molecular applications such as diversity analysis and cloning of potentially new virus genomes.
Collapse
|
|
18 |
56 |