1
|
Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, Caviglia JM, Khiabanian H, Adeyemi A, Bataller R, Lefkowitch JH, Bower M, Friedman R, Sartor RB, Rabadan R, Schwabe RF. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012; 21:504-16. [PMID: 22516259 PMCID: PMC3332000 DOI: 10.1016/j.ccr.2012.02.007] [Citation(s) in RCA: 1022] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/12/2011] [Accepted: 02/01/2012] [Indexed: 02/06/2023]
Abstract
Increased translocation of intestinal bacteria is a hallmark of chronic liver disease and contributes to hepatic inflammation and fibrosis. Here we tested the hypothesis that the intestinal microbiota and Toll-like receptors (TLRs) promote hepatocellular carcinoma (HCC), a long-term consequence of chronic liver injury, inflammation, and fibrosis. Hepatocarcinogenesis in chronically injured livers depended on the intestinal microbiota and TLR4 activation in non-bone-marrow-derived resident liver cells. TLR4 and the intestinal microbiota were not required for HCC initiation but for HCC promotion, mediating increased proliferation, expression of the hepatomitogen epiregulin, and prevention of apoptosis. Gut sterilization restricted to late stages of hepatocarcinogenesis reduced HCC, suggesting that the intestinal microbiota and TLR4 represent therapeutic targets for HCC prevention in advanced liver disease.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
1022 |
2
|
Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun 2020; 87:34-39. [PMID: 32298803 PMCID: PMC7152874 DOI: 10.1016/j.bbi.2020.04.027] [Citation(s) in RCA: 614] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/08/2023] Open
Abstract
The coronavirus disease 19 (COVID-19) pandemic is a significant psychological stressor in addition to its tremendous impact on every facet of individuals' lives and organizations in virtually all social and economic sectors worldwide. Fear of illness and uncertainty about the future precipitate anxiety- and stress-related disorders, and several groups have rightfully called for the creation and dissemination of robust mental health screening and treatment programs for the general public and front-line healthcare workers. However, in addition to pandemic-associated psychological distress, the direct effects of the virus itself (several acute respiratory syndrome coronavirus; SARS-CoV-2), and the subsequent host immunologic response, on the human central nervous system (CNS) and related outcomes are unknown. We discuss currently available evidence of COVID-19 related neuropsychiatric sequelae while drawing parallels to past viral pandemic-related outcomes. Past pandemics have demonstrated that diverse types of neuropsychiatric symptoms, such as encephalopathy, mood changes, psychosis, neuromuscular dysfunction, or demyelinating processes, may accompany acute viral infection, or may follow infection by weeks, months, or longer in recovered patients. The potential mechanisms are also discussed, including viral and immunological underpinnings. Therefore, prospective neuropsychiatric monitoring of individuals exposed to SARS-CoV-2 at various points in the life course, as well as their neuroimmune status, are needed to fully understand the long-term impact of COVID-19, and to establish a framework for integrating psychoneuroimmunology into epidemiologic studies of pandemics.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
614 |
3
|
Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, Poole-Wilson PA, Coats AJ, Anker SD. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 1999; 353:1838-42. [PMID: 10359409 DOI: 10.1016/s0140-6736(98)09286-1] [Citation(s) in RCA: 613] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Immune activation in patients with chronic heart failure may be secondary to endotoxin (lipopolysaccharide) action. We investigated the hypothesis that altered gut permeability with bacterial translocation and endotoxaemia would be increased in patients with oedema secondary to congestive heart failure. METHODS We compared 20 patients who had chronic heart failure with recent-onset peripheral oedema (mean age 64 years [SD 10], New York Heart Association [NYHA] class 3.3 [0.7]), 20 stable non-oedematous patients with chronic heart failure (mean age 63 years [19], NYHA class 2.6 [0.7]), and 14 healthy volunteers (mean age 55 years [16]). Biochemical markers of endotoxaemia, inflammation, and immune activation were measured. Ten patients were studied within 1 week of complete resolution of oedema. Five patients survived longer than 6 months and were restudied again after remaining free of oedema for more than 3 months. FINDINGS Mean endotoxin concentrations were higher in oedematous patients with chronic heart failure than in stable patients with chronic heart failure (0.74 [SD 0.45] vs 0.37 EU/mL [0.23], p=0.0009) and controls (0.46 EU/mL [0.21], p=0.02). Oedematous patients had the highest concentrations of several cytokines. After short-term diuretic treatment, endotoxin concentrations decreased from 0.84 EU/mL [0.49] to 0.45 EU/mL [0.21], p<0.05) but cytokines remained raised. After freedom of oedema for more than 3 months after oedema resolved, endotoxin concentrations remained unchanged from the previous visit (0.49 EU/mL [0.06], p=0.45). INTERPRETATION Raised concentrations of endotoxin and cytokines are found in patients with chronic heart failure during acute oedematous exacerbation. Intensified diuretic treatment can normalise endotoxin concentrations. Our preliminary findings suggest that endotoxin may trigger immune activation in patients with chronic heart failure during oedematous episodes.
Collapse
|
|
26 |
613 |
4
|
Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, Costa FRC, Tiniakou E, Greiling T, Ruff W, Barbieri A, Kriegel C, Mehta SS, Knight JR, Jain D, Goodman AL, Kriegel MA. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018; 359:1156-1161. [PMID: 29590047 PMCID: PMC5959731 DOI: 10.1126/science.aar7201] [Citation(s) in RCA: 589] [Impact Index Per Article: 84.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
Despite multiple associations between the microbiota and immune diseases, their role in autoimmunity is poorly understood. We found that translocation of a gut pathobiont, Enterococcus gallinarum, to the liver and other systemic tissues triggers autoimmune responses in a genetic background predisposing to autoimmunity. Antibiotic treatment prevented mortality in this model, suppressed growth of E. gallinarum in tissues, and eliminated pathogenic autoantibodies and T cells. Hepatocyte-E. gallinarum cocultures induced autoimmune-promoting factors. Pathobiont translocation in monocolonized and autoimmune-prone mice induced autoantibodies and caused mortality, which could be prevented by an intramuscular vaccine targeting the pathobiont. E. gallinarum-specific DNA was recovered from liver biopsies of autoimmune patients, and cocultures with human hepatocytes replicated the murine findings; hence, similar processes apparently occur in susceptible humans. These discoveries show that a gut pathobiont can translocate and promote autoimmunity in genetically predisposed hosts.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
589 |
5
|
Abstract
The prevalence of obesity and related disorders such as metabolic syndrome has vastly increased throughout the world. Recent insights have generated an entirely new perspective suggesting that our microbiota might be involved in the development of these disorders. Studies have demonstrated that obesity and metabolic syndrome may be associated with profound microbiotal changes, and the induction of a metabolic syndrome phenotype through fecal transplants corroborates the important role of the microbiota in this disease. Dietary composition and caloric intake appear to swiftly regulate intestinal microbial composition and function. As most findings in this field of research are based on mouse studies, the relevance to human biology requires further investigation.
Collapse
|
Review |
14 |
587 |
6
|
Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, Shibata N, Grunberg S, Sinha R, Zahm AM, Tardif MR, Sathaliyawala T, Kubota M, Farber DL, Collman RG, Shaked A, Fouser LA, Weiner DB, Tessier PA, Friedman JR, Kiyono H, Bushman FD, Chang KM, Artis D. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012; 336:1321-5. [PMID: 22674331 PMCID: PMC3659421 DOI: 10.1126/science.1222551] [Citation(s) in RCA: 584] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mammalian intestinal tract is colonized by trillions of beneficial commensal bacteria that are anatomically restricted to specific niches. However, the mechanisms that regulate anatomical containment remain unclear. Here, we show that interleukin-22 (IL-22)-producing innate lymphoid cells (ILCs) are present in intestinal tissues of healthy mammals. Depletion of ILCs resulted in peripheral dissemination of commensal bacteria and systemic inflammation, which was prevented by administration of IL-22. Disseminating bacteria were identified as Alcaligenes species originating from host lymphoid tissues. Alcaligenes was sufficient to promote systemic inflammation after ILC depletion in mice, and Alcaligenes-specific systemic immune responses were associated with Crohn's disease and progressive hepatitis C virus infection in patients. Collectively, these data indicate that ILCs regulate selective containment of lymphoid-resident bacteria to prevent systemic inflammation associated with chronic diseases.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
584 |
7
|
Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Stock F, Freezer LJ, Morton KE, Seipp C, Haworth L, Mavroukakis S, White D, MacDonald S, Mao J, Sznol M, Rosenberg SA. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 2002; 20:142-52. [PMID: 11773163 PMCID: PMC2064865 DOI: 10.1200/jco.2002.20.1.142] [Citation(s) in RCA: 542] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE A strain of Salmonella typhimurium (VNP20009), attenuated by chromosomal deletion of the purI and msbB genes, was found to target to tumor and inhibit tumor growth in mice. These findings led to the present phase I study of the intravenous infusion of VNP20009 to patients with metastatic cancer. PATIENTS AND METHODS In cohorts consisting of three to six patients, 24 patients with metastatic melanoma and one patient with metastatic renal cell carcinoma received 30-minute intravenous bolus infusions containing 10(6) to 10(9) cfu/m(2) of VNP20009. Patients were evaluated for dose-related toxicities, selective replication within tumors, and antitumor effects. RESULTS The maximum-tolerated dose was 3 x 10(8) cfu/m(2). Dose-limiting toxicity was observed in patients receiving 1 x 10(9) cfu/m(2), which included thrombocytopenia, anemia, persistent bacteremia, hyperbilirubinemia, diarrhea, vomiting, nausea, elevated alkaline phosphatase, and hypophosphatemia. VNP20009 induced a dose-related increase in the circulation of proinflammatory cytokines, such as interleukin (IL)-1beta, tumor necrosis factor alpha, IL-6, and IL-12. Focal tumor colonization was observed in two patients receiving 1 x 10(9) cfu/m(2) and in one patient receiving 3 x 10(8) cfu/m(2). None of the patients experienced objective tumor regression, including those patients with colonized tumors. CONCLUSION The VNP20009 strain of Salmonella typhimurium can be safely administered to patients, and at the highest tolerated dose, some tumor colonization was observed. No antitumor effects were seen, and additional studies are required to reduce dose-related toxicity and improve tumor localization.
Collapse
|
research-article |
23 |
542 |
8
|
Abstract
Gut flora and bacterial translocation (BT) play an important role in the pathogenesis of the complications of cirrhosis. Research on the pathogenesis of BT and its clinical significance transcends established boundaries between microbiology, cell biology, intestinal pathophysiology, and immunology. This review delineates multiple mechanisms involved in the process of BT, with an emphasis on alterations in intestinal flora and mucosal barrier function, particularly immunological defense mechanisms. Current knowledge on the innate and adaptive immune response that allows a "friendly" communication between bacteria and host is summarized, and alterations occurring in cirrhosis that may facilitate BT are discussed. In addition, definition of a "pathological" BT is proposed together with an analysis of the anatomical site and route of BT. Finally, therapeutic approaches for the prevention of BT in experimental and human cirrhosis are reviewed. Future research in the field of BT in cirrhosis will allow the development of new therapeutic targets in the prevention of infections and other complications of cirrhosis.
Collapse
|
Review |
20 |
505 |
9
|
Kernéis S, Bogdanova A, Kraehenbuhl JP, Pringault E. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 1997; 277:949-52. [PMID: 9252325 DOI: 10.1126/science.277.5328.949] [Citation(s) in RCA: 464] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The epithelium that lines the gut is impermeable to macromolecules and microorganisms, except in Peyer's patches (PPs), where the lymphoid follicle-associated epithelium (FAE) contains M cells that transport antigens and microorganisms. A cultured system that reproduces the main characteristics of FAE and M cells was established by cultivation of PP lymphocytes with the differentiated human intestinal cell line Caco-2. Lymphocytes settled into the epithelial monolayer, inducing reorganization of the brush border and a temperature-dependent transport of particles and Vibrio cholerae. This model system could prove useful for intestinal physiology, vaccine research, and drug delivery studies.
Collapse
|
|
28 |
464 |
10
|
Lecuit M, Vandormael-Pournin S, Lefort J, Huerre M, Gounon P, Dupuy C, Babinet C, Cossart P. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 2001; 292:1722-5. [PMID: 11387478 DOI: 10.1126/science.1059852] [Citation(s) in RCA: 451] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Listeria monocytogenes is responsible for severe food-borne infections, but the mechanisms by which bacteria cross the intestinal barrier are unknown. Listeria monocytogenes expresses a surface protein, internalin, that interacts with a host receptor, E-cadherin, to promote entry into human epithelial cells. Murine E-cadherin, in contrast to guinea pig E-cadherin, does not interact with internalin, excluding the mouse as a model for addressing internalin function in vivo. In guinea pigs and transgenic mice expressing human E-cadherin, internalin was found to mediate invasion of enterocytes and crossing of the intestinal barrier. These results illustrate how relevant animal models for human infections can be generated.
Collapse
|
|
24 |
451 |
11
|
Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA, Dietrich WF, Roy CR. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 2006; 7:318-25. [PMID: 16444259 DOI: 10.1038/ni1305] [Citation(s) in RCA: 408] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 01/05/2006] [Indexed: 01/06/2023]
Abstract
Baculovirus inhibitor of apoptosis repeat-containing 1 (Birc1) proteins have homology to several germline-encoded receptors of the innate immune system. However, their function in immune surveillance is not clear. Here we describe a Birc1e-dependent signaling pathway that restricted replication of the intracellular pathogen Legionella pneumophila in mouse macrophages. Translocation of bacterial products into host-cell cytosol was essential for Birc1e-mediated control of bacterial replication. Caspase-1 was required for Birc1e-dependent antibacterial responses ex vivo in macrophages and in a mouse model of Legionnaires' disease. The interleukin 1beta converting enzyme-protease-activating factor was necessary for L. pneumophila growth restriction, but interleukin 1beta was not required. These results establish Birc1e as a nucleotide-binding oligomerization-leucine-rich repeat protein involved in the detection and control of intracellular L. pneumophila.
Collapse
|
|
19 |
408 |
12
|
Abstract
Many Escherichia coli strains are covered in a layer of surface-associated polysaccharide called the capsule. Capsular polysaccharides represent a major surface antigen, the K antigen, and more than 80 distinct K serotypes result from structural diversity in these polymers. However, not all capsules consist of K antigen. Some are due to production of an extensive layer of a polymer structurally identical to a lipopolysaccharide O antigen, but distinguished from lipopolysaccharide by the absence of terminal lipid A-core. Recent research has provided insight into the manner in which capsules are organized on the Gram-negative cell surface, the pathways used for their assembly, and the regulatory processes used to control their expression. A limited repertoire of capsule expression systems are available, despite the fact that the producing bacteria occupy a variety of ecological niches and possess diverse physiologies. All of the known capsule assembly systems seen in Gram-negative bacteria are represented in E. coli, as are the majority of the regulatory strategies. Escherichia coli therefore provides a variety of working models on which studies in other bacteria are (or can be) based. In this review, we present an overview of the current molecular and biochemical models for capsule expression in E. coli. By taking into account the organization of capsule gene clusters, details of the assembly pathway, and regulatory features that dictate capsule expression, we provide a new classification system that separates the known capsules of E. coli into four distinct groups.
Collapse
|
Comparative Study |
26 |
384 |
13
|
Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. Gut microbiota and metabolic syndrome. World J Gastroenterol 2014; 20:16079-16094. [PMID: 25473159 PMCID: PMC4239493 DOI: 10.3748/wjg.v20.i43.16079] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/20/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal “superorganism” seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host’s immune system could culminate in the intestinal translocation of bacterial fragments and the development of “metabolic endotoxemia”, leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.
Collapse
|
Topic Highlight |
11 |
353 |
14
|
Balmer ML, Slack E, de Gottardi A, Lawson MAE, Hapfelmeier S, Miele L, Grieco A, Van Vlierberghe H, Fahrner R, Patuto N, Bernsmeier C, Ronchi F, Wyss M, Stroka D, Dickgreber N, Heim MH, McCoy KD, Macpherson AJ. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med 2014; 6:237ra66. [PMID: 24848256 DOI: 10.1126/scitranslmed.3008618] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A prerequisite for establishment of mutualism between the host and the microbial community that inhabits the large intestine is the stringent mucosal compartmentalization of microorganisms. Microbe-loaded dendritic cells trafficking through lymphatics are arrested at the mesenteric lymph nodes, which constitute the firewall of the intestinal lymphatic circulation. We show in different mouse models that the liver, which receives the intestinal venous blood circulation, forms a vascular firewall that captures gut commensal bacteria entering the bloodstream during intestinal pathology. Phagocytic Kupffer cells in the liver of mice clear commensals from the systemic vasculature independently of the spleen through the liver's own arterial supply. Damage to the liver firewall in mice impairs functional clearance of commensals from blood, despite heightened innate immunity, resulting in spontaneous priming of nonmucosal immune responses through increased systemic exposure to gut commensals. Systemic immune responses consistent with increased extraintestinal commensal exposure were found in humans with liver disease (nonalcoholic steatohepatitis). The liver may act as a functional vascular firewall that clears commensals that have penetrated either intestinal or systemic vascular circuits.
Collapse
|
|
11 |
350 |
15
|
Compare D, Coccoli P, Rocco A, Nardone OM, De Maria S, Cartenì M, Nardone G. Gut--liver axis: the impact of gut microbiota on non alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2012; 22:471-476. [PMID: 22546554 DOI: 10.1016/j.numecd.2012.02.007] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/14/2012] [Accepted: 02/18/2012] [Indexed: 02/08/2023]
Abstract
AIM To examine the impact of gut microbiota on non alcoholic fatty liver disease (NAFLD) pathogenesis. DATA SYNTHESIS Emerging evidence suggests a strong interaction between gut microbiota and liver. Receiving approximately 70% of its blood supply from the intestine, the liver represents the first line of defence against gut-derived antigens. Intestinal bacteria play a key role in the maintenance of gut-liver axis health. Disturbances in the homeostasis between bacteria- and host-derived signals at the epithelial level lead to a break in intestinal barrier function and may foster "bacterial translocation", defined as the migration of bacteria or bacterial products from the intestinal lumen to mesenteric lymph nodes or other extraintestinal organs and sites. While the full repertoire of gut-derived microbial products that reach the liver in health and disease has yet to be explored, the levels of bacterial lipopolysaccharide, a component of the outer membrane of Gram-negative bacteria, are increased in the portal and/or systemic circulation in several types of chronic liver diseases. Derangement of the gut flora, particularly small intestinal bacterial overgrowth, occurs in a large percentage (20-75%) of patients with chronic liver disease. In addition, evidence implicating the gut-liver axis in the pathogenesis of metabolic liver disorders has accumulated over the past ten years. CONCLUSIONS Complex metabolic diseases are the product of multiple perturbations under the influence of triggering factors such as gut microbiota and diet, thus, modulation of the gut microbiota may represent a new way to treat or prevent NAFLD.
Collapse
|
Review |
13 |
321 |
16
|
Cirera I, Bauer TM, Navasa M, Vila J, Grande L, Taurá P, Fuster J, García-Valdecasas JC, Lacy A, Suárez MJ, Rimola A, Rodés J. Bacterial translocation of enteric organisms in patients with cirrhosis. J Hepatol 2001; 34:32-7. [PMID: 11211904 DOI: 10.1016/s0168-8278(00)00013-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS The aim of the study was to investigate the prevalence and associated risk factors for bacterial translocation in patients with cirrhosis, a mechanism involved in the pathogenesis of bacterial infections in experimental cirrhosis. METHODS Mesenteric lymph nodes were obtained for microbiological culture from 101 patients with cirrhosis and from 35 non-cirrhotic patients. RESULTS Enteric organisms were grown from mesenteric lymph nodes in 8.6% of non-cirrhotic patients. In the 79 cirrhotic patients without selective intestinal decontamination, the prevalence of bacterial translocation significantly increased according to the Child-Pugh classification: 3.4% in Child A, 8.1% in Child B and 30.8% in Child C patients (chi2 = 6.106, P < 0.05). However, translocation by Enterobacteriaceae, the organisms commonly responsible for spontaneous bacteremia and peritonitis in cirrhosis, was only observed in 25% of the cases. The prevalence of bacterial translocation in the 22 cirrhotic patients undergoing selective intestinal decontamination, all Child-Pugh class B and C, was 4.5%. The Child-Pugh score was the only independent predictive factor for bacterial translocation (odds ratio 2.22, P = 0.02). CONCLUSIONS Translocation of enteric organisms to mesenteric lymph nodes is increased in patients with advanced cirrhosis and is reduced to the level found in non-cirrhotic patients by selective intestinal decontamination.
Collapse
|
|
24 |
308 |
17
|
Hand TW, Dos Santos LM, Bouladoux N, Molloy MJ, Pagán AJ, Pepper M, Maynard CL, Elson CO, Belkaid Y. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 2012; 337:1553-6. [PMID: 22923434 PMCID: PMC3784339 DOI: 10.1126/science.1220961] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian gastrointestinal tract contains a large and diverse population of commensal bacteria and is also one of the primary sites of exposure to pathogens. How the immune system perceives commensals in the context of mucosal infection is unclear. Here, we show that during a gastrointestinal infection, tolerance to commensals is lost, and microbiota-specific T cells are activated and differentiate to inflammatory effector cells. Furthermore, these T cells go on to form memory cells that are phenotypically and functionally consistent with pathogen-specific T cells. Our results suggest that during a gastrointestinal infection, the immune response to commensals parallels the immune response against pathogenic microbes and that adaptive responses against commensals are an integral component of mucosal immunity.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
298 |
18
|
Wang L, Fouts DE, Stärkel P, Hartmann P, Chen P, Llorente C, DePew J, Moncera K, Ho SB, Brenner DA, Hooper LV, Schnabl B. Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation. Cell Host Microbe 2016; 19:227-39. [PMID: 26867181 DOI: 10.1016/j.chom.2016.01.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
Approximately half of all deaths from liver cirrhosis, the tenth leading cause of mortality in the United States, are related to alcohol use. Chronic alcohol consumption is accompanied by intestinal dysbiosis and bacterial overgrowth, yet little is known about the factors that alter the microbial composition or their contribution to liver disease. We previously associated chronic alcohol consumption with lower intestinal levels of the antimicrobial-regenerating islet-derived (REG)-3 lectins. Here, we demonstrate that intestinal deficiency in REG3B or REG3G increases numbers of mucosa-associated bacteria and enhances bacterial translocation to the mesenteric lymph nodes and liver, promoting the progression of ethanol-induced fatty liver disease toward steatohepatitis. Overexpression of Reg3g in intestinal epithelial cells restricts bacterial colonization of mucosal surfaces, reduces bacterial translocation, and protects mice from alcohol-induced steatohepatitis. Thus, alcohol appears to impair control of the mucosa-associated microbiota, and subsequent breach of the mucosal barrier facilitates progression of alcoholic liver disease.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
292 |
19
|
Cenac N, Coelho AM, Nguyen C, Compton S, Andrade-Gordon P, MacNaughton WK, Wallace JL, Hollenberg MD, Bunnett NW, Garcia-Villar R, Bueno L, Vergnolle N. Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1903-15. [PMID: 12414536 PMCID: PMC1850779 DOI: 10.1016/s0002-9440(10)64466-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteinase-activated receptor (PAR)-2, a G-protein-coupled receptor for trypsin and mast cell tryptase, is highly expressed in the intestine. Luminal trypsin and tryptase are elevated in the colon of inflammatory bowel disease patients. We hypothesized that luminal proteinases activate PAR-2 and induce colonic inflammation. Mice received intracolonically PAR-2 agonists (trypsin, tryptase, and a selective PAR-2-activating peptide) or control drugs (boiled enzymes, inactive peptide) and inflammatory parameters were followed at various times after this treatment. Colonic administration of PAR-2 agonists up-regulated PAR-2 expression and induced an inflammatory reaction characterized by granulocyte infiltration, increased wall thickness, tissue damage, and elevated T-helper cell type 1 cytokine. The inflammation was maximal between 4 and 6 hours and was resolved 48 hours after the intracolonic administration. PAR-2 activation also increased paracellular permeability of the colon and induced bacterial trans-location into peritoneal organs. These proinflammatory and pathophysiological changes observed in wild-type mice were not detected in PAR-2-deficient mice. Luminal proteinases activate PAR-2 in the mouse colon to induce inflammation and disrupt the integrity of the intestinal barrier. Because trypsin and tryptase are found at high levels in the colon lumen of patients with Crohn's disease or ulcerative colitis, our data may bear directly on the pathophysiology of human inflammatory bowel diseases.
Collapse
|
research-article |
23 |
290 |
20
|
Klatt NR, Funderburg NT, Brenchley JM. Microbial translocation, immune activation, and HIV disease. Trends Microbiol 2013; 21:6-13. [PMID: 23062765 PMCID: PMC3534808 DOI: 10.1016/j.tim.2012.09.001] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/29/2012] [Accepted: 09/10/2012] [Indexed: 02/07/2023]
Abstract
The advent of combination antiretroviral therapy (cART) has significantly improved the prognosis of human immunodeficiency virus (HIV)-infected individuals. However, individuals treated long-term with cART still manifest increased mortality compared to HIV-uninfected individuals. This increased mortality is closely associated with inflammation, which persists in cART-treated HIV-infected individuals despite levels of plasma viremia below detection limits. Chronic, pathological immune activation is a key factor in progression to acquired immunodeficiency syndrome (AIDS) in untreated HIV-infected individuals. One contributor to immune activation is microbial translocation, which occurs when microbial products traverse the tight epithelial barrier of the gastrointestinal tract. Here we review the mechanisms underlying microbial translocation and its role in contributing to immune activation and disease progression in HIV infection.
Collapse
|
Review |
12 |
287 |
21
|
Miura K, Ohnishi H. Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20:7381-7391. [PMID: 24966608 PMCID: PMC4064083 DOI: 10.3748/wjg.v20.i23.7381] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Emerging data have shown a close association between compositional changes in gut microbiota and the development of nonalcoholic fatty liver disease (NAFLD). The change in gut microbiota may alter nutritional absorption and storage. In addition, gut microbiota are a source of Toll-like receptor (TLR) ligands, and their compositional change can also increase the amount of TLR ligands delivered to the liver. TLR ligands can stimulate liver cells to produce proinflammatory cytokines. Therefore, the gut-liver axis has attracted much interest, particularly regarding the pathogenesis of NAFLD. The abundance of the major gut microbiota, including Firmicutes and Bacteroidetes, has been considered a potential underlying mechanism of obesity and NAFLD, but the role of these microbiota in NAFLD remains unknown. Several reports have demonstrated that certain gut microbiota are associated with the development of obesity and NAFLD. For instance, a decrease in Akkermansia muciniphila causes a thinner intestinal mucus layer and promotes gut permeability, which allows the leakage of bacterial components. Interventions to increase Akkermansia muciniphila improve the metabolic parameters in obesity and NAFLD. In children, the levels of Escherichia were significantly increased in nonalcoholic steatohepatitis (NASH) compared with those in obese control. Escherichia can produce ethanol, which promotes gut permeability. Thus, normalization of gut microbiota using probiotics or prebiotics is a promising treatment option for NAFLD. In addition, TLR signaling in the liver is activated, and its downstream molecules, such as proinflammatory cytokines, are increased in NAFLD. To data, TLR2, TLR4, TLR5, and TLR9 have been shown to be associated with the pathogenesis of NAFLD. Therefore, gut microbiota and TLRs are targets for NAFLD treatment.
Collapse
|
Topic Highlight |
11 |
281 |
22
|
Wong F, Bernardi M, Balk R, Christman B, Moreau R, Garcia-Tsao G, Patch D, Soriano G, Hoefs J, Navasa M. Sepsis in cirrhosis: report on the 7th meeting of the International Ascites Club. Gut 2005; 54:718-25. [PMID: 15831923 PMCID: PMC1774473 DOI: 10.1136/gut.2004.038679] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sepsis is a systemic inflammatory response to the presence of infection, mediated via the production of many cytokines, including tumour necrosis factor (TNF-), interleukin (IL)-6, and IL-1, which cause changes in the circulation and in the coagulation cascade. There is stagnation of blood flow and poor oxygenation, subclinical coagulopathy with elevated D-dimers, and increased production of superoxide from nitric oxide synthase. All of these changes favour endothelial apoptosis and necrosis as well as increased oxidant stress. Reduced levels of activated protein C, which is normally anti-inflammatory and antiapoptotic, can lead to further tissue injury. Cirrhotic patients are particularly susceptible to bacterial infections because of increased bacterial translocation, possibly related to liver dysfunction and reduced reticuloendothelial function. Sepsis ensues when there is overactivation of pathways involved in the development of the sepsis syndrome, associated with complications such as renal failure, encephalopathy, gastrointestinal bleed, and shock with decreased survival. Thus the treating physician needs to be vigilant in diagnosing and treating bacterial infections in cirrhosis early, in order to prevent the development and downward spiral of the sepsis syndrome. Recent advances in management strategies of infections in cirrhosis have helped to improve the prognosis of these patients. These include the use of prophylactic antibiotics in patients with gastrointestinal bleed to prevent infection and the use of albumin in patients with spontaneous bacterial peritonitis to reduce the incidence of renal impairment. The use of antibiotics has to be judicious, as their indiscriminate use can lead to antibiotic resistance with potentially disastrous consequences.
Collapse
|
research-article |
20 |
277 |
23
|
Yang J, Wei H, Zhou Y, Szeto CH, Li C, Lin Y, Coker OO, Lau HCH, Chan AWH, Sung JJY, Yu J. High-Fat Diet Promotes Colorectal Tumorigenesis Through Modulating Gut Microbiota and Metabolites. Gastroenterology 2022; 162:135-149.e2. [PMID: 34461052 DOI: 10.1053/j.gastro.2021.08.041] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/05/2021] [Accepted: 08/21/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Dietary fat intake is associated with increased risk of colorectal cancer (CRC). We examined the role of high-fat diet (HFD) in driving CRC through modulating gut microbiota and metabolites. METHODS HFD or control diet was fed to mice littermates in CRC mouse models of an azoxymethane (AOM) model and Apcmin/+ model, with or without antibiotics cocktail treatment. Germ-free mice for fecal microbiota transplantation were used for validation. Gut microbiota and metabolites were detected using metagenomic sequencing and high-performance liquid chromatography-mass spectrometry, respectively. Gut barrier function was determined using lipopolysaccharides level and transmission electron microscopy. RESULTS HFD promoted colorectal tumorigenesis in both AOM-treated mice and Apcmin/+ mice compared with control diet-fed mice. Gut microbiota depletion using antibiotics attenuated colon tumor formation in HFD-fed mice. A significant shift of gut microbiota composition with increased pathogenic bacteria Alistipessp.Marseille-P5997 and Alistipessp.5CPEGH6, and depleted probiotic Parabacteroides distasonis, along with impaired gut barrier function was exhibited in HFD-fed mice. Moreover, HFD-modulated gut microbiota promotes colorectal tumorigenesis in AOM-treated germ-free mice, indicating gut microbiota was essential in HFD-associated colorectal tumorigenesis. Gut metabolites alteration, including elevated lysophosphatidic acid, which was confirmed to promote CRC cell proliferation and impair cell junction, was also observed in HFD-fed mice. Moreover, transfer of stools from HFD-fed mice to germ-free mice without interference increased colonic cell proliferation, impaired gut barrier function, and induced oncogenic genes expression. CONCLUSIONS HFD drives colorectal tumorigenesis through inducing gut microbial dysbiosis, metabolomic dysregulation with elevated lysophosphatidic acid, and gut barrier dysfunction in mice.
Collapse
|
|
3 |
276 |
24
|
Swidsinski A, Loening-Baucke V, Theissig F, Engelhardt H, Bengmark S, Koch S, Lochs H, Dörffel Y. Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut 2007; 56:343-50. [PMID: 16908512 PMCID: PMC1856798 DOI: 10.1136/gut.2006.098160] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 07/27/2006] [Accepted: 08/01/2006] [Indexed: 12/21/2022]
Abstract
AIM To study the role of mucus in the spatial separation of intestinal bacteria from mucosa. PATIENTS AND METHODS Mucus barrier characteristics were evaluated using histological material obtained by biopsy from purged colon, colon prepared with enema and material from untreated appendices fixed with non-aqueous Carnoy solution. Bacteria were evaluated using fluorescence in situ hybridization, with bacterial 16S RNA probes and related to the periodic acid Schiff alcian blue stain. Biopsies from controls (n = 20), patients with self-limiting colitis (SLC; n = 20), ulcerative colitis (n = 20) and 60 randomly selected appendices were investigated. RESULTS The mucosal surface beneath the mucus layer was free of bacteria in > or =80% of the normal appendices and biopsies from controls. The thickness of the mucus layer and its spread decreased with increasing severity of the inflammation; the epithelial surface showed bacterial adherence, epithelial tissue defects and deep mucosal infiltration with bacteria and leucocytes. Bacteria and leucocytes were found within mucus in all biopsy specimens from patients with ulcerative colitis, SLC, and acute appendicitis. The concentration of bacteria within mucus was inversely correlated to the numbers of leucocytes. CONCLUSIONS The large bowel mucus layer effectively prevents contact between the highly concentrated luminal bacteria and the epithelial cells in all parts of the normal colon. Colonic inflammation is always accompanied by breaks in the mucus barrier. Although the inflammatory response gradually reduces the number of bacteria in mucus and faeces, the inflammation itself is not capable of preventing bacterial migration, adherence to and invasion of the mucosa.
Collapse
|
research-article |
18 |
269 |
25
|
Abstract
BACKGROUND Gut translocation of bacteria has been shown in both animal and human studies. Evidence from animal studies that links bacteria translocation to the development of postoperative sepsis and multiple organ failure has yet to be confirmed in humans. AIMS To examine the spectrum of bacteria involved in translocation in surgical patients undergoing laparotomy and to determine the relation between nodal migration of bacteria and the development of postoperative septic complications. METHODS Mesenteric lymph nodes (MLN), serosal scrapings, and peripheral blood from 448 surgical patients undergoing laparotomy were analysed using standard microbiological techniques. RESULTS Bacterial translocation was identified in 69 patients (15.4%). The most common organism identified was Escherichia coli (54%). Both enteric bacteria, typical of indigenous intestinal flora, and non-enteric bacteria were isolated. Postoperative septic complications developed in 104 patients (23%). Enteric organisms were responsible in 74% of patients. Forty one per cent of patients who had evidence of bacterial translocation developed sepsis compared with 14% in whom no organisms were cultured (p < 0.001). Septic morbidity was more frequent when a greater diversity of bacteria resided within the MLN, but this was not statistically significant. CONCLUSION Bacterial translocation is associated with a significant increase in the development of postoperative sepsis in surgical patients. The organisms responsible for septic morbidity are similar in spectrum to those observed in the mesenteric lymph nodes. These data strongly support the gut origin hypothesis of sepsis in humans.
Collapse
|
research-article |
27 |
268 |