1
|
Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Vanengelsdorp D, Pettis JS. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 2010; 5:e9754. [PMID: 20333298 PMCID: PMC2841636 DOI: 10.1371/journal.pone.0009754] [Citation(s) in RCA: 836] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/26/2010] [Indexed: 11/29/2022] Open
Abstract
Background Recent declines in honey bees for crop pollination threaten fruit, nut, vegetable and seed production in the United States. A broad survey of pesticide residues was conducted on samples from migratory and other beekeepers across 23 states, one Canadian province and several agricultural cropping systems during the 2007–08 growing seasons. Methodology/Principal Findings We have used LC/MS-MS and GC/MS to analyze bees and hive matrices for pesticide residues utilizing a modified QuEChERS method. We have found 121 different pesticides and metabolites within 887 wax, pollen, bee and associated hive samples. Almost 60% of the 259 wax and 350 pollen samples contained at least one systemic pesticide, and over 47% had both in-hive acaricides fluvalinate and coumaphos, and chlorothalonil, a widely-used fungicide. In bee pollen were found chlorothalonil at levels up to 99 ppm and the insecticides aldicarb, carbaryl, chlorpyrifos and imidacloprid, fungicides boscalid, captan and myclobutanil, and herbicide pendimethalin at 1 ppm levels. Almost all comb and foundation wax samples (98%) were contaminated with up to 204 and 94 ppm, respectively, of fluvalinate and coumaphos, and lower amounts of amitraz degradates and chlorothalonil, with an average of 6 pesticide detections per sample and a high of 39. There were fewer pesticides found in adults and brood except for those linked with bee kills by permethrin (20 ppm) and fipronil (3.1 ppm). Conclusions/Significance The 98 pesticides and metabolites detected in mixtures up to 214 ppm in bee pollen alone represents a remarkably high level for toxicants in the brood and adult food of this primary pollinator. This represents over half of the maximum individual pesticide incidences ever reported for apiaries. While exposure to many of these neurotoxicants elicits acute and sublethal reductions in honey bee fitness, the effects of these materials in combinations and their direct association with CCD or declining bee health remains to be determined.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
836 |
2
|
Fürst MA, McMahon DP, Osborne JL, Paxton RJ, Brown MJF. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 2014; 506:364-6. [PMID: 24553241 PMCID: PMC3985068 DOI: 10.1038/nature12977] [Citation(s) in RCA: 392] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/30/2013] [Indexed: 12/30/2022]
Abstract
Emerging infectious diseases (EIDs) pose a risk to human welfare, both directly and indirectly, by affecting managed livestock and wildlife that provide valuable resources and ecosystem services, such as the pollination of crops. Honeybees (Apis mellifera), the prevailing managed insect crop pollinator, suffer from a range of emerging and exotic high-impact pathogens, and population maintenance requires active management by beekeepers to control them. Wild pollinators such as bumblebees (Bombus spp.) are in global decline, one cause of which may be pathogen spillover from managed pollinators like honeybees or commercial colonies of bumblebees. Here we use a combination of infection experiments and landscape-scale field data to show that honeybee EIDs are indeed widespread infectious agents within the pollinator assemblage. The prevalence of deformed wing virus (DWV) and the exotic parasite Nosema ceranae in honeybees and bumblebees is linked; as honeybees have higher DWV prevalence, and sympatric bumblebees and honeybees are infected by the same DWV strains, Apis is the likely source of at least one major EID in wild pollinators. Lessons learned from vertebrates highlight the need for increased pathogen control in managed bee species to maintain wild pollinators, as declines in native pollinators may be caused by interspecies pathogen transmission originating from managed pollinators.
Collapse
|
research-article |
11 |
392 |
3
|
Steinhauer N, Kulhanek K, Antúnez K, Human H, Chantawannakul P, Chauzat MP, vanEngelsdorp D. Drivers of colony losses. CURRENT OPINION IN INSECT SCIENCE 2018; 26:142-148. [PMID: 29764654 DOI: 10.1016/j.cois.2018.02.004] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 05/11/2023]
Abstract
Over the past decade, in some regions of the world, honey bee (Apis mellifera L.) colonies have experienced rates of colony loss that are difficult for beekeepers to sustain. The reasons for losses are complex and interacting, with major drivers including Varroaand related viruses, pesticides, nutrition and beekeeper practices. In these endeavors it has also become apparent that defining a dead colony, and singling out the effects of specific drivers of loss, is not so straightforward. Using the class of neonicotinoid pesticides as an example we explain why quantifying risk factor impact at the colony level is at times elusive and in some cases unpractical. In this review, we discuss the caveats of defining and quantifying dead colonies. We also summarize the current leading drivers of colony losses, their interactions and the most recent research on their effects on colony mortality.
Collapse
|
Review |
7 |
177 |
4
|
Hunter W, Ellis J, vanEngelsdorp D, Hayes J, Westervelt D, Glick E, Williams M, Sela I, Maori E, Pettis J, Cox-Foster D, Paldi N. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathog 2010; 6:e1001160. [PMID: 21203478 PMCID: PMC3009593 DOI: 10.1371/journal.ppat.1001160] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/23/2010] [Indexed: 01/24/2023] Open
Abstract
The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD), which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi) has been used successfully to silence endogenous insect (including honey bee) genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania). To our knowledge, this is the first successful large-scale real world use of RNAi for disease control.
Collapse
|
research-article |
15 |
138 |
5
|
Jacques A, Laurent M, EPILOBEE Consortium, Ribière-Chabert M, Saussac M, Bougeard S, Budge GE, Hendrikx P, Chauzat MP. A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control. PLoS One 2017; 12:e0172591. [PMID: 28278255 PMCID: PMC5344352 DOI: 10.1371/journal.pone.0172591] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/07/2017] [Indexed: 11/18/2022] Open
Abstract
Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed.
Collapse
|
Journal Article |
8 |
100 |
6
|
O'Neal ST, Anderson TD, Wu-Smart JY. Interactions between pesticides and pathogen susceptibility in honey bees. CURRENT OPINION IN INSECT SCIENCE 2018; 26:57-62. [PMID: 29764661 DOI: 10.1016/j.cois.2018.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
There exist a variety of factors that negatively impact the health and survival of managed honey bee colonies, including the spread of parasites and pathogens, loss of habitat, reduced availability or quality of food resources, climate change, poor queen quality, changing cultural and commercial beekeeping practices, as well as exposure to agricultural and apicultural pesticides both in the field and in the hive. These factors are often closely intertwined, and it is unlikely that a single stressor is driving colony losses. There is a growing consensus, however, that increasing prevalence of parasites and pathogens are among the most significant threats to managed bee colonies. Unfortunately, improper management of hives by beekeepers may exacerbate parasite populations and disease transmission. Furthermore, research continues to accumulate that describes the complex and largely harmful interactions that exist between pesticide exposure and bee immunity. This brief review summarizes our progress in understanding the impact of pesticide exposure on bees at the individual, colony, and community level.
Collapse
|
Review |
7 |
64 |
7
|
Jack CJ, Ellis JD. Integrated Pest Management Control of Varroa destructor (Acari: Varroidae), the Most Damaging Pest of (Apis mellifera L. (Hymenoptera: Apidae)) Colonies. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6. [PMID: 34536080 PMCID: PMC8449538 DOI: 10.1093/jisesa/ieab058] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 05/13/2023]
Abstract
Varroa destructor is among the greatest biological threats to western honey bee (Apis mellifera L.) health worldwide. Beekeepers routinely use chemical treatments to control this parasite, though overuse and mismanagement of these treatments have led to widespread resistance in Varroa populations. Integrated Pest Management (IPM) is an ecologically based, sustainable approach to pest management that relies on a combination of control tactics that minimize environmental impacts. Herein, we provide an in-depth review of the components of IPM in a Varroa control context. These include determining economic thresholds for the mite, identification of and monitoring for Varroa, prevention strategies, and risk conscious treatments. Furthermore, we provide a detailed review of cultural, mechanical, biological, and chemical control strategies, both longstanding and emerging, used against Varroa globally. For each control type, we describe all available treatments, their efficacies against Varroa as described in the primary scientific literature, and the obstacles to their adoption. Unfortunately, reliable IPM protocols do not exist for Varroa due to the complex biology of the mite and strong reliance on chemical control by beekeepers. To encourage beekeeper adoption, a successful IPM approach to Varroa control in managed colonies must be an improvement over conventional control methods and include cost-effective treatments that can be employed readily by beekeepers. It is our intention to provide the most thorough review of Varroa control options available, ultimately framing our discussion within the context of IPM. We hope this article is a call-to-arms against the most damaging pest managed honey bee colonies face worldwide.
Collapse
|
Review |
4 |
60 |
8
|
Corby-Harris V, Snyder L, Meador CAD, Naldo R, Mott B, Anderson KE. Parasaccharibacter apium, gen. nov., sp. nov., Improves Honey Bee (Hymenoptera: Apidae) Resistance to Nosema. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:537-43. [PMID: 26875068 DOI: 10.1093/jee/tow012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The honey bee, Apis mellifera L., is host to a variety of microorganisms. The bacterial community that occupies the adult worker gut contains a core group of approximately seven taxa, while the hive environment contains its own distribution of bacteria that is in many ways distinct from the gut. Parasaccharibacter apium, gen. nov., sp. nov., is a hive bacterium found in food stores and in larvae, worker jelly, worker hypopharyngeal glands, and queens. Parasaccharibacter apium increases larval survival under laboratory conditions. To determine if this benefit is extended to colonies in the field, we tested if P. apium 1) survives and reproduces in supplemental pollen patty, 2) is distributed throughout the hive when added to pollen patty, 3) benefits colony health, and 4) increases the ability of bees to resist Nosema. Parasaccharibacter apium survived in supplemental diet and was readily consumed by bees. It was distributed throughout the hive under field conditions, moving from the pollen patty to hive larvae. While P. apium did not significantly increase colony brood production, food stores, or foraging rates, it did increase resistance to Nosema infection. Our data suggest that P. apium may positively impact honey bee health.
Collapse
|
|
9 |
59 |
9
|
Glenny W, Cavigli I, Daughenbaugh KF, Radford R, Kegley SE, Flenniken ML. Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination. PLoS One 2017; 12:e0182814. [PMID: 28817641 PMCID: PMC5560708 DOI: 10.1371/journal.pone.0182814] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/25/2017] [Indexed: 01/05/2023] Open
Abstract
Honey bees are important pollinators of agricultural crops. Pathogens and other factors have been implicated in high annual losses of honey bee colonies in North America and some European countries. To further investigate the relationship between multiple factors, including pathogen prevalence and abundance and colony health, we monitored commercially managed migratory honey bee colonies involved in California almond pollination in 2014. At each sampling event, honey bee colony health was assessed, using colony population size as a proxy for health, and the prevalence and abundance of seven honey bee pathogens was evaluated using PCR and quantitative PCR, respectively. In this sample cohort, pathogen prevalence and abundance did not correlate with colony health, but did correlate with the date of sampling. In general, pathogen prevalence (i.e., the number of specific pathogens harbored within a colony) was lower early in the year (January-March) and was greater in the summer, with peak prevalence occurring in June. Pathogen abundance in individual honey bee colonies varied throughout the year and was strongly associated with the sampling date, and was influenced by beekeeping operation, colony health, and mite infestation level. Together, data from this and other observational cohort studies that monitor individual honey bee colonies and precisely account for sampling date (i.e., day of year) will lead to a better understanding of the influence of pathogens on colony mortality and the effects of other factors on these associations.
Collapse
|
research-article |
8 |
52 |
10
|
Pettis JS, Rice N, Joselow K, vanEngelsdorp D, Chaimanee V. Colony Failure Linked to Low Sperm Viability in Honey Bee (Apis mellifera) Queens and an Exploration of Potential Causative Factors. PLoS One 2016; 11:e0147220. [PMID: 26863438 PMCID: PMC4749221 DOI: 10.1371/journal.pone.0147220] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022] Open
Abstract
Queen health is closely linked to colony performance in honey bees as a single queen is normally responsible for all egg laying and brood production within the colony. In the U. S. in recent years, queens have been failing at a high rate; with 50% or greater of queens replaced in colonies within 6 months when historically a queen might live one to two years. This high rate of queen failure coincides with the high mortality rates of colonies in the US, some years with >50% of colonies dying. In the current study, surveys of sperm viability in US queens were made to determine if sperm viability plays a role in queen or colony failure. Wide variation was observed in sperm viability from four sets of queens removed from colonies that beekeepers rated as in good health (n = 12; average viability = 92%), were replacing as part of normal management (n = 28; 57%), or where rated as failing (n = 18 and 19; 54% and 55%). Two additional paired set of queens showed a statistically significant difference in viability between colonies rated by the beekeeper as failing or in good health from the same apiaries. Queens removed from colonies rated in good health averaged high viability (ca. 85%) while those rated as failing or in poor health had significantly lower viability (ca. 50%). Thus low sperm viability was indicative of, or linked to, colony performance. To explore the source of low sperm viability, six commercial queen breeders were surveyed and wide variation in viability (range 60-90%) was documented between breeders. This variability could originate from the drones the queens mate with or temperature extremes that queens are exposed to during shipment. The role of shipping temperature as a possible explanation for low sperm viability was explored. We documented that during shipment queens are exposed to temperature spikes (<8 and > 40°C) and these spikes can kill 50% or more of the sperm stored in queen spermathecae in live queens. Clearly low sperm viability is linked to colony performance and laboratory and field data provide evidence that temperature extremes are a potential causative factor.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
47 |
11
|
Ropars L, Dajoz I, Fontaine C, Muratet A, Geslin B. Wild pollinator activity negatively related to honey bee colony densities in urban context. PLoS One 2019; 14:e0222316. [PMID: 31513663 PMCID: PMC6742366 DOI: 10.1371/journal.pone.0222316] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 08/27/2019] [Indexed: 11/21/2022] Open
Abstract
As pollinator decline is increasingly reported in natural and agricultural environments, cities are perceived as shelters for pollinators because of low pesticide exposure and high floral diversity throughout the year. This has led to the development of environmental policies supporting pollinators in urban areas. However, policies are often restricted to the promotion of honey bee colony installations, which resulted in a strong increase in apiary numbers in cities. Recently, competition for floral resources between wild pollinators and honey bees has been highlighted in semi-natural contexts, but whether urban beekeeping could impact wild pollinators remains unknown. Here, we show that in the city of Paris (France), wild pollinator visitation rates are negatively correlated to honey bee colony densities present in the surrounding landscape (500m -slope = -0.614; p = 0.001 -and 1000m -slope = -0.489; p = 0.005). Regarding the morphological groups of wild pollinators, large solitary bee and beetle visitation rates were negatively affected by honey bee colony densities within a 500m buffer (slope = -0.425, p = 0.007 and slope = - 0.671, p = 0.002, respectively) and bumblebee visitation rates were negatively affected by honey bee colony density within a 1000m buffer (slope = - 0.451, p = 0.012). Further, lower interaction evenness in plant-pollinator networks was observed with high honey bee colony density within a 1000m buffer (slope = -0.487, p = 0.008). Finally, honey bees tended to focus their foraging activity on managed rather than wild plant species (student t-test, p = 0.001) whereas wild pollinators equally visited managed and wild species. We advocate responsible practices mitigating the introduction of high density of honey bee colonies in urban environments. Further studies are however needed to deepen our knowledge about the potential negative interactions between wild and domesticated pollinators.
Collapse
|
research-article |
6 |
44 |
12
|
Morawetz L, Köglberger H, Griesbacher A, Derakhshifar I, Crailsheim K, Brodschneider R, Moosbeckhofer R. Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PLoS One 2019; 14:e0219293. [PMID: 31287830 PMCID: PMC6615611 DOI: 10.1371/journal.pone.0219293] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
Austrian beekeepers frequently suffered severe colony losses during the last decade similar to trends all over Europe. This first surveillance study aimed to describe the health status of Austrian bee colonies and to analyze the reasons for losses for both the summer and winter season in Austria. In this study 189 apiaries all over Austria were selected using a stratified random sampling approach and inspected three times between July 2015 and spring 2016 by trained bee inspectors. The inspectors made interviews with the beekeepers about their beekeeping practice and the history of the involved colonies. They inspected a total of 1596 colonies for symptoms of nine bee pests and diseases (four of them notifiable diseases) and took bee samples for varroa mite infestation analysis. The most frequently detected diseases were three brood diseases: Varroosis, Chalkbrood and Sacbrood. The notifiable bee pests Aethina tumida and Tropilaelaps spp. were not detected. During the study period 10.8% of the 1596 observed colonies died. Winter proved to be the most critical season, in which 75% of the reported colony losses happened. Risks for suffering summer losses increased significantly, when colonies were weak in July, had queen problems or a high varroa mite infestation level on bees in July. Risks for suffering winter losses increased significantly, when the colonies had a high varroa mite infestation level on bees in September, were weak in September, had a queen older than one year or the beekeeper had few years of beekeeping experience. However, the effect of a high varroa mite infestation level in September had by far the greatest potential to raise the winter losses compared to the other significant factors.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
37 |
13
|
Decourtye A, Alaux C, Le Conte Y, Henry M. Toward the protection of bees and pollination under global change: present and future perspectives in a challenging applied science. CURRENT OPINION IN INSECT SCIENCE 2019; 35:123-131. [PMID: 31473587 DOI: 10.1016/j.cois.2019.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 05/25/2023]
Abstract
Over the past 30 years (1987-2016), bibliometric data have shown a drastic change in the scientific investigation of threats to bee populations. Bee research efforts committed to studying bioagressors of honeybees (mainly Varroa sp.) were predominant, but now appear to be shifting from bioagressors to global change in the published literature. This rise of global change science reveals prevailing topics, for current and future years: climate change, landscape alteration, agricultural intensification and invasive species. We argue that with increased investment in applied research and development, the scientific, beekeeping and agricultural communities will be able to find management strategies for productive agrosystems and enhanced resilience of pollination and beekeeping. This implies the need for restoring and improving food resources and shelters of bees by ecological intensification of diversified farming systems, and also reconciling sustainable beekeeping with wild pollinator conservation.
Collapse
|
Review |
6 |
37 |
14
|
Evison SE, Jensen AB. The biology and prevalence of fungal diseases in managed and wild bees. CURRENT OPINION IN INSECT SCIENCE 2018; 26:105-113. [PMID: 29764649 DOI: 10.1016/j.cois.2018.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/15/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Managed and wild bees, whether solitary or social have a plethora of microbial associations that vary in their influence on the health of the bees. In this review, we summarise our current knowledge of aspects of the biology and ecology of bee associated fungi. The biology of bees that fungi are associated with are described, and the likely influences on fungal transmission are discussed. There is a clear disparity in research on fungi associated with managed compared to wild bees, leaving gaps in our understanding of fungal pathogen epidemiology. Translocation of bees to meet global pollination needs will increase exposure of bees to exotic pathogens. Thus, filling these gaps is an important step towards mitigating the impact of fungal diseases in bees.
Collapse
|
Review |
7 |
34 |
15
|
Kaftanoglu O, Linksvayer TA, Page RE. Rearing honey bees, Apis mellifera, in vitro 1: effects of sugar concentrations on survival and development. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:96. [PMID: 22208776 PMCID: PMC3391908 DOI: 10.1673/031.011.9601] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 12/07/2010] [Indexed: 05/10/2023]
Abstract
A new method for rearing honey bees, Apis mellifera L. (Hymenoptera: Apidae), in vitro was developed and the effects of sugar concentrations on survival and development were studied. Seven different glucose (G) and fructose (F) compositions (0%G+0%F, 3%G+3%F, 6%G+6%F, 12%G+12%F, 0%G+12%F, 12%G+0%F, and 4%G+8%F) were tested. Larvae were able to grow to the post defecation stage without addition of sugars (Diet 1), but they were not able to metamorphose and pupate. Adults were reared from diets 2-7. The average larval survival, prepupal larval weights, adult weights, and ovariole numbers were affected significantly due to the sugar compositions in the diets. High sugar concentrations (12%G+12%F) increased the number of queens and intercastes.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
34 |
16
|
Dynes TL, Berry JA, Delaplane KS, Brosi BJ, de Roode JC. Reduced density and visually complex apiaries reduce parasite load and promote honey production and overwintering survival in honey bees. PLoS One 2019; 14:e0216286. [PMID: 31120911 PMCID: PMC6532956 DOI: 10.1371/journal.pone.0216286] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
Managed honey bee (Apis mellifera) colonies are kept at much greater densities than naturally occurring feral or wild colonies, which may have detrimental effects on colony health and survival, disease spread, and drifting behavior (bee movement between natal and non-natal colonies). We assessed the effects of a straightforward apiary management intervention (altering the density and visual appearance of colonies) on colony health. Specifically, we established three "high density / high drift" ("HD") and three "low density / low drift" ("LD") apiary configurations, each consisting of eight bee colonies. Hives in the HD apiary configuration were of the same color and placed 1m apart in a single linear array, while hives in the LD apiary configuration were placed 10m apart at different heights, facing outwards in a circle, and made visually distinctive with colors and symbols to reduce accidental drift between colonies. We investigated disease transmission and dynamics between the apiary configurations by clearing all colonies of the parasitic mite Varroa destructor, and subsequently inoculating two randomly-chosen colonies per apiary with controlled mite doses. We monitored the colonies for two years and found that the LD apiary configuration had significantly greater honey production and reduced overwinter mortality. Inoculation and apiary management intervention interacted to affect brood mite levels, with the highest levels in the inoculated colonies in the HD configuration. Finally, foragers were more than three times more likely to drift in the HD apiary configurations. Our results suggest that a relatively straightforward management change-placing colonies in low-density visually complex circles rather than high-density visually similar linear arrays-can provide meaningful benefits to the health and productivity of managed honey bee colonies.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
28 |
17
|
Vojvodic S, Jensen AB, Markussen B, Eilenberg J, Boomsma JJ. Genetic variation in virulence among chalkbrood strains infecting honeybees. PLoS One 2011; 6:e25035. [PMID: 21966406 PMCID: PMC3178585 DOI: 10.1371/journal.pone.0025035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 08/26/2011] [Indexed: 11/20/2022] Open
Abstract
Ascosphaera apis causes chalkbrood in honeybees, a chronic disease that reduces the number of viable offspring in the nest. Although lethal for larvae, the disease normally has relatively low virulence at the colony level. A recent study showed that there is genetic variation for host susceptibility, but whether Ascosphaera apis strains differ in virulence is unknown. We exploited a recently modified in vitro rearing technique to infect honeybee larvae from three colonies with naturally mated queens under strictly controlled laboratory conditions, using four strains from two distinct A. apis clades. We found that both strain and colony of larval origin affected mortality rates. The strains from one clade caused 12-14% mortality while those from the other clade induced 71-92% mortality. Larvae from one colony showed significantly higher susceptibility to chalkbrood infection than larvae from the other two colonies, confirming the existence of genetic variation in susceptibility across colonies. Our results are consistent with antagonistic coevolution between a specialized fungal pathogen and its host, and suggest that beekeeping industries would benefit from more systematic monitoring of this chronic stress factor of their colonies.
Collapse
|
research-article |
14 |
28 |
18
|
Brady TS, Merrill BD, Hilton JA, Payne AM, Stephenson MB, Hope S. Bacteriophages as an alternative to conventional antibiotic use for the prevention or treatment of Paenibacillus larvae in honeybee hives. J Invertebr Pathol 2017; 150:94-100. [PMID: 28917651 DOI: 10.1016/j.jip.2017.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023]
Abstract
American Foulbrood (AFB) is an infectious disease caused by the bacteria, Paenibacillus larvae. P. larvae phages were isolated and tested to determine each phages' host range amongst 59 field isolate strains of P. larvae. Three phages were selected to create a phage cocktail for the treatment of AFB infections according to the combined phages' ability to lyse all tested strains of bacteria. Studies were performed to demonstrate the safety and efficacy of the phage cocktail treatment as a replacement for traditional antibiotics for the prevention of AFB and the treatment of active infections. Safety verification studies confirmed that the phage cocktail did not adversely affect the rate of bee death even when administered as an overdose. In a comparative study of healthy hives, traditional prophylactic antibiotic treatment experienced a 38±0.7% decrease in overall hive health, which was statistically lower than hive health observed in control hives. Hives treated with phage cocktail decreased 19±0.8%, which was not statistically different than control hives, which decreased by 10±1.0%. In a study of beehives at-risk for a natural infection, 100±0.5% of phage-treated hives were protected from AFB infection, while 80±0.5% of untreated controls became infected. AFB infected hives began with an average Hitchcock score of 2.25 out of 4 and 100±0.5% of the hives recovered completely within two weeks of treatment with phage cocktail. While the n numbers for the latter two studies are small, the results for both the phage protection rate and the phage cure rate were statistically significant (α=0.05). These studies demonstrate the powerful potential of using a phage cocktail against AFB and establish phage therapy as a feasible treatment.
Collapse
|
Journal Article |
8 |
27 |
19
|
Owen R. Role of Human Action in the Spread of Honey Bee (Hymenoptera: Apidae) Pathogens. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:797-801. [PMID: 28383702 DOI: 10.1093/jee/tox075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 05/24/2023]
Abstract
The increased annual losses in European honey bee (Apis mellifera) colonies in North America and some other countries is usually attributed to a range of factors including pathogens, poor nutrition, and insecticides. In this essay, I will argue that the global trade in honey bees and migratory beekeeping practices within countries has enabled pathogens to spread quickly. Beekeepers' management strategies have also contributed to the spread of pathogens as well as the development of resistance to miticides and antibiotics, and exacerbated by hobby beekeepers. The opportunities for arresting honey bee declines rest as strongly with individual beekeepers as they do with the dynamics of disease.
Collapse
|
|
8 |
24 |
20
|
Holt HL, Grozinger CM. Approaches and Challenges to Managing Nosema (Microspora: Nosematidae) Parasites in Honey Bee (Hymenoptera: Apidae) Colonies. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1487-503. [PMID: 27340190 DOI: 10.1093/jee/tow103] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/18/2016] [Indexed: 05/23/2023]
Abstract
UNLABELLED The microsporidia Nosema apis (Zander) and Nosema ceranae (Fries) are common intestinal parasites in honey bee (Apis mellifera L.) colonies. Though globally prevalent, there are mixed reports of Nosema infection costs, with some regions reporting high parasite virulence and colony losses, while others REPORT high Nosema prevalence but few costs. Basic and applied studies are urgently needed to help beekeepers effectively manage Nosema spp., ideally through an integrated pest management approach that allows beekeepers to deploy multiple strategies to control Nosema when Nosema is likely to cause damage to the colonies, rather than using prophylactic treatments. Beekeepers need practical and affordable technologies that facilitate disease diagnosis and science-backed guidelines that recommend when, if at all, to treat infections. In addition, new treatment methods are needed, as there are several problems associated with the chemical use of fumagillin (the only currently extensively studied, but not globally available treatment) to control Nosema parasites. Though selective breeding of Nosema-resistant or tolerant bees may offer a long-term, sustainable solution to Nosema management, other treatments are needed in the interim. Furthermore, the validation of alternative treatment efficacy in field settings is needed along with toxicology assays to ensure that treatments do not have unintended, adverse effects on honey bees or humans. Finally, given variation in Nosema virulence, development of regional management guidelines, rather than universal guidelines, may provide optimal and cost-effective Nosema management, though more research is needed before regional plans can be developed.
Collapse
|
Review |
9 |
24 |
21
|
Lecocq A, Kryger P, Vejsnæs F, Bruun Jensen A. Weight Watching and the Effect of Landscape on Honeybee Colony Productivity: Investigating the Value of Colony Weight Monitoring for the Beekeeping Industry. PLoS One 2015; 10:e0132473. [PMID: 26147392 PMCID: PMC4493132 DOI: 10.1371/journal.pone.0132473] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/15/2015] [Indexed: 11/18/2022] Open
Abstract
Over the last few decades, a gradual departure away from traditional agricultural practices has resulted in alterations to the composition of the countryside and landscapes across Europe. In the face of such changes, monitoring the development and productivity of honey bee colonies from different sites can give valuable insight on the influence of landscape on their productivity and might point towards future directions for modernized beekeeping practices. Using data on honeybee colony weights provided by electronic scales spread across Denmark, we investigated the effect of the immediate landscape on colony productivity. In order to extract meaningful information, data manipulation was necessary prior to analysis as a result of different management regimes or scales malfunction. Once this was carried out, we were able to show that colonies situated in landscapes composed of more than 50% urban areas were significantly more productive than colonies situated in those with more than 50% agricultural areas or those in mixed areas. As well as exploring some of the potential reasons for the observed differences, we discuss the value of weight monitoring of colonies on a large scale.
Collapse
|
Journal Article |
10 |
23 |
22
|
Rinehart JP, Yocum GD, Kemp WP, Greenlee KJ. A fluctuating thermal regime improves long-term survival of quiescent prepupal Megachile rotundata (Hymenoptera: Megachilidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2013; 106:1081-1088. [PMID: 23865170 DOI: 10.1603/ec12486] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The alfalfa leafcutting bee Megachile rotundata (F.) is the primary pollinator for alfalfa seed production. Under standard management conditions, the alfalfa leafcutting bee develops to the diapausing prepupal stage under field conditions, after which they are cold-stored at a static temperature until the following spring, when temperatures are raised and development resumes. We have assessed the effects of a fluctuating thermal regime (FTR) during overwintering cold storage, where bees were exposed to a daily 1 h pulse of 20 degrees C, and compared viability and insect quality to bees stored under a static thermal regime. Our results demonstrate that implementing an FTR protocol dramatically increases the survival of cold-stored alfalfa leafcutting bees, effectively extending their shelf-life into the subsequent growing season. These findings could substantially ameliorate significant obstacles that restrict the more widespread use of this important pollinator, such as the biological constraints that restrict its use in early blooming crops, and yearly fluctuations in bee prices that add significant financial uncertainty to end users. This study also strengthens a growing body of evidence that indicates FTR protocols are superior to static thermal regime protocols for insect cold storage.
Collapse
|
Evaluation Study |
12 |
23 |
23
|
Colla SR, MacIvor JS. Questioning public perception, conservation policy, and recovery actions for honeybees in North America. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2017; 31:1202-1204. [PMID: 27624856 DOI: 10.1111/cobi.12839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/01/2017] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
|
|
8 |
19 |
24
|
Kulhanek K, Steinhauer N, Wilkes J, Wilson M, Spivak M, Sagili RR, Tarpy DR, McDermott E, Garavito A, Rennich K, vanEngelsdorp D. Survey-derived best management practices for backyard beekeepers improve colony health and reduce mortality. PLoS One 2021; 16:e0245490. [PMID: 33449973 PMCID: PMC7810333 DOI: 10.1371/journal.pone.0245490] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Honey bee colony losses in the US have exceeded acceptable levels for at least a decade, leaving beekeepers in need of management practices to improve colony health and survival. Here, an empirical Best Management Practice (BMP) regimen was tested, comprised of the top four management practices associated with reduced colony mortality in backyard beekeeping operations according to Bee Informed Partnership Loss and Management survey results. Seven study locations were established across the US, and each location consisted of ten colonies treated according to empirical BMPs and ten according to average beekeeping practice. After 3 years, colonies treated according to empirical BMPs experienced reduced Varroa infestation, viral infection, and mortality compared to colonies managed with Average practices. In addition, BMP colonies produced more new colonies via splits. The colonies under Average practices were given chemical Varroa treatments only once per year, and thus spent more months above economic threshold of 3.0 mites/100 bees. Increased time spent above the economic threshold was significantly correlated to both increased viral infection and colony mortality. This study demonstrates the cumulative effects of management and colony health stressors over months and years, especially the dire importance of regular Varroa monitoring and management.
Collapse
|
research-article |
4 |
19 |
25
|
Brodschneider R, Libor A, Kupelwieser V, Crailsheim K. Food consumption and food exchange of caged honey bees using a radioactive labelled sugar solution. PLoS One 2017; 12:e0174684. [PMID: 28355267 PMCID: PMC5371368 DOI: 10.1371/journal.pone.0174684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/12/2017] [Indexed: 12/20/2022] Open
Abstract
We measured the distribution of sugar solution within groups of caged honey bees (Apis mellifera) under standard in vitro laboratory conditions using 14C polyethylene glycol as a radioactive marker to analyze ingestion by individual bees after group feeding. We studied the impact of different experimental setups by varying the number of bees, age of bees, origin of bees, duration of experiment, the amount of available diet, and the influence of the neurotoxic pesticide imidacloprid in the diet on the feeding and food sharing behavior (trophallaxis). Sugar solution was non-uniformly distributed in bees in 36 out of 135 cages. As a measure of the extent to which the sugar diet was equally distributed between caged bees, we calculated the (inner 80%) intake ratio by dividing the intake of the 90th percentile bee by the intake of the 10th percentile bee. This intake ratio ranged from 1.3 to 94.8 in 133 individual cages, further supporting a non-uniform distribution of food among caged bees. We can expect a cage with 10 or 30 bees containing one bee that ingests, on average, the 8.8-fold of the bee in the same cage ingesting the smallest quantity of food. Inner 80% intake ratios were lower in experiments with a permanent or chronic offering of labelled sugar solution compared to temporary or acute feedings. After pooling the data of replicates to achieve a higher statistical power we compared different experimental setups. We found that uniform food distribution is best approached with 10 newly emerged bees per cage, which originate from a brood comb from a single colony. We also investigated the trophallaxis between caged honey bees which originally consumed the diet and newly added bees. Color marked bees were starved and added to the cages in a ratio of 10:5 or 20:20 after the initial set of bees consumed all the labelled sugar solution. The distribution of the labelled sugar solution by trophallaxis within 48 hours to added bees was 25% (10:5) or 45% (20:20) of the initial sugar solution. Imidacloprid at its median lethal dose (LD50) in the sugar solution reduced this post-feeding food transmission to 27% (20:20). Our results show that differences in food intake exist within caged bees that may lead to differential exposure that can influence the interpretation of toxicity tests.
Collapse
|
research-article |
8 |
12 |