1
|
Hawes C, Haughton AJ, Osborne JL, Roy DB, Clark SJ, Perry JN, Rothery P, Bohan DA, Brooks DR, Champion GT, Dewar AM, Heard MS, Woiwod IP, Daniels RE, Young MW, Parish AM, Scott RJ, Firbank LG, Squire GR. Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lond B Biol Sci 2003; 358:1899-913. [PMID: 14561321 PMCID: PMC1693274 DOI: 10.1098/rstb.2003.1406] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Effects of genetically modified herbicide-tolerant (GMHT) and conventional crop management on invertebrate trophic groups (herbivores, detritivores, pollinators, predators and parasitoids) were compared in beet, maize and spring oilseed rape sites throughout the UK. These trophic groups were influenced by season, crop species and GMHT management. Many groups increased twofold to fivefold in abundance between early and late summer, and differed up to 10-fold between crop species. GMHT management superimposed relatively small (less than twofold), but consistent, shifts in plant and insect abundance, the extent and direction of these effects being dependent on the relative efficacies of comparable conventional herbicide regimes. In general, the biomass of weeds was reduced under GMHT management in beet and spring oilseed rape and increased in maize compared with conventional treatments. This change in resource availability had knock-on effects on higher trophic levels except in spring oilseed rape where herbivore resource was greatest. Herbivores, pollinators and natural enemies changed in abundance in the same directions as their resources, and detritivores increased in abundance under GMHT management across all crops. The result of the later herbicide application in GMHT treatments was a shift in resource from the herbivore food web to the detritivore food web. The Farm Scale Evaluations have demonstrated over 3 years and throughout the UK that herbivores, detritivores and many of their predators and parasitoids in arable systems are sensitive to the changes in weed communities that result from the introduction of new herbicide regimes.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
162 |
2
|
Heard MS, Hawes C, Champion GT, Clark SJ, Firbank LG, Haughton AJ, Parish AM, Perry JN, Rothery P, Scott RJ, Skellern MP, Squire GR, Hill MO. Weeds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. I. Effects on abundance and diversity. Philos Trans R Soc Lond B Biol Sci 2003; 358:1819-32. [PMID: 14561316 PMCID: PMC1693279 DOI: 10.1098/rstb.2003.1402] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We compared the seedbanks, seed rains, plant densities and biomasses of weeds under two contrasting systems of management in beet, maize and spring oilseed rape. Weed seedbank and plant density were measured at the same locations in two subsequent seasons. About 60 fields were sown with each crop. Each field was split, one half being sown with a conventional variety managed according to the farmer's normal practice, the other half being sown with a genetically modified herbicide-tolerant (GMHT) variety, with weeds controlled by a broad-spectrum herbicide. In beet and rape, plant densities shortly after sowing were higher in the GMHT treatment. Following weed control in conventional beet, plant densities were approximately one-fifth of those in GMHT beet. In both beet and rape, this effect was reversed after the first application of broad-spectrum herbicide, so that late-season plant densities were lower in the GMHT treatments. Biomass and seed rain in GMHT crops were between one-third and one-sixth of those in conventional treatments. The effects of differing weed-seed returns in these two crops persisted in the seedbank: densities following the GMHT treatment were about 20% lower than those following the conventional treatment. The effect of growing maize was quite different. Weed density was higher throughout the season in the GMHT treatment. Late-season biomass was 82% higher and seed rain was 87% higher than in the conventional treatment. The difference was not subsequently detectable in the seedbank because the total seed return was low after both treatments. In all three crops, weed diversity was little affected by the treatment, except for transient effects immediately following herbicide application.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
134 |
3
|
Haughton AJ, Champion GT, Hawes C, Heard MS, Brooks DR, Bohan DA, Clark SJ, Dewar AM, Firbank LG, Osborne JL, Perry JN, Rothery P, Roy DB, Scott RJ, Woiwod IP, Birchall C, Skellern MP, Walker JH, Baker P, Browne EL, Dewar AJG, Garner BH, Haylock LA, Horne SL, Mason NS, Sands RJN, Walker MJ. Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. II. Within-field epigeal and aerial arthropods. Philos Trans R Soc Lond B Biol Sci 2003; 358:1863-77. [PMID: 14561319 PMCID: PMC1693277 DOI: 10.1098/rstb.2003.1408] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of the management of genetically modified herbicide-tolerant (GMHT) crops on the abundances of aerial and epigeal arthropods were assessed in 66 beet, 68 maize and 67 spring oilseed rape sites as part of the Farm Scale Evaluations of GMHT crops. Most higher taxa were insensitive to differences between GMHT and conventional weed management, but significant effects were found on the abundance of at least one group within each taxon studied. Numbers of butterflies in beet and spring oilseed rape and of Heteroptera and bees in beet were smaller under the relevant GMHT crop management, whereas the abundance of Collembola was consistently greater in all GMHT crops. Generally, these effects were specific to each crop type, reflected the phenology and ecology of the arthropod taxa, were indirect and related to herbicide management. These results apply generally to agriculture across Britain, and could be used in mathematical models to predict the possible long-term effects of the widespread adoption of GMHT technology. The results for bees and butterflies relate to foraging preferences and might or might not translate into effects on population densities, depending on whether adoption leads to forage reductions over large areas. These species, and the detritivore Collembola, may be useful indicator species for future studies of GMHT management.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
111 |
4
|
Brooks DR, Bohan DA, Champion GT, Haughton AJ, Hawes C, Heard MS, Clark SJ, Dewar AM, Firbank LG, Perry JN, Rothery P, Scott RJ, Woiwod IP, Birchall C, Skellern MP, Walker JH, Baker P, Bell D, Browne EL, Dewar AJG, Fairfax CM, Garner BH, Haylock LA, Horne SL, Hulmes SE, Mason NS, Norton LR, Nuttall P, Randle Z, Rossall MJ, Sands RJN, Singer EJ, Walker MJ. Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. I. Soil-surface-active invertebrates. Philos Trans R Soc Lond B Biol Sci 2003; 358:1847-62. [PMID: 14561318 PMCID: PMC1693272 DOI: 10.1098/rstb.2003.1407] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of herbicide management of genetically modified herbicide-tolerant (GMHT) beet, maize and spring oilseed rape on the abundance and diversity of soil-surface-active invertebrates were assessed. Most effects did not differ between years, environmental zones or initial seedbanks or between sugar and fodder beet. This suggests that the results may be treated as generally applicable to agricultural situations throughout the UK for these crops. The direction of the effects was evenly balanced between increases and decreases in counts in the GMHT compared with the conventional treatment. Most effects involving a greater capture in the GMHT treatments occurred in maize, whereas most effects involving a smaller capture were in beet and spring oilseed rape. Differences between GMHT and conventional crop herbicide management had a significant effect on the capture of most surface-active invertebrate species and higher taxa tested in at least one crop, and these differences reflected the phenology and ecology of the invertebrates. Counts of carabids that feed on weed seeds were smaller in GMHT beet and spring oilseed rape but larger in GMHT maize. In contrast, collembolan detritivore counts were significantly larger under GMHT crop management.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
99 |
5
|
Gal M, Preston GM, Massey RC, Spiers AJ, Rainey PB. Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Mol Ecol 2004; 12:3109-21. [PMID: 14629390 DOI: 10.1046/j.1365-294x.2003.01953.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas fluorescens SBW25 is a Gram-negative bacterium that grows in close association with plants. In common with a broad range of functionally similar bacteria it plays an important role in the turnover of organic matter and certain isolates can promote plant growth. Despite its environmental significance, the causes of its ecological success are poorly understood. Here we describe the development and application of a simple promoter trapping strategy (IVET) to identify P. fluorescens SBW25 genes showing elevated levels of expression in the sugar beet rhizosphere. A total of 25 rhizosphere-induced (rhi) fusions are reported with predicted roles in nutrient acquisition, stress responses, biosynthesis of phytohormones and antibiotics. One rhi fusion is to wss, an operon encoding an acetylated cellulose polymer. A mutant carrying a defective wss locus was competitively compromised (relative to the wild type) in the rhizosphere and in the phyllosphere, but not in bulk soil. The rhizosphere-induced wss locus therefore contributes to the ecological performance of SBW25 in the plant environment and supports our conjecture that genes inactive in the laboratory environment, but active in the wild, are likely to be determinants of fitness in natural environments.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
96 |
6
|
Chaerle L, Hagenbeek D, De Bruyne E, Valcke R, Van Der Straeten D. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. PLANT & CELL PHYSIOLOGY 2004; 45:887-96. [PMID: 15295072 DOI: 10.1093/pcp/pch097] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Different biotic stresses yield specific symptoms, owing to their distinct influence on a plant's physiological status. To monitor early changes in a plant's physiological status upon pathogen attack, chlorophyll fluorescence imaging (Chl-FI) and thermography, which respectively visualize photosynthetic efficiency and transpiration, were carried out in parallel for two fundamentally different plant-pathogen interactions. These non-destructive imaging techniques were able to visualize infections at an early stage, before damage appeared. Under growth-room conditions, a robotized set-up captured time series of visual, thermal and chlorophyll fluorescence images from infected regions on attached leaves. As a first symptom of the plant-virus interaction between resistant tobacco and tobacco mosaic virus (TMV), thermal imaging detected a local rise in temperature while Chl-FI monitored a co-localized increase in fluorescence intensity. Chl-FI also revealed pre-symptomatic high-intensity spots for the plant-fungus system sugar beet-Cercospora beticola. Concomitantly, spots of lower temperature were monitored with thermography, in marked contrast with our observations on TMV-infection in tobacco. Knowledge of disease signatures for different plant-pathogen interactions could allow early identification of emerging biotic stresses in crops, facilitating the containment of disease outbreaks. Presymptomatic monitoring clearly opens perspectives for quantitative screening for disease resistance, either on excised leaf pieces or attached leaves.
Collapse
|
|
21 |
93 |
7
|
Reeves PA, He Y, Schmitz RJ, Amasino RM, Panella LW, Richards CM. Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics 2006; 176:295-307. [PMID: 17179080 PMCID: PMC1893026 DOI: 10.1534/genetics.106.069336] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In many plant species, exposure to a prolonged period of cold during the winter promotes flowering in the spring, a process termed vernalization. In Arabidopsis thaliana, the vernalization requirement of winter-annual ecotypes is caused by the MADS-box gene FLOWERING LOCUS C (FLC), which is a repressor of flowering. During the vernalization process, FLC is downregulated by alteration of its chromatin structure, thereby permitting flowering to occur. In wheat, a vernalization requirement is imposed by a different repressor of flowering, suggesting that some components of the regulatory network controlling the vernalization response differ between monocots and dicots. The extent to which the molecular mechanisms underlying vernalization have been conserved during the diversification of the angiosperms is not well understood. Using phylogenetic analysis, we identified homologs of FLC in species representing the three major eudicot lineages. FLC homologs have not previously been documented outside the plant family Brassicaceae. We show that the sugar beet FLC homolog BvFL1 functions as a repressor of flowering in transgenic Arabidopsis and is downregulated in response to cold in sugar beet. Cold-induced downregulation of an FLC-like floral repressor may be a central feature of the vernalization response in at least half of eudicot species.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
93 |
8
|
Champion GT, May MJ, Bennett S, Brooks DR, Clark SJ, Daniels RE, Firbank LG, Haughton AJ, Hawes C, Heard MS, Perry JN, Randle Z, Rossall MJ, Rothery P, Skellern MP, Scott RJ, Squire GR, Thomas MR. Crop management and agronomic context of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lond B Biol Sci 2003; 358:1801-18. [PMID: 14561315 PMCID: PMC1693273 DOI: 10.1098/rstb.2003.1405] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Farm Scale Evaluations of genetically modified herbicide-tolerant crops (GMHT) were conducted in the UK from 2000 to 2002 on beet (sugar and fodder), spring oilseed rape and forage maize. The management of the crops studied is described and compared with current conventional commercial practice. The distribution of field sites adequately represented the areas currently growing these crops, and the sample contained sites operated at a range of management intensities, including low intensity. Herbicide inputs were audited, and the active ingredients used and the rates and the timings of applications compared well with current practice for both GMHT and conventional crops. Inputs on sugar beet were lower than, and inputs on spring oilseed rape and forage maize were consistent with, national averages. Regression analysis of herbicide-application strategies and weed emergence showed that inputs applied by farmers increased with weed densities in beet and forage maize. GMHT crops generally received only one herbicide active ingredient per crop, later and fewer herbicide sprays and less active ingredient (for beet and maize) than the conventional treatments. The audit of inputs found no evidence of bias.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
91 |
9
|
Ceppi MG, Oukarroum A, Çiçek N, Strasser RJ, Schansker G. The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. PHYSIOLOGIA PLANTARUM 2012; 144:277-88. [PMID: 22121914 DOI: 10.1111/j.1399-3054.2011.01549.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The hypothesis that changes in the IP amplitude of the fluorescence transient OJIP reflect changes in leaf photosystem I (PSI) content was tested using mineral-deficient sugar beet plants. Young sugar beet plants (Beta vulgaris) were grown hydroponically on nutrient solutions containing either 1 mM or no Mg(2+) and 2.1 µM to 1.88 mM SO(4)(2-) for 4 weeks. During this period two leaf pairs were followed: the already developed second leaf pair and the third leaf pair that was budding at the start of the treatment. The IP amplitude [ΔF(IP) (fluorescence amplitude of the I-to-P-rise) and its relative contribution to the fluorescence rise: ΔV(IP) (amplitude of the relative variable fluorescence of the I-to-P-rise = relative contribution of the I-to-P-rise to the OJIP-rise)] and the amplitude of the transmission change at 820 nm (difference between all plastocyanin and the primary electron donor of photosystems I oxidized and reduced, respectively) relative to the total transmission signal (ΔI(max) /I(tot)) were determined as a function of the treatment time. Correlating the transmission and the two fluorescence parameters yielded approximately linear relationships in both cases. For the least severely affected leaves the parameter ΔV(IP) correlated considerably better with ΔI(max) /I(tot) than ΔF(IP) indicating that it is the ratio PSII:PSI that counts. To show that the relationship also holds for other plants and treatments, data from salt- and drought-stressed plants of barley, chickpea and pea are shown. The relationship between ΔV(IP) and PSI content was confirmed by western blot analysis using an antibody against psaD. The good correlations between ΔI(max) /I(tot) and ΔF(IP) and ΔV(IP) , respectively, suggest that changes in the IP amplitude can be used as semi-quantitative indicators for (relative) changes in the PSI content of the leaf.
Collapse
|
|
13 |
91 |
10
|
Squire GR, Brooks DR, Bohan DA, Champion GT, Daniels RE, Haughton AJ, Hawes C, Heard MS, Hill MO, May MJ, Osborne JL, Perry JN, Roy DB, Woiwod IP, Firbank LG. On the rationale and interpretation of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lond B Biol Sci 2003; 358:1779-99. [PMID: 14561314 PMCID: PMC1693276 DOI: 10.1098/rstb.2003.1403] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Farmland biodiversity and food webs were compared in conventional and genetically modified herbicide-tolerant (GMHT) crops of beet (Beta vulgaris L.), maize (Zea mays L.) and both spring and winter oilseed rape (Brassica napus L.). GMHT and conventional varieties were sown in a split-field experimental design, at 60-70 sites for each crop, spread over three starting years beginning in 2000. This paper provides a background to the study and the rationale for its design and interpretation. It shows how data on environment, field management and the biota are used to assess the current state of the ecosystem, to define the typical arable field and to devise criteria for selecting, sampling and auditing experimental sites in the Farm Scale Evaluations. The main functional and taxonomic groups in the habitat are ranked according to their likely sensitivity to GMHT cropping, and the most responsive target organisms are defined. The value of the seedbank as a baseline and as an indicator of historical trends is proposed. Evidence from experiments during the twentieth century is analysed to show that large changes in field management have affected sensitive groups in the biota by ca. 50% during a year or short run of years--a figure against which to assess any positive or negative effects of GMHT cropping. The analysis leads to a summary of factors that were, and were not, examined in the first 3 years of the study and points to where modelling can be used to extrapolate the effects to the landscape and the agricultural region.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
88 |
11
|
Hermans C, Bourgis F, Faucher M, Strasser RJ, Delrot S, Verbruggen N. Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. PLANTA 2005; 220:541-9. [PMID: 15580527 DOI: 10.1007/s00425-004-1376-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 08/07/2004] [Indexed: 05/03/2023]
Abstract
Magnesium deficiency has been reported to affect plant growth and biomass partitioning between root and shoot. The present work aims to identify how Mg deficiency alters carbon partitioning in sugar beet (Beta vulgaris L.) plants. Fresh biomass, Mg and sugar contents were followed in diverse organs over 20 days under Mg-sufficient and Mg-deficient conditions. At the end of the treatment, the aerial biomass, but not the root biomass, of Mg-deficient plants was lower compared to control plants. A clear inverse relationship between Mg and sugar contents in leaves was found. Mg deficiency promoted a marked increase in sucrose and starch accumulation in the uppermost expanded leaves, which also had the lowest content of Mg among all the leaves of the rosette. The oldest leaves maintained a higher Mg content. [14C]Sucrose labelling showed that sucrose export from the uppermost expanded leaves was inhibited. In contrast, sucrose export from the oldest leaves, which are close to, and export mainly to, the roots, was not restricted. In response to Mg deficiency, the BvSUT1 gene encoding a companion cell sucrose/H+ symporter was induced in the uppermost expanded leaves, but without further enhancement of sucrose loading into the phloem. The observed increase in BvSUT1 gene expression supports the idea that sucrose loading into the phloem is defective, resulting in its accumulation in the leaf.
Collapse
|
|
20 |
87 |
12
|
Roy DB, Bohan DA, Haughton AJ, Hill MO, Osborne JL, Clark SJ, Perry JN, Rothery P, Scott RJ, Brooks DR, Champion GT, Hawes C, Heard MS, Firbank LG. Invertebrates and vegetation of field margins adjacent to crops subject to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lond B Biol Sci 2003; 358:1879-98. [PMID: 14561320 PMCID: PMC1693278 DOI: 10.1098/rstb.2003.1404] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of management of genetically modified herbicide-tolerant (GMHT) crops on adjacent field margins were assessed for 59 maize, 66 beet and 67 spring oilseed rape sites. Fields were split into halves, one being sown with a GMHT crop and the other with the equivalent conventional non-GMHT crop. Margin vegetation was recorded in three components of the field margins. Most differences were in the tilled area, with fewer smaller effects mirroring them in the verge and boundary. In spring oilseed rape fields, the cover, flowering and seeding of plants were 25%, 44% and 39% lower, respectively, in the GMHT uncropped tilled margins. Similarly, for beet, flowering and seeding were 34% and 39% lower, respectively, in the GMHT margins. For maize, the effect was reversed, with plant cover and flowering 28% and 67% greater, respectively, in the GMHT half. Effects on butterflies mirrored these vegetation effects, with 24% fewer butterflies in margins of GMHT spring oilseed rape. The likely cause is the lower nectar supply in GMHT tilled margins and crop edges. Few large treatment differences were found for bees, gastropods or other invertebrates. Scorching of vegetation by herbicide-spray drift was on average 1.6% on verges beside conventional crops and 3.7% beside GMHT crops, the difference being significant for all three crops.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
83 |
13
|
Heard MS, Hawes C, Champion GT, Clark SJ, Firbank LG, Haughton AJ, Parish AM, Perry JN, Rothery P, Roy DB, Scott RJ, Skellern MP, Squire GR, Hill MO. Weeds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. II. Effects on individual species. Philos Trans R Soc Lond B Biol Sci 2003; 358:1833-46. [PMID: 14561317 PMCID: PMC1693275 DOI: 10.1098/rstb.2003.1401] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We compared the effects of the management of genetically modified herbicide-tolerant (GMHT) and conventional beet, maize and spring oilseed rape on 12 weed species. We sampled the seedbank before and after cropping. During the season we counted plants and measured seed rain and biomass. Ratios of densities were used to calculate emergence, survival, reproduction and seedbank change. Treatments significantly affected the biomass of six species in beet, eight in maize and five in spring oilseed rape. The effects were generally consistent, with biomass lower in GMHT beet and spring oilseed rape and higher in GMHT maize. With few exceptions, emergence was higher in GMHT crops. Subsequent survival was significantly lowered for eight species in beet and six in spring oilseed rape in the GMHT treatments. It was increased for five species in maize and one in spring oilseed rape. Significant effects on seedbank change were found for four species. However, for many species in beet and spring oilseed rape (19 out of 24 cases), seed densities were lower in the seedbank after GMHT cropping. These differences compounded over time would result in large decreases in population densities of arable weeds. In maize, populations may increase.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
70 |
14
|
Greger M, Wang Y, Neuschütz C. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2005; 134:201-8. [PMID: 15589647 DOI: 10.1016/j.envpol.2004.08.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2003] [Accepted: 08/06/2004] [Indexed: 05/23/2023]
Abstract
In this paper we investigated if, and to what extent, six different plant species accumulate, translocate and emit mercury (Hg) into the air. The Hg uptake by roots, distribution of Hg to the shoot and release of Hg via shoots of garden pea, spring wheat, sugar beet, oil-seed rape, white clover and willow were investigated in a transpiration chamber. The airborne Hg was trapped in a Hopcalite trap or a gold trap. Traps and plant materials were analysed for content of Hg by CVAAS. The results show that all plant species were able to take up Hg to a large extent from a nutrient solution containing 200 microg L(-1) Hg. However, the Hg translocation to the shoot was low (0.17-2.5%) and the Hg that reached the leaves was trapped and no release of the absorbed Hg to the air was detected.
Collapse
|
|
20 |
68 |
15
|
Bartholomew DM, Van Dyk DE, Lau SMC, O'Keefe DP, Rea PA, Viitanen PV. Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates. PLANT PHYSIOLOGY 2002; 130:1562-72. [PMID: 12428021 PMCID: PMC166675 DOI: 10.1104/pp.008334] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Through the development and application of a liquid chromatography-mass spectrometry-based procedure for measuring the transport of complex organic molecules by vacuolar membrane vesicles in vitro, it is shown that the mechanism of uptake of sulfonylurea herbicides is determined by the ligand, glucose, or glutathione, to which the herbicide is conjugated. ATP-dependent accumulation of glucosylated chlorsulfuron by vacuolar membrane vesicles purified from red beet (Beta vulgaris) storage root approximates Michaelis-Menten kinetics and is strongly inhibited by agents that collapse or prevent the formation of a transmembrane H(+) gradient, but is completely insensitive to the phosphoryl transition state analog, vanadate. In contrast, ATP-dependent accumulation of the glutathione conjugate of a chlorsulfuron analog, chlorimuron-ethyl, is incompletely inhibited by agents that dissipate the transmembrane H(+) gradient but completely abolished by vanadate. In both cases, however, conjugation is essential for net uptake because neither of the unconjugated parent compounds are accumulated under energized or nonenergized conditions. That the attachment of glucose to two naturally occurring phenylpropanoids, p-hydroxycinnamic acid and p-hydroxybenzoic acid via aromatic hydroxyl groups, targets these compounds to the functional equivalent of the transporter responsible for chlorsulfuron-glucoside transport, confirms the general applicability of the H(+) gradient dependence of glucoside uptake. It is concluded that H(+) gradient-dependent, vanadate-insensitive glucoside uptake is mediated by an H(+) antiporter, whereas vanadate-sensitive glutathione conjugate uptake is mediated by an ATP-binding cassette transporter. In so doing, it is established that liquid chromatography-mass spectrometry affords a versatile high-sensitivity, high-fidelity technique for studies of the transport of complex organic molecules whose synthesis as radiolabeled derivatives is laborious and/or prohibitively expensive.
Collapse
|
research-article |
23 |
59 |
16
|
Yui R, Iketani S, Mikami T, Kubo T. Antisense inhibition of mitochondrial pyruvate dehydrogenase E1alpha subunit in anther tapetum causes male sterility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:57-66. [PMID: 12662309 DOI: 10.1046/j.1365-313x.2003.01704.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We hypothesized that cytoplasmic male sterility (CMS) in sugar beet may be the consequence of mitochondrial dysfunctions affecting normal anther development. To test the hypothesis, we attempted to mimic the sugar beet CMS phenotype by inhibiting the expression of mitochondrial pyruvate dehydrogenase (PDH), which is essential for the operation of the tricarboxylic acid (TCA) cycle. Screening with a cDNA library of sugar beet flower buds allowed the identification of two PDH E1alpha subunit genes (bvPDH_E1alpha-1 and bvPDH_E1alpha-2). bvPDH_E1alpha-1 was found to be highly expressed in tap roots, whereas bvPDH_E1alpha-2 was expressed most abundantly in flower buds. Green fluorescent protein (GFP) fusion of bvPDH_E1alpha revealed mitochondrial targeting properties. A 300-bp bvPDH_E1alpha-1 cDNA sequence (from +620 to +926) was connected to a tapetum-specific promoter in the antisense orientation and then introduced into tobacco. Antisense expression of bvPDH_E1alpha-1 resulted in conspicuously decreased endogenous bvPDH_E1alpha-1 transcripts and male sterility. The tapetum in the male-sterile anthers showed swelling or abnormal vacuolation. It is also worth noting that in the sterile anthers, cell organelles, such as elaioplasts, tapetosomes and orbicules were poorly formed and microspores exhibited aberrant exine development. These features are shared by sugar beet CMS. The results thus clearly indicate that inhibition of PDH activity in anther tapetum is sufficient to cause male sterility, a phenocopy of the sugar beet CMS.
Collapse
|
|
22 |
56 |
17
|
Pavlov A, Kovatcheva P, Georgiev V, Koleva I, Ilieva M. Biosynthesis and Radical Scavenging Activity of Betalains during the Cultivation of Red Beet (Beta vulgaris) Hairy Root Cultures. ACTA ACUST UNITED AC 2014; 57:640-4. [PMID: 12240990 DOI: 10.1515/znc-2002-7-816] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Betalains biosynthesis and antiradical scavenging activity were investigated during cultivation of four hairy root cultures of Beta vulgaris, obtained from different cultivars (Bordo, Egyptian, Detroit 2 and Detroit Dark Red). The best producer of betalains was a hairy root culture from Beta vulgaris cv. Detroit Dark Red (13.27 mg/g dry weight total pigment production). The ethanol extract, derived from roots of the same culture grown for 15 days under submerged conditions, showed a high antiradical activity (83% of inhibition of the stable DPPH·).
Collapse
|
|
11 |
53 |
18
|
Borišev M, Borišev I, Župunski M, Arsenov D, Pajević S, Ćurčić Ž, Vasin J, Djordjevic A. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles. PLoS One 2016; 11:e0166248. [PMID: 27832171 PMCID: PMC5104475 DOI: 10.1371/journal.pone.0166248] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/25/2016] [Indexed: 11/24/2022] Open
Abstract
Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C60(OH)24) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity.
Collapse
|
research-article |
9 |
50 |
19
|
Wagmann K, Hautekèete NC, Piquot Y, Meunier C, Schmitt SE, Van Dijk H. Seed dormancy distribution: explanatory ecological factors. ANNALS OF BOTANY 2012; 110:1205-19. [PMID: 22952378 PMCID: PMC3478053 DOI: 10.1093/aob/mcs194] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/13/2012] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Knowledge of those traits that vary with latitude should be helpful in predicting how they may evolve locally under climate change. In the sea beet Beta vulgaris ssp. maritima, seed dormancy largely controls the timing of germination, is highly heritable and varies geographically; it is therefore thought to be selected by climate. The aim here was to characterize the variation in seed dormancy among sea beet populations across the French distribution area, as well as the ecological factors in situ that are correlated with and that could therefore select for seed dormancy. The relative importance of genetic inheritance vs. non-genetic variation is also evaluated. METHODS The proportions of dormant seeds from 85 natural populations encompassing different climates over the whole French distribution area were measured under controlled conditions. Germination phenology was observed in a common garden experiment. Dormancy variation of seeds collected in situ was compared with that of seeds collected on plants grown in the greenhouse. KEY RESULTS The proportions of dormant seeds in the greenhouse were highly variable, covering almost the entire range from 0 to 1, and followed a geographical pattern from lower dormancy at high latitudes to high dormancy at low latitudes. The distribution of dormancy was positively correlated with yearly temperatures, especially summer temperatures. Minimum temperatures in winter did not significantly explain the trait variation. The genetic component of the total variation was significant and is probably completed by an important adjustment to the local conditions brought about by maternal adaptive phenotypic plasticity. CONCLUSIONS Dormancy in sea beet could be interpreted as a way to limit summer germination and spread germination over the first autumn and spring or following autumns. This highly heritable trait has the potential to evolve in the relatively near future because of climate change.
Collapse
|
research-article |
13 |
47 |
20
|
Iglesias R, Pérez Y, de Torre C, Ferreras JM, Antolín P, Jiménez P, Rojo MA, Méndez E, Girbés T. Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (RIPs) in sugar beet (Beta vulgaris) leaves. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1675-84. [PMID: 15863448 DOI: 10.1093/jxb/eri164] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sugar beet (Beta vulgaris L.) leaves contain virus-inducible type 1 (single chain) ribosome-inactivating proteins that have been named beetins. The structural and functional characterization, the cellular location, and the potential role of beetins as antiviral agents are reported here. Beetins are formed of a single polypeptide chain with a varying degree of glycosylation and strongly inhibited in vitro protein synthesis in rabbit reticulocyte lysates (IC50=1.15 ng ml(-1)) and a Vicia sativa L. cell-free system (IC50=68 ng ml(-1)) through the single depurination of the large rRNA. Beetins trigger the multidepurination of tobacco mosaic virus (TMV) genomic RNA which underwent extensive degradation upon treatment with acid aniline. Beetins are extracellular proteins that were recovered from the apoplastic fluid. Induction of sugar beet RIPs with either H2O2 or artichoke mottled crinkle virus (AMCV) was observed in leaves distant from the site of application of such elicitors. The external application of purified beetin to sugar leaves prevented infection by AMCV which supports the preliminary hypothesis that beetins could be involved in plant systemic acquired resistance subjected to induction by phytopathogens.
Collapse
|
|
20 |
46 |
21
|
Hossain MS, ElSayed AI, Moore M, Dietz KJ. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1283-1298. [PMID: 28338762 PMCID: PMC5441856 DOI: 10.1093/jxb/erx019] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fine-tuned and coordinated regulation of transport, metabolism and redox homeostasis allows plants to acclimate to osmotic and ionic stress caused by high salinity. Sugar beet is a highly salt tolerant crop plant and is therefore an interesting model to study sodium chloride (NaCl) acclimation in crops. Sugar beet plants were subjected to a final level of 300 mM NaCl for up to 14 d in hydroponics. Plants acclimated to NaCl stress by maintaining its growth rate and adjusting its cellular redox and reactive oxygen species (ROS) network. In order to understand the unusual suppression of ROS accumulation under severe salinity, the regulation of elements of the redox and ROS network was investigated at the transcript level. First, the gene families of superoxide dismutase (SOD), peroxiredoxins (Prx), alternative oxidase (AOX), plastid terminal oxidase (PTOX) and NADPH oxidase (RBOH) were identified in the sugar beet genome. Salinity induced the accumulation of Cu-Zn-SOD, Mn-SOD, Fe-SOD3, all AOX isoforms, 2-Cys-PrxB, PrxQ, and PrxIIF. In contrast, Fe-SOD1, 1-Cys-Prx, PrxIIB and PrxIIE levels decreased in response to salinity. Most importantly, RBOH transcripts of all isoforms decreased. This pattern offers a straightforward explanation for the low ROS levels under salinity. Promoters of stress responsive antioxidant genes were analyzed in silico for the enrichment of cis-elements, in order to gain insights into gene regulation. The results indicate that special cis-elements in the promoters of the antioxidant genes in sugar beet participate in adjusting the redox and ROS network and are fundamental to high salinity tolerance of sugar beet.
Collapse
|
research-article |
8 |
43 |
22
|
Hossain MS, Persicke M, ElSayed AI, Kalinowski J, Dietz KJ. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5961-5976. [PMID: 29140437 PMCID: PMC5854137 DOI: 10.1093/jxb/erx388] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/11/2017] [Indexed: 05/21/2023]
Abstract
Sugar beet is among the most salt-tolerant crops. This study aimed to investigate the metabolic adaptation of sugar beet to salt stress at the cellular and subcellular levels. Seedlings were grown hydroponically and subjected to stepwise increases in salt stress up to 300 mM NaCl. Highly enriched fractions of chloroplasts were obtained by non-aqueous fractionation using organic solvents. Total leaf metabolites and metabolites in chloroplasts were profiled at 3 h and 14 d after reaching the maximum salinity stress of 300 mM NaCl. Metabolite profiling by gas chromatography-mass spectrometry (GC-MS) resulted in the identification of a total of 83 metabolites in leaves and chloroplasts under control and stress conditions. There was a lower abundance of Calvin cycle metabolites under salinity whereas there was a higher abundance of oxidative pentose phosphate cycle metabolites such as 6-phosphogluconate. Accumulation of ribose-5-phosphate and ribulose-5-phosphate coincided with limitation of carbon fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Increases in glycolate and serine levels indicated that photorespiratory metabolism was stimulated in salt-stressed sugar beet. Compatible solutes such as proline, mannitol, and putrescine accumulated mostly outside the chloroplasts. Within the chloroplast, putrescine had the highest relative level and probably assisted in the acclimation of sugar beet to high salinity stress. The results provide new information on the contribution of chloroplasts and the extra-chloroplast space to salinity tolerance via metabolic adjustment in sugar beet.
Collapse
|
research-article |
8 |
42 |
23
|
Monti A, Brugnoli E, Scartazza A, Amaducci MT. The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.). JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1253-62. [PMID: 16467409 DOI: 10.1093/jxb/erj091] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stable carbon isotope discrimination (delta13C), photosynthetic performance (A), dry matter accumulation (DW), and sucrose yield (Y(s)) of sugar beet were evaluated in a glasshouse experiment under transient (TS) and permanent (PS) water stress. A was significantly reduced under drought, to an extent depending on stress duration. The reduced A was strictly associated with a low DW and Y(s), the later being 42% lower in PS than control plants (C). Restoring water steeply increased A and the associated leaf traits (RWC, leaf water potential etc.), but the increase of Y(s) was negligible. Therefore, the negative effects of severe water stress in the early growth period, though reversible on gas-exchange and most leaf traits, can drastically reduce Y(s) of sugar beet. Furthermore, A seems not to be effective in predicting sucrose accumulation, although it was very effective in detecting the occurrence of plant water stress. The A/C(i) model was used to assess the photosynthetic adjustments to continuous or transient drought by calculating the photosynthetic parameters Vcmax and Jmax and then compared with delta13C. Mesophyll conductance (g(m)) was estimated by comparing delta13C measured on soluble sugars and gas-exchange data. This approach confirmed the expectation that g(m) was limiting A and that there was a significant drop in [CO2] from the substomatal cavities and the chloroplast stroma both in favourable and drought conditions. Therefore, the carbon concentration at the carboxylation site was overestimated by 25-35% by conventional gas-exchange measurements, and Vcmax was consistently underestimated when g(m) was not taken into account, especially under severe drought. Root delta13C was found to be strictly related to sucrose content (brix%), Y(s) and root dry weight, and this was especially clear when delta13C was measured on bulk dry matter. By contrast, leaf delta13C measured in soluble sugars (delta(s)) and bulk dry matter (delta(dm)) were found to correlate weakly to brix% and yield, and this was not surprising as the integration time-scale of leaf delta(s) and delta(dm) were found to be shorter than that of root delta13C in bulk dry matter. The effect of water stress on diffusive and biochemical limitations with different integration times ranged from 1 d (leaf delta(s)) to more than 1 month (root delta(dm)).
Collapse
|
|
19 |
39 |
24
|
Kitazaki K, Arakawa T, Matsunaga M, Yui-Kurino R, Matsuhira H, Mikami T, Kubo T. Post-translational mechanisms are associated with fertility restoration of cytoplasmic male sterility in sugar beet (Beta vulgaris). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:290-9. [PMID: 26031622 DOI: 10.1111/tpj.12888] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/08/2015] [Accepted: 05/15/2015] [Indexed: 05/20/2023]
Abstract
Genetic conflict between cytoplasmically inherited elements and nuclear genes arising from their different transmission patterns can be seen in cytoplasmic male sterility (CMS), the mitochondrion-encoded inability to shed functional pollen. CMS is associated with a mitochondrial open reading frame (ORF) that is absent from non-sterility inducing mitochondria (S-orf). Nuclear genes that suppress CMS are called restorer-of-fertility (Rf) genes. Post-transcriptional and translational repression of S-orf mediates the molecular action of Rf that encodes a class of RNA-binding proteins with pentatricopeptide repeat (PPR) motifs. Besides the PPR-type of Rfs, there are also non-PPR Rfs, but the molecular interactions between non-PPR Rf and S-orf have not been described. In this study, we investigated the interaction of bvORF20, a non-PPR Rf from sugar beet (Beta vulgaris), with preSatp6, the S-orf from sugar beet. Anthers expressing bvORF20 contained a protein that interacted with preSATP6 protein. Analysis of anthers and transgenic calli expressing a FLAG-tagged bvORF20 suggested the binding of preSATP6 to bvORF20. To see the effect of bvORF20 on preSATP6, which exists as a 250-kDa protein complex in CMS plants, signal bands of preSATP6 in bvORF20-expressing and non-expressing anthers were compared by immunoblotting combined with Blue Native polyacrylamide gel electrophoresis. The signal intensity of the 250-kDa band decreased significantly, and 200- and 150-kDa bands appeared in bvORF20-expressing anthers. Transgenic callus expressing bvORF20 also generated the 200- and 150-kDa bands. The 200-kDa complex is likely to include both preSATP6 and bvORF20. Post-translational interaction between preSATP6 and bvORF20 appears to alter the higher order structure of preSATP6 that may lead to fertility restoration in sugar beet.
Collapse
|
|
10 |
39 |
25
|
Kumari S, Agrawal M, Tiwari S. Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: pigments, metabolites, antioxidants, growth and yield. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 174:279-288. [PMID: 23291007 DOI: 10.1016/j.envpol.2012.11.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/05/2012] [Accepted: 11/10/2012] [Indexed: 06/01/2023]
Abstract
The present study was conducted to assess morphological, biochemical and yield responses of palak (Beta vulgaris L. cv Allgreen) to ambient and elevated levels of CO(2) and O(3), alone and in combination. As compared to the plants grown in charcoal filtered air (ACO(2)), growth and yield of the plants increased under elevated CO(2) (ECO(2)) and decreased under combination of ECO(2) with elevated O(3) (ECO(2) + EO(3)), ambient O(3) (ACO(2) + AO(3)) and elevated O(3) (EO(3)). Lipid peroxidation, ascorbic acid, catalase and glutathione reductase activities enhanced under all treatments and were highest in EO(3.) Foliar starch and organic carbon contents increased under ECO(2) and ECO(2) + EO(3) and reduced under EO(3) and ACO(2) + AO(3.) Foliar N content declined in all treatments compared to ACO(2) resulting in alteration of C/N ratio. This study concludes that ambient level of CO(2) is not enough to counteract O(3) impact, but elevated CO(2) has potential to counteract the negative effects of future O(3) level.
Collapse
|
|
12 |
36 |