1
|
Melloni E, Marchesi E, Preti L, Casciano F, Rimondi E, Romani A, Secchiero P, Navacchia ML, Perrone D. Synthesis and Biological Investigation of Bile Acid-Paclitaxel Hybrids. Molecules 2022; 27:molecules27020471. [PMID: 35056786 PMCID: PMC8779069 DOI: 10.3390/molecules27020471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/20/2022] Open
Abstract
Chenodeoxycholic acid and ursodeoxycholic acid (CDCA and UDCA, respectively) have been conjugated with paclitaxel (PTX) anticancer drugs through a high-yield condensation reaction. Bile acid-PTX hybrids (BA-PTX) have been investigated for their pro-apoptotic activity towards a selection of cancer cell lines as well as healthy fibroblast cells. Chenodeoxycholic-PTX hybrid (CDC-PTX) displayed cytotoxicity and cytoselectivity similar to PTX, whereas ursodeoxycholic-PTX hybrid (UDC-PTX) displayed some anticancer activity only towards HCT116 colon carcinoma cells. Pacific Blue (PB) conjugated derivatives of CDC-PTX and UDC-PTX (CDC-PTX-PB and UDC-PTX-PB, respectively) were also prepared via a multistep synthesis for evaluating their ability to enter tumor cells. CDC-PTX-PB and UDC-PTX-PB flow cytometry clearly showed that both CDCA and UDCA conjugation to PTX improved its incoming into HCT116 cells, allowing the derivatives to enter the cells up to 99.9%, respect to 35% in the case of PTX. Mean fluorescence intensity analysis of cell populations treated with CDC-PTX-PB and UDC-PTX-PB also suggested that CDC-PTX-PB could have a greater ability to pass the plasmatic membrane than UDC-PTX-PB. Both hybrids showed significant lower toxicity with respect to PTX on the NIH-3T3 cell line.
Collapse
|
2
|
di Gregorio MC, Cautela J, Galantini L. Physiology and Physical Chemistry of Bile Acids. Int J Mol Sci 2021; 22:1780. [PMID: 33579036 PMCID: PMC7916809 DOI: 10.3390/ijms22041780] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BAs) are facial amphiphiles synthesized in the body of all vertebrates. They undergo the enterohepatic circulation: they are produced in the liver, stored in the gallbladder, released in the intestine, taken into the bloodstream and lastly re-absorbed in the liver. During this pathway, BAs are modified in their molecular structure by the action of enzymes and bacteria. Such transformations allow them to acquire the chemical-physical properties needed for fulling several activities including metabolic regulation, antimicrobial functions and solubilization of lipids in digestion. The versatility of BAs in the physiological functions has inspired their use in many bio-applications, making them important tools for active molecule delivery, metabolic disease treatments and emulsification processes in food and drug industries. Moreover, moving over the borders of the biological field, BAs have been largely investigated as building blocks for the construction of supramolecular aggregates having peculiar structural, mechanical, chemical and optical properties. The review starts with a biological analysis of the BAs functions before progressively switching to a general overview of BAs in pharmacology and medicine applications. Lastly the focus moves to the BAs use in material science.
Collapse
|
3
|
Rahman MA, Jui MS, Bam M, Cha Y, Luat E, Alabresm A, Nagarkatti M, Decho AW, Tang C. Facial Amphiphilicity-Induced Polymer Nanostructures for Antimicrobial Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21221-21230. [PMID: 31939652 DOI: 10.1021/acsami.9b19712] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
New antimicrobial agents are needed to address ever-increasing antimicrobial resistance and a growing epidemic of infections caused by multidrug resistant pathogens. We design nanostructured antimicrobial copolymers containing multicyclic natural products that bear facial amphiphilicity. Bile acid based macromolecular architectures of these nanostructures can interact preferentially with bacterial membranes. Incorporation of polyethylene glycol into the copolymers not only improved the colloidal stability of nanostructures but also increased the biocompatibility. This study investigated the effects of facial amphiphilicity, polymer architectures, and self-assembled nanostructures on antimicrobial activity. Advanced nanostructures such as spheres, vesicles, and rod-shaped aggregates are formed in water from the facial amphiphilic cationic copolymers via supramolecular interactions. These aggregates were particularly interactive toward Gram-positive and Gram-negative bacterial cell membranes and showed low hemolysis against mammalian cells.
Collapse
|
4
|
Neves AR, Almeida JR, Carvalhal F, Câmara A, Pereira S, Antunes J, Vasconcelos V, Pinto M, Silva ER, Sousa E, Correia-da-Silva M. Overcoming environmental problems of biocides: Synthetic bile acid derivatives as a sustainable alternative. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109812. [PMID: 31669574 DOI: 10.1016/j.ecoenv.2019.109812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Marine biofouling represents a global economic and ecological challenge. Some marine organisms produce bioactive metabolites, such as steroids, that inhibit the settlement and growth of fouling organisms. The aim of this work was to explore bile acids as a new scaffold with antifouling (AF) activity by using chemical synthesis to produce a series of bile acid derivatives with optimized AF performance and understand their structure-activity relationships. Seven bile acid derivatives were successfully synthesized in moderate to high yields, and their structures were elucidated through spectroscopic methods. Their AF activities were tested against both macro- and microfouling communities. The most potent bile acid against the settlement of Mytilus galloprovincialis larvae was the methyl ester derivative of cholic acid (10), which showed an EC50 of 3.7 μM and an LC50/EC50 > 50 (LC50 > 200 μM) in AF effectiveness vs toxicity studies. Two derivatives of deoxycholic acid (5 and 7) potently inhibited the growth of biofilm-forming marine bacteria with EC50 values < 10 μM, and five bile acids (1, 5, and 7-9) potently inhibited the growth of diatoms, showing EC50 values between 3 and 10 μM. Promising AF profiles were achieved with some of the synthesized bile acids by combining antimacrofouling and antimicrofouling activities. Initial studies on the incorporation of one of these promising bile acid derivatives in polymeric coatings, such as a marine paint, demonstrated the ability of these compounds to generate coatings with antimacrofouling activity.
Collapse
|
5
|
Cautela J, Severoni E, Redondo-Gómez C, di Gregorio MC, Del Giudice A, Sennato S, Angelini R, D'Abramo M, Schillén K, Galantini L. C-12 vs C-3 substituted bile salts: An example of the effects of substituent position and orientation on the self-assembly of steroid surfactant isomers. Colloids Surf B Biointerfaces 2019; 185:110556. [PMID: 31704607 DOI: 10.1016/j.colsurfb.2019.110556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/08/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022]
Abstract
Biomolecule derivatives are transversally used in nanotechnology. Deciphering their aggregation behavior is a crucial issue for the rational design of functional materials. To this end, it is necessary to build libraries of selectively functionalized analogues and infer general rules. In this work we enrich the highly applicative oriented collection of steroid derivatives, by reporting a rare example of C-12 selectively modified bile salt. While nature often exploits such position to encode functions, it is unusual and not trivial to prepare similar analogues in the laboratory. The introduction of a tert-butyl phenyl residue at C-12 provided a molecule with a self-assembly that remarkably switched from rigid pole-like structures to twisted ribbons at a biologically relevant critical temperature (∼25 °C). The system was characterized by microscopy and spectroscopy techniques and compared with the C-3 functionalized analogue. The twisted ribbons generate samples with a gel texture and a viscoelastic response. The parallel analysis of the two systems suggested that the observed thermoresponsive self-assemblies occur at similar critical temperatures and are probably dictated by the nature of the substituent, but involve aggregates with different structures depending on position and orientation of the substituent. This study highlights the self-assembly properties of two appealing thermoresponsive systems. Moreover, it adds fundamental insights hereto missing in the investigations of the relation between self-assembly and structure of synthetic steroids, which are valuable for the rational design of steroidal amphiphiles.
Collapse
|
6
|
Agarwal DS, Siva Krishna V, Sriram D, Yogeeswari P, Sakhuja R. Clickable conjugates of bile acids and nucleosides: Synthesis, characterization, in vitro anticancer and antituberculosis studies. Steroids 2018; 139:35-44. [PMID: 30236620 DOI: 10.1016/j.steroids.2018.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023]
Abstract
A series of clickable bile acid-nucleosides conjugates linked directly or via amino acid linker were synthesized, and characterized by spectroscopic techniques such as 1H NMR, 13C NMR, FT-IR, HRMS and HPLC. The synthesized compounds 6a-p were screened for their in vitro anticancer property against a panel of three cancer cell lines (PC-3, MCF-7, IMR-32). In addition, the synthesized derivatives were also tested for their antimycobacterial activity against Mycobacterium tuberculosis H37Rv (ATCC 27294 strain). Among the screened compounds, cholic acid-uridine clicked conjugate (6c), and cholic acid-uridine clicked conjugate liked via phenylalanine moiety (6m) were found to be most active against MCF-7 and IMR-32 exhibiting an IC50 value of 8.084 and 8.71 µM, respectively. The antimycobacterial study of the synthesized conjugates revealed all the conjugates to be active with MIC values in the range of 4.09-15.41 µM. Deoxycholic acid-adenosine clicked conjugate (6b) showed most promising antituberculosis property with MIC value of 4.09 µM. Most of the synthesized conjugates were found to be safe at 50 µM against normal human embryonic kidney (HEK 293 T) cell line.
Collapse
|
7
|
Salomatina OV, Popadyuk II, Zakharenko AL, Zakharova OD, Fadeev DS, Komarova NI, Reynisson J, Arabshahi HJ, Chand R, Volcho KP, Salakhutdinov NF, Lavrik OI. Novel Semisynthetic Derivatives of Bile Acids as Effective Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. Molecules 2018; 23:molecules23030679. [PMID: 29562592 PMCID: PMC6017735 DOI: 10.3390/molecules23030679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
An Important task in the treatment of oncological and neurodegenerative diseases is the search for new inhibitors of DNA repair system enzymes. Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is one of the DNA repair system enzymes involved in the removal of DNA damages caused by topoisomerase I inhibitors. Thus, reducing the activity of Tdp1 can increase the effectiveness of currently used anticancer drugs. We describe here a new class of semisynthetic small molecule Tdp1 inhibitors based on the bile acid scaffold that were originally identified by virtual screening. The influence of functional groups of bile acids (hydroxy and acetoxy groups in the steroid framework and amide fragment in the side chain) on inhibitory activity was investigated. In vitro studies demonstrate the ability of the semisynthetic derivatives to effectively inhibit Tdp1 with IC50 up to 0.29 µM. Furthermore, an excellent fit is realized for the ligands when docked into the active site of the Tdp1 enzyme.
Collapse
|
8
|
Anandkumar D, Rajakumar P. Synthesis and anticancer activity of bile acid dendrimers with triazole as bridging unit through click chemistry. Steroids 2017. [PMID: 28648586 DOI: 10.1016/j.steroids.2017.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Triazole-based novel dendrimers with bile acid surface groups have been synthesized through click chemistry by divergent approach and characterized by spectral data. All the dendrimers exhibit excellent anticancer activity. Higher-generation dendrimers exhibit better anticancer activity than the lower-generation dendrimers.
Collapse
|
9
|
Agarwal DS, Anantaraju HS, Sriram D, Yogeeswari P, Nanjegowda SH, Mallu P, Sakhuja R. Synthesis, characterization and biological evaluation of bile acid-aromatic/heteroaromatic amides linked via amino acids as anti-cancer agents. Steroids 2016; 107:87-97. [PMID: 26748355 DOI: 10.1016/j.steroids.2015.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/01/2015] [Accepted: 12/30/2015] [Indexed: 12/19/2022]
Abstract
A series of bile acid (Cholic acid and Deoxycholic acid) aryl/heteroaryl amides linked via α-amino acid were synthesized and tested against 3 human cancer cell-lines (HT29, MDAMB231, U87MG) and 1 human normal cell line (HEK293T). Some of the conjugates showed promising results to be new anticancer agents with good in vitro results. More specifically, Cholic acid derivatives 6a (1.35 μM), 6c (1.41 μM) and 6m (4.52 μM) possessing phenyl, benzothiazole and 4-methylphenyl groups showed fairly good activity against the breast cancer cell line with respect to Cisplatin (7.21 μM) and comparable with respect to Doxorubicin (1 μM), while 6e (2.49μM), 6i (2.46 μM) and 6m (1.62 μM) showed better activity against glioblastoma cancer cell line with respect to both Cisplatin (2.60 μM) and Doxorubicin (3.78 μM) drugs used as standards. Greater than 65% of the compounds were found to be safer on human normal cell line.
Collapse
|
10
|
Gertzen CGW, Spomer L, Smits SHJ, Häussinger D, Keitel V, Gohlke H. Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists. Eur J Med Chem 2015; 104:57-72. [PMID: 26435512 DOI: 10.1016/j.ejmech.2015.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/06/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022]
Abstract
TGR5 (Gpbar-1, M-Bar) is a class A G-protein coupled bile acid-sensing receptor predominately expressed in brain, liver and gastrointestinal tract, and a promising drug target for the treatment of metabolic disorders. Due to the lack of a crystal structure of TGR5, the development of TGR5 agonists has been guided by ligand-based approaches so far. Three binding mode models of bile acid derivatives have been presented recently. However, they differ from one another in terms of overall orientation or with respect to the location and interactions of the cholane scaffold, or cannot explain all results from mutagenesis experiments. Here, we present an extended binding mode model based on an iterative and integrated computational and biological approach. An alignment of 68 TGR5 agonists based on this binding mode leads to a significant and good structure-based 3D QSAR model, which constitutes the most comprehensive structure-based 3D-QSAR study of TGR5 agonists undertaken so far and suggests that the binding mode model is a close representation of the "true" binding mode. The binding mode model is further substantiated in that effects predicted for eight mutations in the binding site agree with experimental analyses on the impact of these TGR5 variants on receptor activity. In the binding mode, the hydrophobic cholane scaffold of taurolithocholate orients towards the interior of the orthosteric binding site such that rings A and B are in contact with TM5 and TM6, the taurine side chain orients towards the extracellular opening of the binding site and forms a salt bridge with R79(EL1), and the 3-hydroxyl group forms hydrogen bonds with E169(5.44) and Y240(6.51). The binding mode thus differs in important aspects from the ones recently presented. These results are highly relevant for the development of novel, more potent agonists of TGR5 and should be a valuable starting point for the development of TGR5 antagonists, which could show antiproliferative effects in tumor cells.
Collapse
|
11
|
Mayorquín-Torres MC, Flores-Álamo M, Iglesias-Arteaga MA. Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains. Steroids 2015; 101:21-7. [PMID: 26048448 DOI: 10.1016/j.steroids.2015.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 11/18/2022]
Abstract
Palladium-catalyzed cross coupling of 4-methoxycarbonyl phenyboronic acid with acetylated bile acids in which the carboxyl functions was activated by formation of a mixed anhydride with pivalic anhydride afforded the cross coupled compounds, which were converted in novel side chain modified bile acids by one pot carbonyl reduction/removal of the protecting acetyl groups by Wolff-Kishner reduction. Unambiguous assignments of the NMR signals and crystal characterization of the heretofore unknown compounds are provided.
Collapse
|
12
|
dos Santos JA, Polonini HC, Suzuki ÉY, Raposo NRB, da Silva AD. Synthesis of conjugated bile acids/azastilbenes as potential antioxidant and photoprotective agents. Steroids 2015; 98:114-21. [PMID: 25814069 DOI: 10.1016/j.steroids.2015.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/09/2015] [Accepted: 03/12/2015] [Indexed: 01/06/2023]
Abstract
A series of 14 bile acids/azastilbenes conjugates (1a-g and 2a-g) was prepared through the condensation of bile amides (1 and 2) and aromatic aldehydes. The newly synthesized conjugates were evaluated in vitro for their antioxidant and photoprotective activities. Six compounds (1, 1a, 1b, 2, 2a and 2b) showed promising antioxidant activity with IC50 values of 19.60-31.83 μg mL(-1). The synthesized compounds presented a varied photoprotection profile, with the SPF ranging from 2 to 9. Among the 16 compounds tested for the protection against UVB sunrays, 3 compounds (2c, 2e and 2g) presented more significant protection than resveratrol and the free azastilbene 3; while the UVAPF increased from 2 in resveratrol and 5 in 3 to 5-11 in the majority of the conjugates.
Collapse
|
13
|
Pospieszny T, Koenig H, Kowalczyk I, Brycki B. Spectroscopic methods and theoretical studies of bromoacetyl substituted derivatives of bile acids. Acta Chim Slov 2015; 62:15-27. [PMID: 25830956 DOI: 10.17344/acsi.2014.608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The structure of seven bromoacetic substituted derivatives of bile acids are characterized by 1H MMR, 13C NMR, 2D NMR, FT-IR and mass spectrometry (ESI-MS) as well as PM5 semiempirical and B3LYP ab initio methods. Estimation of the pharmacotherapeutic potential has been accomplished for the synthesized compounds on the basis of Prediction of Activity Spectra for Substances (PASS).
Collapse
|
14
|
Omura K, Ohsaki A, Zhou B, Kushida M, Mitsuma T, Kobayashi A, Hagey LR, Hofmann AF, Iida T. Improved chemical synthesis, X-ray crystallographic analysis, and NMR characterization of (22R)-/(22S)-hydroxy epimers of bile acids. Lipids 2014; 49:1169-80. [PMID: 25319478 DOI: 10.1007/s11745-014-3955-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/11/2014] [Indexed: 11/29/2022]
Abstract
We report an improved synthesis of the (22R)- and (22S)-epimers of 3α,7α,12α,22-tetrahydroxy-5β-cholan-24-oic acid and 3α,7α,22-trihydroxy-5β-cholan-24-oic acid from cholic acid (CA) and chenodeoxycholic acid (CDCA), respectively. The principal reactions involved were as follows: (1) oxidative decarboxylation of the bile acid peracetates with lead tetraacetate, and (2) subsequent Reformatsky reaction of the 23,24-dinor-22-aldehydes with ethyl bromoacetate in the presence of activated Zn as a catalyst with the reaction temperature maintained precisely at 75 °C. The absolute configuration of the chiral center at C-22 of each epimer was established by single-crystal X-ray diffraction data using its ethyl ester-peracetate derivative. The (1)H- and (13)C-NMR spectra that permit the (22R)- and (22S)-epimers to be distinguished are reported as well as the specific (1)H shift effects induced by C(5)D(5)N. Bile acids having hydroxyl groups at C-22 are present in a variety of animal biles, previously have been difficult to identify, and are known to have distinctive physicochemical and biological properties.
Collapse
|
15
|
Gioiello A, Cerra B, Zhang W, Vallerini GP, Costantino G, De Franco F, Passeri D, Pellicciari R, Setchell KDR. Synthesis of atypical bile acids for use as investigative tools for the genetic defect of 3β-hydroxy-Δ(5)-C27-steroid oxidoreductase deficiency. J Steroid Biochem Mol Biol 2014; 144 Pt B:348-60. [PMID: 24954360 DOI: 10.1016/j.jsbmb.2014.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/28/2014] [Accepted: 06/17/2014] [Indexed: 12/31/2022]
Abstract
Deficiency of 3β-hydroxy-Δ(5)-C27-steroid oxidoreductase (HSD3B7), an enzyme catalyzing the second step in the pathway for bile acid synthesis, leads to a complete lack of the primary bile acids, cholic and chenodeoxycholic acids, and the accumulation of 3β,7α-dihydroxy- and 3β,7α,12α-trihydroxy-Δ(5)-cholenoic acids. Patients affected by this autosomal recessive genetic defect develop cholestatic liver disease that is clinically responsive to primary bile acid therapy. Reference standards of these compounds are needed to facilitate diagnosis and to accurately quantify biochemical responses to therapy. Described are a novel synthesis of atypical bile acids that characterize the HSD3B7 deficiency and their effect on bile acid-activated nuclear receptors, target genes and cytochromes involved in bile acid homeostasis and detoxification. The failure of 3β-hydroxy-Δ(5)-cholenoic acids to function as FXR, PXR and CAR agonists and to exert hepatoprotective actions explains the mechanism for progressive cholestatic liver disease in patients with HSD3B7 deficiency.
Collapse
|
16
|
Pospieszny T, Koenig H, Kowalczyk I, Brycki B. Synthesis, spectroscopic and theoretical studies of new quasi-podands from bile acid derivatives linked by 1,2,3-triazole rings. Molecules 2014; 19:2557-70. [PMID: 24566321 PMCID: PMC6270822 DOI: 10.3390/molecules19022557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/16/2022] Open
Abstract
A novel method for the synthesis of bile acid derivatives has been developed using "click chemistry". Intermolecular 1,3-dipolar cycloaddition of the propargyl ester of bile acids and azide groups of 1,3,5-tris(azidomethyl)benzene gave a new quasi-podands with 1,2,3-triazole rings. The structures of the products were confirmed by spectral (1H-NMR, 13C-NMR, and FT-IR) analysis, mass spectrometry and PM5 semiempirical methods. Estimation of the pharmacotherapeutic potential has been accomplished for synthesized compounds on the basis of Prediction of Activity Spectra for Substances (PASS).
Collapse
|
17
|
Jasiewicz B, Mrówczyńska L, Malczewska-Jaskóła K. Synthesis and haemolytic activity of novel salts made of nicotine alkaloids and bile acids. Bioorg Med Chem Lett 2014; 24:1104-7. [PMID: 24461290 DOI: 10.1016/j.bmcl.2014.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/03/2014] [Accepted: 01/05/2014] [Indexed: 11/18/2022]
Abstract
A series of novel salts made of nicotine alkaloids and bile acids were synthesized and their haemolytic activity was examined in vitro using human erythrocytes. All compounds were characterized by spectroscopic methods. The novel salts show membrane-perturbing properties inducing the erythrocyte shape alterations and haemolysis in dose-dependent manner. Nicotine decreases the membrane interacting potential of bile acids in the novel compounds. The presence of sulfur or selenium atom in the nicotine molecule affects the haemolytic activity of its novel salts depending on the hydrophobicity of bile acids.
Collapse
|
18
|
Wang C, Chen X, Huang Y, Yang J, Chen Y. The regio- and stereo-selective reduction of steroidal 4-en-3-ones using Na₂S₂O₄/NaHCO₃ and CuCl/NaBH₄. Steroids 2013; 78:1339-46. [PMID: 24128809 DOI: 10.1016/j.steroids.2013.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/19/2013] [Accepted: 09/29/2013] [Indexed: 11/28/2022]
Abstract
This paper describes the regio- and stereoselective reduction of △⁴-3-keto moiety in certain steroids using Na₂S₂O₄/NaHCO₃ and CuCl/NaBH₄, respectively. Using either one of the two reduction agents in the reaction, the 17-substituents in the D ring were observed to have clearly influenced the stereoselective reduction of 4-ene in the A ring by the so-called conformational transmission effect. Na₂S₂O₄/NaHCO₃ regioselectively reduced CC at 4-position of 17-substituted-androst-4-en-3-one derivatives to 5α-H-3-one as the main isomer. And as an extended application, Epiandrosterone (11) was further synthesized from androst-4-en-3,17-dione (AD) via four steps. The total yield from this was about 45%. In the presence of CuCl/NaBH₄, △⁴-3-keto conjugated reduction of 17-spirocyclic ethylene ketal protected androst-4-en-3-one derivatives mainly produced 3α-hydroxy-5β-H isomers, at a yield around 81%. Considering the scaffold configuration of 3α-hydroxy-5β-H moiety coincided with that of bile acid analogs, this selective reduction could also be used as an alternative method for the synthetic study of bile acids using AD and its derivatives, which are from the microorganism degradation of natural sterols, as the potential materials. Meanwhile, configurations of the reductive compounds 5b, 6b, 9, 10 and 17e were identified by X-ray diffraction.
Collapse
|
19
|
Ogawa S, Zhou B, Kimoto Y, Omura K, Kobayashi A, Higashi T, Mitamura K, Ikegawa S, Hagey LR, Hofmann AF, Iida T. An efficient synthesis of 7α,12α-dihydroxy-4-cholesten-3-one and its biological precursor 7α-hydroxy-4-cholesten-3-one: Key intermediates in bile acid biosynthesis. Steroids 2013; 78:927-37. [PMID: 23707572 DOI: 10.1016/j.steroids.2013.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/10/2013] [Accepted: 05/16/2013] [Indexed: 11/27/2022]
Abstract
This paper describes a method for the chemical synthesis of 7α,12α-dihydroxy-4-cholesten-3-one (1a) and its biological precursor, 7α-hydroxy-4-cholesten-3-one (1b), both of which are key intermediates in the major pathway of bile acid biosynthesis from cholesterol. The principal reactions involved were (1) building of the cholesterol (iso-octane) side chain by 3-carbon elongation of the cholane (iso-pentane) one, (2) oxidation sequence to transform the 3α-hydroxy group of the steroidal A/B-ring to the desired 4-en-3-one system, and (3) appropriate protection strategy for hydroxy groups in the positions at C-7 and C-12 in the steroid nucleus. The absolute structure of 1a and 1b were confirmed by NMR and X-ray crystallography. The targeted compounds 1a and 1b, prepared in 11 steps from 2a and 2b respectively, should be useful for biochemical studies of bile acid biosynthesis or clinical studies of bile acid metabolism, as plasma levels of 1b (also termed C4) have been shown to correlate highly with the rate of bile acid biosynthesis in man.
Collapse
|
20
|
Verzele D, Figaroli S, Madder A. Shortcut access to peptidosteroid conjugates: building blocks for solid-phase bile acid scaffold decoration by convergent ligation. Molecules 2011; 16:10168-86. [PMID: 22157580 PMCID: PMC6264362 DOI: 10.3390/molecules161210168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022] Open
Abstract
We present three versatile solid-supported scaffold building blocks based on the (deoxy)cholic acid framework and decorated with handles for further derivatization by modern ligation techniques such as click chemistry, Staudinger ligation or native chemical ligation. Straightforward procedures are presented for the synthesis and analysis of the steroid constructs. These building blocks offer a new, facile and shorter access route to bile acid-peptide conjugates on solid-phase with emphasis on heterodipodal conjugates with defined spatial arrangements. As such, we provide versatile new synthons to the toolbox for bile acid decoration.
Collapse
|
21
|
Burns AC, Sorensen PW, Hoye TR. Synthesis and olfactory activity of unnatural, sulfated 5β-bile acid derivatives in the sea lamprey (Petromyzon marinus). Steroids 2011; 76:291-300. [PMID: 21145335 PMCID: PMC3062205 DOI: 10.1016/j.steroids.2010.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 11/28/2010] [Accepted: 11/30/2010] [Indexed: 11/16/2022]
Abstract
A variety of unnatural bile acid derivatives (9a-9f) was synthesized and used to examine the specificity with which the sea lamprey (Petromyzon marinus) olfactory system detects these compounds. These compounds are analogs of petromyzonol sulfate (PS, 1), a component of the sea lamprey migratory pheromone. Both the stereochemical configuration at C5 (i.e., 5α vs. 5β) and the extent and sites of oxygenation (hydroxylation or ketonization) of the bile acid derived steroid skeleton were evaluated by screening the compounds for olfactory activity using electro-olfactogram recording. 5β-Petromyzonol sulfate (9a) elicited a considerable olfactory response at sub-nanomolar concentration. In addition, less oxygenated systems (i.e., 9b-9e) elicited olfactory responses, albeit with less potency. The sea lamprey sex pheromone mimic 9f (5β-3-ketopetromyzonol sulfate) was also examined and found to produce a much lower olfactory response. Mixture studies conducted with 9a and PS (1) suggest that stimulation is occurring via similar modes of activation, demonstrating a relative lack of specificity for recognition of the allo-configuration (i.e., 5α) in sea lamprey olfaction. This attribute could facilitate design of pheromone analogs to control this invasive species.
Collapse
|
22
|
Poša M. QSPR study of the effect of steroidal hydroxy and oxo substituents on the critical micellar concentration of bile acids. Steroids 2011; 76:85-93. [PMID: 20869377 DOI: 10.1016/j.steroids.2010.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/12/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Measurements of the fluorescence intensity of 1,6-diphenylhexatriene (DPH) as a probe molecule allowed the determination of critical micellar concentrations (CMCs) for 30 bile acid (BA) molecules belonging to three linear congeneric groups, with three (Group I) and two (Group II) oxygen atoms from OH or oxo groups bound to the steroid skeleton, and glyco conjugated cholic acid and glyco conjugated cholic acid derivatives (Group III). The CMC values are related to the structure of the steroid nucleus by constructing novel molecular descriptors with 2D and 3D characteristics of topological descriptors. Namely, with conventional topological descriptors (first-order connectivity index, third-order connectivity index, Wiener-index, Balaban-index, molecular topological index, cluster count, etc.) BA molecules from the same congeneric group have identical values, so that these descriptors cannot be used to form a new model for the given congeneric group. The linear regressions (models) obtained in this work for each congeneric group relate the CMCs to this new descriptor. Statistical parameters of these models, as well as their predictivity, indicate the significance of the obtained equations, that is that the micelle formation is influenced not only by the number of OH and oxo groups in the steroid nucleus but also by their steric environment.
Collapse
|
23
|
Maitra U. Synthesis, aggregation behavior and cholesterol solubilization studies of 16-epi-pythocholic acid (3 alpha,12 alpha,16 beta-trihydroxy-5 beta-cholan-24-oic acid). Steroids 2010; 75:506-12. [PMID: 20359489 DOI: 10.1016/j.steroids.2010.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 01/09/2023]
Abstract
Synthesis, aggregation behavior and in vitro cholesterol solubilization studies of 16-epi-pythocholic acid (3 alpha,12 alpha,16 beta-trihydroxy-5 beta-cholan-24-oic acid, EPCA) are reported. The synthesis of this unnatural epimer of pythocholic acid (3 alpha,12 alpha,16 alpha-trihydroxy-5 beta-cholan-24-oic acid, PCA) involves a series of simple and selective chemical transformations with an overall yield of 21% starting from readily available cholic acid (CA). The critical micellar concentration (CMC) of 16-epi-pythocholate in aqueous media was determined using pyrene as a fluorescent probe. In vitro cholesterol solubilization ability was evaluated using anhydrous cholesterol and results were compared with those of other natural di- and trihydroxy bile acids. These studies showed that 16-epi-pythocholic acid (16 beta-hydroxy-deoxycholic acid) behaves similar to cholic acid (CA) and avicholic acid (3 alpha,7 alpha,16 alpha-trihydroxy-5 beta-cholan-24-oic acid, ACA) in its aggregation behavior and cholesterol dissolution properties.
Collapse
|
24
|
|
25
|
Huang L, Sun Y, Zhu H, Zhang Y, Xu J, Shen YM. Synthesis and antimicrobial evaluation of bile acid tridentate conjugates. Steroids 2009; 74:701-6. [PMID: 19463693 DOI: 10.1016/j.steroids.2009.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/20/2009] [Accepted: 03/02/2009] [Indexed: 11/28/2022]
Abstract
Two series of novel bile acid tridentate conjugates with different linkers were synthesized and characterized, and their biological activities in vitro were evaluated. The procedure was straightforward and efficient to be carried out with high overall yield. The antimicrobial activity of the synthesized compounds against Saccharomyces cerevisiae, Aspergillus niger, Escherichia coli and Staphylococcus aureus was investigated in vitro. The best activity of minimal inhibitory concentrations (MICs) for 1c, 1c', 2c and 2c' against S. cerevisiae was up to 0.125 microg/mL.
Collapse
|