1
|
Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 2011; 8:153-70. [PMID: 20719768 PMCID: PMC3033020 DOI: 10.1098/rsif.2010.0223] [Citation(s) in RCA: 946] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/29/2010] [Indexed: 12/23/2022] Open
Abstract
The identification and production of recombinant morphogens and growth factors that play key roles in tissue regeneration have generated much enthusiasm and numerous clinical trials, but the results of many of these trials have been largely disappointing. Interestingly, the trials that have shown benefit all contain a common denominator, the presence of a material carrier, suggesting strongly that spatio-temporal control over the location and bioactivity of factors after introduction into the body is crucial to achieve tangible therapeutic effect. Sophisticated materials systems that regulate the biological presentation of growth factors represent an attractive new generation of therapeutic agents for the treatment of a wide variety of diseases. This review provides an overview of growth factor delivery in tissue engineering. Certain fundamental issues and design strategies relevant to the material carriers that are being actively pursued to address specific technical objectives are discussed. Recent progress highlights the importance of materials science and engineering in growth factor delivery approaches to regenerative medicine.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
946 |
2
|
Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 2015; 11:21-34. [PMID: 25247412 PMCID: PMC4629810 DOI: 10.1038/nrrheum.2014.157] [Citation(s) in RCA: 869] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability of articular cartilage to regenerate renders joint arthroplasty an unavoidable surgical intervention. This Review describes current, widely used clinical repair techniques for resurfacing articular cartilage defects; short-term and long-term clinical outcomes of these techniques are discussed. Also reviewed is a developmental pipeline of acellular and cellular regenerative products and techniques that could revolutionize joint care over the next decade by promoting the development of functional articular cartilage. Acellular products typically consist of collagen or hyaluronic-acid-based materials, whereas cellular techniques use either primary cells or stem cells, with or without scaffolds. Central to these efforts is the prominent role that tissue engineering has in translating biological technology into clinical products; therefore, concomitant regulatory processes are also discussed.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
869 |
3
|
Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jääskeläinen J, Ram Z. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 2003; 5:79-88. [PMID: 12672279 PMCID: PMC1920672 DOI: 10.1093/neuonc/5.2.79] [Citation(s) in RCA: 833] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Accepted: 09/12/2002] [Indexed: 11/12/2022] Open
Abstract
A previous placebo-controlled trial has shown that biodegradable 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) wafers (Gliadel wafers) prolong survival in patients with recurrent glioblastoma multiforme. A previously completed phase 3 trial, also placebo controlled, in 32 patients with newly diagnosed malignant glioma also demonstrated a survival benefit in those patients treated with BCNU wafers. Because of the small number of patients in that trial, a larger phase 3 trial was performed to confirm these results. Two hundred forty patients were randomized to receive either BCNU or placebo wafers at the time of primary surgical resection; both groups were treated with external beam radiation postoperatively. The two groups were similar for age, sex, Karnofsky performance status (KPS), and tumor histology. Median survival in the intent-to-treat group was 13.9 months for the BCNU wafer-treated group and 11.6 months for the placebo-treated group (log-rank P -value stratified by country = 0.03), with a 29% reduction in the risk of death in the treatment group. When adjusted for factors affecting survival, the treatment effect remained positive with a risk reduction of 28% ( P = 0.03). Time to decline in KPS and in 10/11 neuroperformance measures was statistically significantly prolonged in the BCNU wafer-treated group ( P </= 0.05). Adverse events were comparable for the 2 groups, except for CSF leak (5% in the BCNU wafer-treated group vs. 0.8% in the placebo-treated group) and intracranial hypertension (9.1% in the BCNU wafer-treated group vs. 1.7% in the placebo group). This study confirms that local chemotherapy with BCNU wafers is well tolerated and offers a survival benefit to patients with newly diagnosed malignant glioma.
Collapse
|
research-article |
22 |
833 |
4
|
Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles for intracellular controlled drug delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1952-67. [PMID: 20690133 DOI: 10.1002/smll.200901789] [Citation(s) in RCA: 702] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The application of nanotechnology in the field of drug delivery has attracted much attention in the latest decades. Recent breakthroughs on the morphology control and surface functionalization of inorganic-based delivery vehicles, such as mesoporous silica nanoparticles (MSNs), have brought new possibilities to this burgeoning area of research. The ability to functionalize the surface of mesoporous-silica-based nanocarriers with stimuli-responsive groups, nanoparticles, polymers, and proteins that work as caps and gatekeepers for controlled release of various cargos is just one of the exciting results reported in the literature that highlights MSNs as a promising platform for various biotechnological and biomedical applications. This review focuses on the most recent progresses in the application of MSNs for intracellular drug delivery. The latest research on the pathways of entry into live mammalian and plant cells together with intracellular trafficking are described. One of the main areas of interest in this field is the development of site-specific drug delivery vehicles; the contribution of MSNs toward this topic is also summarized. In addition, the current research progress on the biocompatibility of this material in vitro and in vivo is discussed. Finally, the latest breakthroughs for intracellular controlled drug release using stimuli-responsive mesoporous-silica-based systems are described.
Collapse
|
Evaluation Study |
15 |
702 |
5
|
Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2445-61. [PMID: 24865980 PMCID: PMC4169585 DOI: 10.1007/s10856-014-5240-2] [Citation(s) in RCA: 651] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/09/2014] [Indexed: 05/04/2023]
Abstract
Bone substitutes are being increasingly used in surgery as over two millions bone grafting procedures are performed worldwide per year. Autografts still represent the gold standard for bone substitution, though the morbidity and the inherent limited availability are the main limitations. Allografts, i.e. banked bone, are osteoconductive and weakly osteoinductive, though there are still concerns about the residual infective risks, costs and donor availability issues. As an alternative, xenograft substitutes are cheap, but their use provided contrasting results, so far. Ceramic-based synthetic bone substitutes are alternatively based on hydroxyapatite (HA) and tricalcium phosphates, and are widely used in the clinical practice. Indeed, despite being completely resorbable and weaker than cortical bone, they have exhaustively proved to be effective. Biomimetic HAs are the evolution of traditional HA and contains ions (carbonates, Si, Sr, Fl, Mg) that mimic natural HA (biomimetic HA). Injectable cements represent another evolution, enabling mininvasive techniques. Bone morphogenetic proteins (namely BMP2 and 7) are the only bone inducing growth factors approved for human use in spine surgery and for the treatment of tibial nonunion. Demineralized bone matrix and platelet rich plasma did not prove to be effective and their use as bone substitutes remains controversial. Experimental cell-based approaches are considered the best suitable emerging strategies in several regenerative medicine application, including bone regeneration. In some cases, cells have been used as bioactive vehicles delivering osteoinductive genes locally to achieve bone regeneration. In particular, mesenchymal stem cells have been widely exploited for this purpose, being multipotent cells capable of efficient osteogenic potential. Here we intend to review and update the alternative available techniques used for bone fusion, along with some hints on the advancements achieved through the experimental research in this field.
Collapse
|
Review |
11 |
651 |
6
|
Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 2009; 61:467-77. [PMID: 19389434 PMCID: PMC2700776 DOI: 10.1016/j.addr.2009.03.007] [Citation(s) in RCA: 611] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 03/30/2009] [Indexed: 12/11/2022]
Abstract
Engineered magnetic nanoparticles (MNPs) represent a cutting-edge tool in medicine because they can be simultaneously functionalized and guided by a magnetic field. Use of MNPs has advanced magnetic resonance imaging (MRI), guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cell tracking and bioseparation. Integrative therapeutic and diagnostic (i.e., theragnostic) applications have emerged with MNP use, such as MRI-guided cell replacement therapy or MRI-based imaging of cancer-specific gene delivery. However, mounting evidence suggests that certain properties of nanoparticles (e.g., enhanced reactive area, ability to cross cell and tissue barriers, resistance to biodegradation) amplify their cytotoxic potential relative to molecular or bulk counterparts. Oxidative stress, a 3-tier paradigm of nanotoxicity, manifests in activation of reactive oxygen species (ROS) (tier I), followed by a proinflammatory response (tier II) and DNA damage leading to cellular apoptosis and mutagenesis (tier III). Invivo administered MNPs are quickly challenged by macrophages of the reticuloendothelial system (RES), resulting in not only neutralization of potential MNP toxicity but also reduced circulation time necessary for MNP efficacy. We discuss the role of MNP size, composition and surface chemistry in their intracellular uptake, biodistribution, macrophage recognition and cytotoxicity, and review current studies on MNP toxicity, caveats of nanotoxicity assessments and engineering strategies to optimize MNPs for biomedical use.
Collapse
|
Review |
16 |
611 |
7
|
Czaja W, Krystynowicz A, Bielecki S, Brown RM. Microbial cellulose—the natural power to heal wounds. Biomaterials 2006; 27:145-51. [PMID: 16099034 DOI: 10.1016/j.biomaterials.2005.07.035] [Citation(s) in RCA: 602] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 07/21/2005] [Indexed: 11/28/2022]
Abstract
Microbial cellulose (MC) synthesized in abundance by Acetobacter xylinum shows vast potential as a novel wound healing system. The high mechanical strength and remarkable physical properties result from the unique nanostructure of the never-dried membrane. This article attempts to briefly summarize the recent developments and applications of MC in the emerging field of novel wound dressings and skin substitutes. It considers the properties of the synthesized material, its clinical performance, as well as progress in the commercialization of MC for wound care products. Efficient and inexpensive fermentation techniques, not presently available, will be necessary to produce large quantities of the polymer.
Collapse
|
|
19 |
602 |
8
|
McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008; 60:1241-1251. [PMID: 18508157 PMCID: PMC2583936 DOI: 10.1016/j.addr.2008.03.014] [Citation(s) in RCA: 575] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 03/21/2008] [Indexed: 12/26/2022]
Abstract
Magnetic nanoparticles have become important tools for the imaging of prevalent diseases, such as cancer, atherosclerosis, diabetes, and others. While first generation nanoparticles were fairly nonspecific, newer generations have been targeted to specific cell types and molecular targets via affinity ligands. Commonly, these ligands emerge from phage or small molecule screens, or are based on antibodies or aptamers. Secondary reporters and combined therapeutic molecules have further opened potential clinical applications of these materials. This review summarizes some of the recent biomedical applications of these newer magnetic nanomaterials.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
575 |
9
|
Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1143-1169. [PMID: 25580589 DOI: 10.1002/adma.201403354] [Citation(s) in RCA: 547] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed.
Collapse
|
Review |
10 |
547 |
10
|
Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations. J Endod 2010; 36:190-202. [PMID: 20113774 DOI: 10.1016/j.joen.2009.09.010] [Citation(s) in RCA: 542] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 06/14/2009] [Accepted: 09/12/2009] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Mineral trioxide aggregate (MTA) was developed because existing materials did not have the ideal characteristics for orthograde or retrograde root-end fillings. MTA has been recommended primarily as a root-end filling material, but it has also been used in pulp capping, pulpotomy, apical barrier formation in teeth with open apexes, repair of root perforations, and root canal filling. Part I of this literature review presented a comprehensive list of articles regarding the chemical and physical properties as well as the antibacterial activity of MTA. The purpose of part II of this review is to present a comprehensive list of articles regarding the sealing ability and biocompatibility of this material. METHODS A review of the literature was performed by using electronic and hand-searching methods for the sealing ability and biocompatibility of MTA from November 1993-September 2009. RESULTS Numerous studies have investigated the sealing ability and biocompatibility of MTA. CONCLUSIONS On the basis of available evidence it appears that MTA seals well and is a biocompatible material.
Collapse
|
Review |
15 |
542 |
11
|
Abstract
Organ and tissue loss through disease and injury motivate the development of therapies that can regenerate tissues and decrease reliance on transplantations. Regenerative medicine, an interdisciplinary field that applies engineering and life science principles to promote regeneration, can potentially restore diseased and injured tissues and whole organs. Since the inception of the field several decades ago, a number of regenerative medicine therapies, including those designed for wound healing and orthopedics applications, have received Food and Drug Administration (FDA) approval and are now commercially available. These therapies and other regenerative medicine approaches currently being studied in preclinical and clinical settings will be covered in this review. Specifically, developments in fabricating sophisticated grafts and tissue mimics and technologies for integrating grafts with host vasculature will be discussed. Enhancing the intrinsic regenerative capacity of the host by altering its environment, whether with cell injections or immune modulation, will be addressed, as well as methods for exploiting recently developed cell sources. Finally, we propose directions for current and future regenerative medicine therapies.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
528 |
12
|
Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, Jin H, Parker KK, Langer R, Kohane DS. Nanowired three-dimensional cardiac patches. NATURE NANOTECHNOLOGY 2011; 6:720-5. [PMID: 21946708 PMCID: PMC3208725 DOI: 10.1038/nnano.2011.160] [Citation(s) in RCA: 495] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/19/2011] [Indexed: 05/18/2023]
Abstract
Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.
Collapse
|
Letter |
14 |
495 |
13
|
Abstract
Since the discovery in 1969 of a man-made surface-active material that would bond to bone, a range of materials with the same ability has been developed. These include glass, glass-ceramic, and ceramic materials which have a range of reaction rates and from which it should be possible to select a surface-active material for a specific application. The available materials and their similarities, differences, and current clinical applications are reviewed.
Collapse
|
|
41 |
481 |
14
|
Serruys PW, Chevalier B, Dudek D, Cequier A, Carrié D, Iniguez A, Dominici M, van der Schaaf RJ, Haude M, Wasungu L, Veldhof S, Peng L, Staehr P, Grundeken MJ, Ishibashi Y, Garcia-Garcia HM, Onuma Y. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet 2015; 385:43-54. [PMID: 25230593 DOI: 10.1016/s0140-6736(14)61455-0] [Citation(s) in RCA: 461] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Despite rapid dissemination of an everolimus-eluting bioresorbable scaffold for treatment for coronary artery disease, no data from comparisons with its metallic stent counterpart are available. In a randomised controlled trial we aimed to compare an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent. Here we report secondary clinical and procedural outcomes after 1 year of follow-up. METHODS In a single-blind, multicentre, randomised trial, we enrolled eligible patients aged 18-85 years with evidence of myocardial ischaemia and one or two de-novo native lesions in different epicardial vessels. We randomly assigned patients in a 2:1 ratio to receive treatment with an everolimus-eluting bioresorbable scaffold (Absorb, Abbott Vascular, Santa Clara, CA, USA) or treatment with an everolimus-eluting metallic stent (Xience, Abbott Vascular, Santa Clara, CA, USA). Randomisation was stratified by diabetes status and number of planned target lesions. The co-primary endpoints of this study are vasomotion (change in mean lumen diameter before and after nitrate administration at 3 years) and difference between minimum lumen diameter (after nitrate administration) after the index procedure and at 3 years. Secondary endpoints were procedural performance assessed by quantitative angiography and intravascular ultrasound; composite clinical endpoints based on death, myocardial infarction, and coronary revascularisation; device and procedural success; and angina status assessed by the Seattle Angina Questionnaire and exercise testing at 6 and 12 months. Cumulative angina rate based on adverse event reporting was analysed post hoc. This trial is registered at ClinicalTrials.gov, number NCT01425281. FINDINGS Between Nov 28, 2011, and June 4, 2013, we enrolled 501 patients and randomly assigned them to the bioresorbable scaffold group (335 patients, 364 lesions) or the metallic stent group (166 patients, 182 lesions). Dilatation pressure and balloon diameter at the highest pressure during implantation or postdilatation were higher and larger in the metallic stent group, whereas the acute recoil post implantation was similar (0.19 mm for both, p=0.85). Acute lumen gain was lower for the bioresorbable scaffold by quantitative coronary angiography (1.15 mm vs 1.46 mm, p<0.0001) and quantitative intravascular ultrasound (2.85 mm(2)vs 3.60 mm(2), p<0.0001), resulting in a smaller lumen diameter or area post procedure. At 1 year, however, cumulative rates of first new or worsening angina from adverse event reporting were lower (72 patients [22%] in the bioresorbable scaffold group vs 50 [30%] in the metallic stent group, p=0.04), whereas performance during maximum exercise and angina status by SAQ were similar. The 1-year composite device orientated endpoint was similar between the bioresorbable scaffold and metallic stent groups (16 patients [5%] vs five patients [3%], p=0.35). Three patients in the bioresorbable scaffold group had definite or probable scaffold thromboses (one definite acute, one definite sub-acute, and one probable late), compared with no patients in the metallic stent group. There were 17 (5%) major cardiac adverse events in the bioresorbable scaffold group compared with five (3%) events in the metallic stent group, with the most common adverse events being myocardial infarction (15 cases [4%] vs two cases [1%], respectively) and clinically indicated target-lesion revascularisation (four cases [1%] vs three cases [2%], respectively). INTERPRETATION The everolimus-eluting bioresorbable scaffold showed similar 1-year composite secondary clinical outcomes to the everolimus-eluting metallic stent. FUNDING Abbott Vascular.
Collapse
|
Clinical Trial, Phase II |
10 |
461 |
15
|
Li Y, Shi J. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:3176-205. [PMID: 24687906 DOI: 10.1002/adma.201305319] [Citation(s) in RCA: 440] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/18/2013] [Indexed: 05/20/2023]
Abstract
Hollow-structured mesoporous materials (HMMs), as a kind of mesoporous material with unique morphology, have been of great interest in the past decade because of the subtle combination of the hollow architecture with the mesoporous nanostructure. Benefitting from the merits of low density, large void space, large specific surface area, and, especially, the good biocompatibility, HMMs present promising application prospects in various fields, such as adsorption and storage, confined catalysis when catalytically active species are incorporated in the core and/or shell, controlled drug release, targeted drug delivery, and simultaneous diagnosis and therapy of cancers when the surface and/or core of the HMMs are functionalized with functional ligands and/or nanoparticles, and so on. In this review, recent progress in the design, synthesis, functionalization, and applications of hollow mesoporous materials are discussed. Two main synthetic strategies, soft-templating and hard-templating routes, are broadly sorted and described in detail. Progress in the main application aspects of HMMs, such as adsorption and storage, catalysis, and biomedicine, are also discussed in detail in this article, in terms of the unique features of the combined large void space in the core and the mesoporous network in the shell. Functionalization of the core and pore/outer surfaces with functional organic groups and/or nanoparticles, and their performance, are summarized in this article. Finally, an outlook of their prospects and challenges in terms of their controlled synthesis and scaled application is presented.
Collapse
|
Review |
11 |
440 |
16
|
Serruys PW, Chevalier B, Sotomi Y, Cequier A, Carrié D, Piek JJ, Van Boven AJ, Dominici M, Dudek D, McClean D, Helqvist S, Haude M, Reith S, de Sousa Almeida M, Campo G, Iñiguez A, Sabaté M, Windecker S, Onuma Y. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet 2016; 388:2479-2491. [PMID: 27806897 DOI: 10.1016/s0140-6736(16)32050-5] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND No medium-term data are available on the random comparison between everolimus-eluting bioresorbable vascular scaffolds and everolimus-eluting metallic stents. The study aims to demonstrate two mechanistic properties of the bioresorbable scaffold: increase in luminal dimensions as a result of recovered vasomotion of the scaffolded vessel. METHODS The ABSORB II trial is a prospective, randomised, active-controlled, single-blind, parallel two-group, multicentre clinical trial. We enrolled eligible patients aged 18-85 years with evidence of myocardial ischaemia and one or two de-novo native lesions in different epicardial vessels. We randomly assigned patients (2:1) to receive treatment with an everolimus-eluting bioresorbable scaffold (Absorb; Abbott Vascular, Santa Clara, CA, USA) or treatment with an everolimus-eluting metallic stent (Xience; Abbott Vascular, Santa Clara, CA, USA). Randomisation was stratified by diabetes status and number of planned target lesions. At 3 year follow-up, the primary endpoint was superiority of the Absorb bioresorbable scaffold versus the Xience metallic stent in angiographic vasomotor reactivity after administration of intracoronary nitrate. The co-primary endpoint is the non-inferiority of angiographic late luminal loss. For the endpoint of vasomotion, the comparison was tested using a two-sided t test. For the endpoint of late luminal loss, non-inferiority was tested using a one-sided asymptotic test, against a non-inferiority margin of 0·14 mm. The trial is registered at ClinicalTrials.gov, number NCT01425281. FINDINGS Between Nov 28, 2011, and June 4, 2013, we enrolled 501 patients and randomly assigned them to the Absorb group (335 patients, 364 lesions) or the Xience group (166 patients, 182 lesions). The vasomotor reactivity at 3 years was not statistically different (Absorb group 0·047 mm [SD 0·109] vs Xience group 0·056 mm [0·117]; psuperiority=0·49), whereas the late luminal loss was larger in the Absorb group than in the Xience group (0·37 mm [0·45] vs 0·25 mm [0·25]; pnon-inferiority=0·78). This difference in luminal dimension was confirmed by intravascular ultrasound assessment of the minimum lumen area (4·32 mm2 [SD 1·48] vs 5·38 mm2 [1·51]; p<0·0001). The secondary endpoints of patient-oriented composite endpoint, Seattle Angina Questionnaire score, and exercise testing were not statistically different in both groups. However, a device-oriented composite endpoint was significantly different between the Absorb group and the Xience group (10% vs 5%, hazard ratio 2·17 [95% CI 1·01-4·70]; log-rank test p=0·0425), mainly driven by target vessel myocardial infarction (6% vs 1%; p=0·0108), including peri-procedural myocardial infarction (4% vs 1%; p=0·16). INTERPRETATION The trial did not meet its co-primary endpoints of superior vasomotor reactivity and non-inferior late luminal loss for the Absorb bioresorbable scaffold with respect to the metallic stent, which was found to have significantly lower late luminal loss than the Absorb scaffold. A higher rate of device-oriented composite endpoint due to target vessel myocardial infarction, including peri-procedural myocardial infarction, was observed in the Absorb group. The patient-oriented composite endpoint, anginal status, and exercise testing, were not statistically different between both devices at 3 years. Future studies should investigate the clinical impact of accurate intravascular imaging in sizing the device and in optimising the scaffold implantation. The benefit and need for prolonged dual antiplatelet therapy after bioresorbable scaffold implantation could also become a topic for future clinical research. FUNDING Abbott Vascular.
Collapse
|
Multicenter Study |
9 |
420 |
17
|
Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K. Prospects and challenges of graphene in biomedical applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2258-68. [PMID: 23494834 DOI: 10.1002/adma.201203700] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/11/2012] [Indexed: 05/25/2023]
Abstract
Graphene materials have entered a phase of maturity in their development that is characterized by their explorative utilization in various types of applications and fields from electronics to biomedicine. Herein, we describe the recent advances made with graphene-related materials in the biomedical field and the challenges facing these exciting new tools both in terms of biological activity and toxicological profiling in vitro and in vivo. Graphene materials today have mainly been explored as components of biosensors and for construction of matrices in tissue engineering. Their antimicrobial activity and their capacity to act as drug delivery platforms have also been reported, however, not as coherently. This report will attempt to offer some perspective as to which areas of biomedical applications can expect graphene-related materials to constitute a tool offering improved functionality and previously unavailable options.
Collapse
|
Review |
12 |
414 |
18
|
Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW. Fluorine (19F) MRS and MRI in biomedicine. NMR IN BIOMEDICINE 2011; 24:114-29. [PMID: 20842758 PMCID: PMC3051284 DOI: 10.1002/nbm.1570] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 05/04/2023]
Abstract
Shortly after the introduction of (1)H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine ((19)F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, (19)F MRI of 'hotspots' of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
384 |
19
|
Mackinnon SE, Dellon AL. Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plast Reconstr Surg 1990; 85:419-24. [PMID: 2154831 DOI: 10.1097/00006534-199003000-00015] [Citation(s) in RCA: 372] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microneurosurgical techniques to reconstruct nerve gaps with nerve grafts frequently fail to achieve excellent functional results and create donor-site morbidity. In the present study, 15 patients had gaps of 0.5 to 3.0 cm (mean 1.7 cm) in digital nerves reconstructed by one surgeon with a bioabsorbable polyglycolic acid (PGA) tube. A final evaluation of sensibility was done by a second surgeon at a mean postoperative interval of 22.4 months (range 11 to 32 months). These were all secondary reconstructions. The evaluation included a digital nerve block with local anesthetic for the intact (not reconstructed) digital nerve. Excellent functional sensation (moving two-point discrimination less than or equal to 3 mm and/or static two-point discrimination less than or equal to 6 mm) was present in 33 percent and good functional sensation (moving two-point discrimination of 4 to 7 mm and/or static two-point discrimination of 7 to 15 mm) in 53 percent of the digital nerve reconstructions. One patient with poor sensory recovery and one with no recovery were judged as functional failures (14 percent). Absence of pain at the site of reconstruction was judged by the patient to be excellent in 40 percent, good in 33 percent, and poor in 27 percent. We conclude that reconstruction of nerve gaps of up to 3.0 cm with a bioabsorbable PGA tube gives clinical results at least comparable to the classic nerve graft technique while avoiding donor-site morbidity.
Collapse
|
|
35 |
372 |
20
|
Vegas AJ, Veiseh O, Doloff JC, Ma M, Tam HH, Bratlie K, Li J, Bader AR, Langan E, Olejnik K, Fenton P, Kang JW, Hollister-Locke J, Bochenek MA, Chiu A, Siebert S, Tang K, Jhunjhunwala S, Aresta-Dasilva S, Dholakia N, Thakrar R, Vietti T, Chen M, Cohen J, Siniakowicz K, Qi M, McGarrigle J, Graham AC, Lyle S, Harlan DM, Greiner DL, Oberholzer J, Weir GC, Langer R, Anderson DG. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol 2016; 34:345-52. [PMID: 26807527 PMCID: PMC4904301 DOI: 10.1038/nbt.3462] [Citation(s) in RCA: 364] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023]
Abstract
The foreign body response is an immune-mediated reaction that can lead to the failure of implanted medical devices and discomfort for the recipient. There is a critical need for biomaterials that overcome this key challenge in the development of medical devices. Here we use a combinatorial approach for covalent chemical modification to generate a large library of variants of one of the most widely used hydrogel biomaterials, alginate. We evaluated the materials in vivo and identified three triazole-containing analogs that substantially reduce foreign body reactions in both rodents and, for at least 6 months, in non-human primates. The distribution of the triazole modification creates a unique hydrogel surface that inhibits recognition by macrophages and fibrous deposition. In addition to the utility of the compounds reported here, our approach may enable the discovery of other materials that mitigate the foreign body response.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
364 |
21
|
Bachelder EM, Beaudette TT, Broaders KE, Dashe J, Fréchet JMJ. Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J Am Chem Soc 2008; 130:10494-5. [PMID: 18630909 PMCID: PMC2673804 DOI: 10.1021/ja803947s] [Citation(s) in RCA: 359] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dextran, a biocompatible, water-soluble polysaccharide, was modified at its hydroxyls with acetal moieties such that it became insoluble in water but freely soluble in common organic solvents enabling its use in the facile preparation of acid-sensitive microparticles. These particles degrade in a pH-dependent manner: FITC-dextran was released with a half-life at 37 degrees C of 10 h at pH 5.0 compared to a half-life of approximately 15 days at pH 7.4. Both hydrophobic and hydrophilic cargoes were successfully loaded into these particles using single and double emulsion techniques, respectively. When used in a model vaccine application, particles loaded with the protein ovalbumin (OVA) increased the presentation of OVA-derived peptides to CD8+ T-cells 16-fold relative to OVA alone. Additionally, this dextran derivative was found to be nontoxic in preliminary in vitro cytotoxicity assays. Owing to its ease of preparation, processability, pH-sensitivity, and biocompatibility, this type of modified dextran should find use in numerous drug delivery applications.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
359 |
22
|
Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA, Cloft HJ. A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke 2007; 38:2346-52. [PMID: 17615366 DOI: 10.1161/strokeaha.106.479576] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We report a preclinical study of a new endoluminal device for aneurysm occlusion to test the hypothesis that the device, even without use of intrasaccular coil placement, could occlude saccular aneurysms without causing substantial parent artery compromise or compromise of adjacent, small branch arteries. METHODS The Pipeline Neuroendovascular Device (Pipeline NED; Chestnut Medical Technologies, Inc) is a braided, tubular, bimetallic endoluminal implant aimed at occlusion of saccular aneurysms through flow disruption along the aneurysm neck. The device was implanted across the necks of 17 elastase-induced aneurysms in the New Zealand white rabbit model and followed for 1 month (n=6), 3 months (n=5), and 6 months (n=6). In each subject, a second device was implanted in the abdominal aorta to cover the origins of lumbar arteries. Aneurysm occlusion rates by angiography (grade 1, complete occlusion; grade 2, near-complete occlusion; and grade 3, incomplete occlusion) were documented. Percent area stenosis of the parent arteries was calculated. Presence of distal emboli in the downstream vessels in the parent artery and branch artery stenosis or occlusion was noted. RESULTS Grades 1, 2, and 3 occlusion rates were noted in 9 (53%), 6 (35%), and 2 (12%) of 17 aneurysms, respectively, indicating an 88% rate of complete or near complete occlusion. No cases of branch artery occlusion or distal emboli in the downstream vessels of the parent artery, specifically the subclavian artery, were seen. Parent artery compromise from neointimal hyperplasia was minimal in most cases. CONCLUSIONS The Pipeline NED is a trackable, bio- and hemocompatible device able to occlude saccular aneurysms with preservation of the parent artery and small, adjacent branch vessels.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
347 |
23
|
Toth JM, Wang M, Estes BT, Scifert JL, Seim HB, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 2005; 27:324-34. [PMID: 16115677 DOI: 10.1016/j.biomaterials.2005.07.011] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
Threaded lumbar interbody spinal fusion devices (TIBFD) made from titanium have been reported to be 90% effective for single-level lumbar interbody fusion, although radiographic determination of fusion has been intensely debated in the literature. Using blinded radiographic, biomechanic, histologic, and statistical measures, we evaluated a radiolucent polyetheretherketone (PEEK)-threaded interbody fusion device packed with autograft or rhBMP-2 on an absorbable collagen sponge in 13 sheep at 6 months. Radiographic fusion, increased spinal level biomechanical stiffness, and histologic fusion were demonstrated for the PEEK cages filled with autograft or rhBMP-2 on a collagen sponge. No device degradation or wear debris was observed. Only mild chronic inflammation consisting of a few macrophages was observed in peri-implant tissues. Based on these results, the polymeric biomaterial PEEK may be a useful biomaterial for interbody fusion cages due to the polymer's increased radiolucency and decreased stiffness.
Collapse
|
Journal Article |
20 |
341 |
24
|
De Long WG, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am 2007; 89:649-58. [PMID: 17332116 DOI: 10.2106/jbjs.f.00465] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
Review |
18 |
304 |
25
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
|
Review |
5 |
303 |